Closure-Creating Interpreters

CIS352 — Fall 2022
Kris Micinski
In the last several lectures we have discussed the \(\lambda \)-calculus

Today, we will build a metacircular interpreter for the call-by-value \(\lambda \)-calculus

Our interpreter will be like that of IfArith’s—we will use Racket’s features to implement \(\lambda \)
We will consider λ-calculus extended with numbers and $+$

$$e ::= n \mid x \mid (+ e e) \mid (\text{lambda} (x) e) \mid (e e)$$
Following our convention, we can represent this in Racket via a type predicate...

```
(define (expr? e)
  (match e
    [([? number? n) #t]
    [`(+ ,(? expr? e0) ,(? expr? e1)) #t]
    [(? symbol? x) #t]
    [`(lambda (,(? symbol? x)) ,(? expr? e)) #t]
    [`(,(? expr? e0) ,(? expr? e1)) #t]
    [_ #f]))
```
Our job is to define a function called `interp` which interprets each expression to its value.

So first, we must define the values of our language.

Like IfArith, our language includes numbers. But unlike IfArith, we also include λ.

How do we represent λ as a value?
Remember: a programming language’s values are the **results** of computation

So this is equivalent to asking: what will our interpreter return?

\[((\text{lambda} \ (x) \ 3) \ 4) \Downarrow \ 3\]

\((\text{lambda} \ (x) \ 3) \Downarrow \ldots ?\)
One option: lambdas evaluate to **text itself**

\[(\text{lambda } (x) 3) \downarrow (\text{lambda } (x) 3)\]
This gives us a **textual reduction** semantics, i.e., exactly the reduction rules we’ve been studying in the last few lectures.

Unfortunately—in lieu of advanced representations—textual reduction semantics can be often **very slow** because they perform *explicit substitution*.

We would like each computation step to be $O(1)$, so that a program which otherwise takes $O(f(n))$ time takes $O(f(n))$ time to compute (rather than $O(f(n) \times n)$ or worse!)
Instead, our machine will use closures to perform substitution lazily. We will do this by tracking an environment in which variables are looked up.

When returned as results, a λ must track its free variables. We bundle the λ and its environment together, and this is called a closure

closure ::= (closure (lambda (x) e) env)
Thus, we will have two kinds of values: numbers and closures

\[\text{env} = \text{variable} \rightarrow \text{value} \]

\[\text{value} ::= n \]
\[\quad | \ (\text{closure} \ (\text{lambda} \ (x) \ e) \ \text{env}) \]
Thus, we will have two kinds of values: numbers and closures

\[\text{env} = \text{variable} \rightarrow \text{value} \]

\[\text{value} ::= n \]
\[\mid (\text{closure} \ (\text{lambda} \ (x) \ e) \ \text{env}) \]

Note: environments and values are **mutually recursive**
As a sidenote, Haskell uses the STG machine to enable lazy graph reduction

Let’s decide how to handle each of these cases...

;; numbers
(interp n env) ↓ n

;; variable lookup
(interp x env) ↓ (hash-ref env x)
;; plus
If...

- (interp e0 env) \(\downarrow\) n0
- (interp e1 env) \(\downarrow\) n1
- \(n' = n0 + n1\)

(interp `(`+ ,e0 ,e1 env) \(\downarrow\) n')
;; \lambda
(interp `(lambda (,x) ,e) env) ↓
(closure (lambda (x) e) env)
;;; apply (i.e., call-and-return)

If...
- (interp e0 env) ↓
 (closure (lambda (x) e) env+)
- (interp e1 env) ↓ v
- (interp e (hash-set env+ x v)) ↓ v'

Then...
(interp `(~e0 ,e1) env) ↓ v'
How can we take these rules and implement them as a Racket function?

- Recursive function `interp`, match on expression:
 - Base cases are \(\lambda \), numbers, and variables
 - Recursive cases are + and apply
 - Apply first evaluates function `expr` to a closure
 - Then evaluates body of closure after updating the formal parameter in the stored environment