
Church Numerals
CIS352 — Fall 2022

Kris Micinski



This week in class we’re going to talk about Church 
Encoding, a technique to express arbitrary Racket code 
using only the lambda calculus.


We will (by hand) compile Racket forms to just LC


Why do this? Answer: illustrate theoretical expressivity of LC



Our goal this lecture: translate simple arithmetic operations 
over constants to the lambda calculus


2 + 1 * 2 = 4

We want to express this with the lambda calculus



I think this is one of the trickiest things to understand in the 
course. I first learned this by working out the beta-
reductions on paper, and I recommend that approach.



One key problem: how do we represent numbers as 
lambdas?



Observation 1

(Encoding works on naturals—adaptable to ints, etc..)

 
Can write any natural number n as:

1 + . . . + 0
n times

0 = 0
1 = 1 + 0
2 = 1 + 1 + 0
3 = 1 + 1 + 1 + 0



Observation 2: represent the number n as a function 
that accepts another function g and returns a function 
that “performs g n times.”

0 = (λ ( f ) (λ (x) x))
1 = (λ ( f ) (λ (x) ( f x)))
2 = (λ ( f ) (λ (x) ( f ( f x))))

…



Observation 2: represent the number n as a function 
that accepts another function g and returns a function 
that “performs g n times.”

(define zero (λ (f) (λ (x) x)))

(define one  (λ (f) (λ (x) (f x))))

(define two  (λ (f) (λ (x) (f (f x)))))
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Exercise 1: Write the church encoding of 3

Exercise 2: Write two α-equivalent versions of 0



Let’s say we have a church-encoded number, that is a term like 

    (λ (f) (f (f … (f x))…))  

We can turn it back into a Racket number by calling it in “curried” style

;; do add1 n times, starting from 0

;; (add1 (add1 … (add1 0) …))

(define (church->nat n)

  ((n add1) 0)
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Exercise 3: translate the following Church-encoded 
numbers to Racket natural numbers


(λ (g) (λ (x) (g x)))

(λ (h) (λ (y) (h (h (h y)))))



Observation 3: when we use this encoding, 
any expression α/β/η-equivalent to n is n

(((λ (y) (y y)) (λ (x) x))

 (λ (z) (λ (x) (z (z x)))))

(((λ (x) x) (λ (x) x))

 (λ (z) (λ (x) (z (z x)))))

CBV β

((λ (x) x)

 (λ (z) (λ (x) (z (z x)))))

CBV β

(λ (z) (λ (x) (z (z x)))
CBV β

This is 2
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Exercise 4: Write a derivation sequence to a normal 
form and obtain the answer for the below term. Note: 
you will have to reduce under lambdas!


((λ (z) z)

 (λ (g) ((λ (x) (x x)) (λ (x) x))))
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Exercise 4: Write a derivation sequence to a normal 
form and obtain the answer for the below term. Note: 
you will have to reduce under lambdas!


((λ (z) z)

 (λ (g) ((λ (x) (x x)) (λ (x) x))))

—> (λ (g) ((λ (x) (x x)) (λ (x) x)))

—> (λ (g) ((λ (x) x) (λ (x) x)))

-> (λ (g) (λ (x) x))


The solution is zero 


This also demonstrates the fact that, while β is the primary rule 
driving computation (function application), determining λ 
equivalence may require reducing under a λ!



Question:

Say I give you a number n. You know its normal-form (when it is fully-
reduced) must be something like


n = (lambda (f) (λ (x) (f (f (f … (f x) …))))

How can you generate n + 1?



Question:

Say I give you a number n. You know its normal-form 
(when it is fully-reduced) must be something like


n = (λ (f) (λ (x) (f (f … (f x) …)))

How can you generate n + 1?

n+1 = (λ (f) (λ (x) (f (f (f … (f x) …)))))

“Add another f to the front.”



Now, how could I wrote a function, succ, which 
computes n+1 using only the lambda calculus?

n+1 = (λ (f) (λ (x) (f (f (f … (f x) …)))))

“Add another f to the front.”



Now, how could I wrote a function, succ, which 
computes n+1 using only the lambda calculus?

  ;; the *argument*

  (lambda (n)

    ;; the thing we're *returning* should do f "n+1 times"

    ;; ((n f) x) "applies f n times" and returns a result

    ;; 

    (lambda (f) (lambda (x) (f ((n f) x)))))



(define succ

 (lambda (n) (lambda (f) (lambda (x) (f ((n f) x))))))

;; (succ 1) should equal 2

((lambda (n)

   (lambda (f) (lambda (x) (f ((n f) x))))))

 (lambda (f) (lambda (x) (f x))))

;; (succ 1) should equal 2

(lambda (f) 

  (lambda (x) (f (((lambda (f) (lambda (x) (f x))) f) x))))))))

;; note here: we’re reducing under lambda!

(lambda (f) 

  (lambda (x) (f ((lambda (x) (f x)) x))))))))

(lambda (f) 

  (lambda (x) (f (f x)))))))) ;; this is 2!



Question:

Now how do you do addition…? Observation: need 
two arguments. We will use a trick named currying.


plus = (lambda (n) (lambda (k) …))

one =  (lambda (f) (lambda (x) (f x))


We can call this like:

((plus one) one) ;; compute 2



Currying

The λ-calculus supports multi-arg functions easily via 
currying—every function of (x0 x1 …) is written as 

(λ (x0) (λ (x1) …))


But, callsites to those functions must be modified as 
well— (x0 x1 …) must become (…(x0 x1) …)
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Exercise 5: Translate the following Racket lambda to 
use the curried style—also translate the callsite of +, 
assuming it must be curried as well:


(define f (lambda (x y z) (+ x y z))
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Exercise 5: Translate the following Racket lambda to 
use the curried style—also translate the callsite of +, 
assuming it must be curried as well:


(define f (lambda (x y z) (+ x y))

(define f (lambda (x y z) ((+ x) y))


(f x y z)

—> 

(((f x) y) z)



Question:

Now how do you do addition…? Observation: need 
two arguments. Use currying.


plus = (lambda (n) (lambda (k) …))

one =  (lambda (f) (lambda (x) (f x))


We can call this like:

((plus one) one)

Observe the key idea: plus returns a function that 
takes another function (the second one) to complete 
the work!



plus = 

(lambda (n) (lambda (k) 

  (lambda (f) (lambda (x) ((k f) ((n f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times



plus = 

(lambda (n) (lambda (k) 

  (lambda (f) (lambda (x) ((k f) ((n f) x))))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Exercise 6: Write a reduction sequence for the following (after 
converting 0 and 1 to church numerals)


((plus 1) 1)



(lambda (n0)

    (lambda (n1)

      (lambda (f) (lambda (x) ((n0 (n1 f)) x))))

(n1 f) ;; applies f (to some arg) n1 times

(n0 (n1 f)) ;; “does f n1 times” n0 times in row

Alright, now how do you do multiplication..?

Well, do “n k times!”



Optional (homework):

Reduce (to beta-normal-form, i.e., doing all possible reductions) 
the following (encoding plus, 0, 1, and 2 correctly):


 (mult 2 1) ;; (lambda (f) (lambda (x) (f (f x)))

(lambda (n0)

    (lambda (n1)

      (lambda (f) (lambda (x) ((n0 (n1 f)) x))))


