
Kristopher Micinski Page 1 of 2

TEACHING STATEMENT
Kristopher Micinski (kris@cs.haverford.edu)

Passion for teaching motivates every aspect of my scholarship. I taught as often as possible in
graduate school. To practice teaching, I continuously experiment and reflect upon different strategies.
But I also write blog articles, give talks, make videos, and volunteer to reach beyond my classroom.
I make myself available to students and check in with them frequently. Upon graduation, I further
committed to developing my teaching by taking a visiting position at Haverford.

First Steps: Teaching Assistantships I served as a TA for two courses at Maryland. The first was
an undergraduate programming languages course. I taught discussion sections and led office hours. It
was here I first discovered a wide variation in learning styles. Some students learn best with pictures.
Others via example code. I continuously work to identify which strategy works for each student.

The second course I TA’d was a senior-level compilers course. I developed new projects collabora-
tively with a faculty mentor. I learned to anticipate and correct sources of confusion or imprecision.
I wrote a key for each project, then systematically asked how a student might approach each of my
decisions differently. My goal for projects is to challenge students with problems that help them build a
mental model. I worked to limit places where students were called to materialize an arbitrary solution
that didn’t teach them something concrete.

Teaching Undergraduate Programming Languages I taught my first course—Organization of
Programming Languages—during the summer of 2015 at Maryland. My course had 40 students.

I followed an active-learning approach and carefully constructed each lecture to focus on live-coding
and group work. I began most classes by posing a question we could not yet solve. This motivated why
we needed new technical devices we would learn about during that class. I then gradually introduced
new concepts, leading students to solve this problem. Each step along the way, I had students work
together—frequently relying on interactive tools to check their work. For example, during our coverage
of state machines I built a web app to construct and run finite automata. At the end of each class we
had an artifact that students could use to begin a follow-on project.

As an example, when I taught regular expressions I told students we would parse a gradebook file
to calculate a class average. I began by showing students boilerplate to manipulate and read files. I
found this allowed students to be motivated by real-world applications but avoided getting stuck on
minutiae. I then asked students to form groups and discuss an algorithm in pseudocode for calculating
a mean. Engaging students early with simple questions helped everyone feel confident and motivated.
I would then incrementally guide students toward a solution. For example, I would show components
of regular expressions in an interactive tool then ask groups to recognize parts of the input. I’ve found
that forcing students to stay checked in prevents them from feeling overwhelmed later.

I developed new projects to complement these exercises. For example, I had students implement
an interpreter for core-ML. This project reiterated topics students learned in multiple ways. First, I
believe the best way to truly learn a language is to implement it. Students had to precisely implement
otherwise-hazy concepts like closures and call-by-value semantics. Second, students frequently have
trouble relating math they learn in class to its implementation. Last, I believe one role of mid-level
courses is to write nontrivial amounts of code. This strategy worked, and I now structure projects so
that they naturally reiterate material discussed in class.

Principles of Programming Languages at Haverford I currently teach a sophomore-level course
on programming-language paradigms (assembly, object-oriented, functional). I’ve used this course to
experiment with my teaching while a colleague (David Wonnacott) gives me frequent feedback.

1



Kristopher Micinski Page 2 of 2

I have already noticed and worked to correct several shortcomings. Some of these were due to
inexperience, but others because I hadn’t before taught at a small school. I noticed that I began the
course with a tendency towards a deductive style, which was particularly challenging for students whose
background in certain areas was shaky. Some of my students hadn’t taken a computing course in a
year, others took their introductory sequence at a sister college. I switched to a more inductive style
that focuses on review of small pieces before building up concepts in general terms.

As an example, I cover pointers in my course. I worried that students would be eager to use pointers
and manual memory management to implement their projects. So instead of a full presentation where
I cover the heap and heap-based allocation, I start with pointers to stack-based datastructures (we had
previously covered the stack in assembly). I was careful to illustrate variable lifetime and then relate
this to how the computer’s stack works. Only once students understand this simpler style do I then
introduce heap-based memory allocation and management.

A key part of my philosophy is to teach high-level concepts within a context to which students
can directly relate. I do this by timing introduction of technical material with projects that exercise
those techniques. In a recent project students had to implement a dictionary that mapped strings to
either functions or lists of strings, which wasn’t easy to do in C++ using the types we’d learned so
far. I introduced subclasses and developed in class an example that used subclasses to solve a reduced
variant of the project. Students told me the timing was effective in helping them understand, and
many successfully generalized the ideas to a solution.

Developing Computer Security I will teach a new course at Haverford starting in the Spring.

My course covers computer security from two parallel perspectives: attacks and defenses. Students
love attacks. It gives them immediate feedback that they’ve understood something challenging. But
when their programs get hacked they realize they need to learn defensive programming. We’ll do both.

Most students won’t regularly break into other systems. The reason I’m teaching this course is to
give them good intuition for what it means to write correct code. At each stage of the course, we’ll
raise the meterstick a bit higher. For example, even if the code is memory safe, it might implicitly leak
a secret key in its running time. Students will learn to continuously question what correctness means.

Research as Teaching I currently advise six undergraduate theses. My goal is to teach students that
“research” is more than reading papers and books, but confronting problems they can’t yet articulate.

I have found that one particularly effective mechanism for undergraduate research is to have students
apply an abstract concept using a large-scale research framework. For example, with one group of
seniors this year, I am exploring how social-media permissions are used in Android apps. This is an
underexplored area that will lead to a good publication once the work is done. But tackling this requires
my students to glue together systems that don’t quite do what they want, and I view this as a crucial
experience.

Reflection and Growth I work for an active dialogue with a strong sense of trust, transparency,
and fairness. I set up anonymous channels for students to provide feedback and let students know they
are free to give criticism without damaging their grade. Students often take me up on this.

Last, I work to make myself highly available to students. I use online forums such as Piazza, and
offer to Skype with my students. I work to ensure this isn’t a detriment to their learning. Rather than
give students answers I work to quickly identify where they’re struggling. I then give them a concrete
assignment and have them get back to me. I check in continuously with students who are struggling,
and make sure they don’t give up or feel overwhelmed. Most of all, I let students know that I want to
see them succeed, even though I realize the courses I teach are challenging.

2


