
Closure-Creating
Interpreters
CIS352 — Fall 2022

Kris Micinski

2

In the last several lectures we have discussed the
λ-calculus

Today, we will build a metacircular interpreter for
the call-by-value λ-calculus

Our interpreter will be like that of IfArith’s—we
will use Racket’s features to implement λ

3

We will consider λ-calculus extended with
numbers and +

e ::= n  
 | x

 | (+ e e)  
 | (lambda (x) e)

 | (e e)

4

Following our convention, we can represent this in
Racket via a type predicate…

(define (expr? e)

 (match e

 [(? number? n) #t]

 [`(+ ,(? expr? e0) ,(? expr? e1)) #t]

 [(? symbol? x) #t]

 [`(lambda (,(? symbol? x)) ,(? expr? e)) #t]

 [`(,(? expr? e0) ,(? expr? e1)) #t]

 [_ #f]))

5

Our job is to define a function called interp which
interprets each expression to its value

So first, we must define the values of our language

Like IfArith, our language includes numbers. But unlike
IfArith, we also include λ

How do we represent λ as a value?

6

Remember: a programming language’s values are the
results of computation

So this is equivalent to asking: what will our interpreter
return?

((lambda (x) 3) 4) ⇓ 3

(lambda (x) 3) ⇓ …?

7

One option: lambdas evaluate to text itself

(lambda (x) 3) ⇓ (lambda (x) 3)

8

This gives us a textual reduction semantics, i.e., exactly
the reduction rules we’ve been studying in the last few
lectures

Unfortunately—in lieu of advanced representations—
textual reduction semantics can be often very slow
because they perform explicit substitution

We would like each computation step to be O(1), so that
a program which otherwise takes O(f(n)) time takes
O(f(n)) time to compute (rather than O(f(n) * n) or worse!)

9

Instead, our machine will use closures to perform
substitution lazily. We will do this by tracking an
environment in which variables are looked up.

When returned as results, a λ must track its free
variables. We bundle the λ and its environment
together, and this is called a closure

closure ::= (closure (lambda (x) e) env)

10

Thus, we will have two kinds of values: numbers and
closures

env = variable -> value  

value ::= n

 | (closure (lambda (x) e) env)

11

Note: environments and values are mutually recursive

Thus, we will have two kinds of values: numbers and
closures

env = variable -> value  

value ::= n

 | (closure (lambda (x) e) env)

12

As a sidenote, Haskell uses the STG machine to enable
lazy graph reduction

https://www.microsoft.com/en-us/research/wp-content/
uploads/1992/04/spineless-tagless-gmachine.pdf

13

Let’s decide how to handle each of these cases…

;; numbers

(interp n env) ⇓ n

;; variable lookup

(interp x env) ⇓ (hash-ref env x)

14

;; plus

If…

-(interp e0 env) ⇓ n0

-(interp e1 env) ⇓ n1

-n’ = n0 + n1

-————————————————

(interp `(+ ,e0 ,e1) env) ⇓ n’

15

;; λ
(interp `(lambda (,x) ,e) env) ⇓
 (closure (lambda (x) e) env)

16

;; apply (i.e., call-and-return)

 
If…

-(interp e0 env) ⇓
 (closure (lambda (x) e) env+)

-(interp e1 env) ⇓ v

-(interp e (hash-set env+ x v)) ⇓ v’

 
Then…

(interp `(,e0 ,e1) env) ⇓ v’

17

How can we take these rules and implement them as a
Racket function?

- Recursive function interp, match on expression:

- Base cases are λ, numbers, and variables

- Recursive cases are + and apply

- Apply first evaluates function expr to a closure

- Then evaluates body of closure after updating the

formal parameter in the stored environment

