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In the last several lectures we have discussed the 
λ-calculus


Today, we will build a metacircular interpreter for 
the call-by-value λ-calculus


Our interpreter will be like that of IfArith’s—we 
will use Racket’s features to implement λ
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We will consider λ-calculus extended with 
numbers and +


e ::= n  
    | x

    | (+ e e)  
    | (lambda (x) e)

    | (e e)
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Following our convention, we can represent this in 
Racket via a type predicate…


(define (expr? e)

  (match e

    [(? number? n) #t]

    [`(+ ,(? expr? e0) ,(? expr? e1)) #t]

    [(? symbol? x) #t]

    [`(lambda (,(? symbol? x)) ,(? expr? e)) #t]

    [`(,(? expr? e0) ,(? expr? e1)) #t]

    [_ #f]))
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Our job is to define a function called interp which 
interprets each expression to its value


So first, we must define the values of our language


Like IfArith, our language includes numbers. But unlike 
IfArith, we also include λ


How do we represent λ as a value?
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Remember: a programming language’s values are the 
results of computation


So this is equivalent to asking: what will our interpreter 
return?

((lambda (x) 3) 4) ⇓ 3


(lambda (x) 3) ⇓ …?
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One option: lambdas evaluate to text itself

(lambda (x) 3) ⇓ (lambda (x) 3)
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This gives us a textual reduction semantics, i.e., exactly 
the reduction rules we’ve been studying in the last few 
lectures


Unfortunately—in lieu of advanced representations—
textual reduction semantics can be often very slow 
because they perform explicit substitution


We would like each computation step to be O(1), so that 
a program which otherwise takes O(f(n)) time takes 
O(f(n)) time to compute (rather than O(f(n) * n) or worse!)
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Instead, our machine will use closures to perform 
substitution lazily. We will do this by tracking an 
environment in which variables are looked up.


When returned as results, a λ must track its free 
variables. We bundle the λ and its environment 
together, and this is called a closure


closure ::= (closure (lambda (x) e) env)
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Thus, we will have two kinds of values: numbers and 
closures


env = variable -> value  

value ::= n

        | (closure (lambda (x) e) env)
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Note: environments and values are mutually recursive

Thus, we will have two kinds of values: numbers and 
closures


env = variable -> value  

value ::= n

        | (closure (lambda (x) e) env)
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As a sidenote, Haskell uses the STG machine to enable 
lazy graph reduction


https://www.microsoft.com/en-us/research/wp-content/
uploads/1992/04/spineless-tagless-gmachine.pdf
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Let’s decide how to handle each of these cases…


;; numbers

(interp n env) ⇓ n

;; variable lookup

(interp x env) ⇓ (hash-ref env x)
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;; plus

If…

-(interp e0 env) ⇓ n0

-(interp e1 env) ⇓ n1

-n’ = n0 + n1

-————————————————

(interp `(+ ,e0 ,e1) env) ⇓ n’
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;; λ
(interp `(lambda (,x) ,e) env) ⇓
   (closure (lambda (x) e) env)
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;; apply (i.e., call-and-return)

 
If…

-(interp e0 env) ⇓
   (closure (lambda (x) e) env+)

-(interp e1 env) ⇓ v

-(interp e (hash-set env+ x v)) ⇓ v’

 
Then…

(interp `(,e0 ,e1) env) ⇓ v’
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How can we take these rules and implement them as a 
Racket function?


- Recursive function interp, match on expression:

- Base cases are λ, numbers, and variables

- Recursive cases are + and apply


- Apply first evaluates function expr to a closure

- Then evaluates body of closure after updating the 

formal parameter in the stored environment


