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• Variables 

• Function application 

• Lambda abstraction

The Lambda Calculus (1930s)

Just these three elements form a 
complete computational system



e ::= x Variables
∣ λx . e Lambdas
∣ e0 e1 Applications

Original Syntax



e ::= x Variables
∣ (λ (x) e) Lambdas
∣ (e0 e1) Applications

Scheme Syntax



(define (expr? e)
  (match e
    [(? symbol? x) #t]
    [`(lambda (,(? symbol? x)) ,(? expr? e-body)) #t]
    [`(,(? expr? e0) ,(? expr? e1)) #t]
    [_ #f]))



Lambda Calculus equivalent (in expressivity) to Turing 

machines.  

The Church-Turing Thesis states that turing machines 
/ lambda calculus can encode any computable 
function.

Lambda Calculus vs. Turing machines



In fact, it is possible to encode (most of) any Scheme 
program as a lambda calculus expression via a 
Church/Boehm encoding.



Now let’s look at the three lambda calculus forms in 
detail…



(λ (x) e)

Formal parameter Function body

An expression, abstracted over all possible values 
for a formal parameter, in this case, x.



(λ (x) e)

Formal parameter Function body

An expression, abstracted over all possible values 
for a formal parameter, in this case, x.

In fact, you can read lambdas mathematically as “for all.” This 
observation forms the basis for universal quantification in higher-
order logics implemented using typed lambda calculus variants!



(e e)

Expression in  
function position

Expression in 
argument position

Next we have applications



x

Variable reference

Variables are only defined/assigned when a function 
is applied and its parameter bound to an argument.



How do we compute with the lambda calculus..?

Answer: via reductions, which define equivalent / 
transformed terms.



The most important reduction is β, which applies 
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))



The most important reduction is β, which applies 
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

β



((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

((λ (x) x) (λ (x) x))

β

β

The most important reduction is β, which applies 
a function by substituting arguments



((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

((λ (x) x) (λ (x) x))

(λ (x) x)

β

β

β

The most important reduction is β, which applies 
a function by substituting arguments



→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

Textual substitution. This says: 
replace every x in E0 with E1.

Next lecture: carefully defining substitution!



((λ (x) x) (λ (x) x))

x[x ← (λ (x) x)]

β



((λ (x) x) (λ (x) x))

β

((λ (x) x) (λ (x) x))

(λ (x) x)

β



Can you beta-reduce the following term 
more than once…? 

((λ (x) (x x)) (λ (x) (x x)))



((λ (x) (x x)) (λ (x) (x x)))

β

β

β

β

(λ (x) x x) (λ (x) x x)

β reduction may continue 
indefinitely (i.e., in non-
terminating programs)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β



((λ (x) (x x)) (λ (x) (x x)))

β

β

β

β

(λ (x) x x) (λ (x) x x)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β

This specific program is 
known as Ω (Omega)



((λ (x) (x x)) (λ (x) (x x)))

β

((λ (x) (x x)) (λ (x) (x x)))

Ω is the smallest non-
terminating program!

Note how it reduces to itself in a single step!


