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Personal Statement
Kristopher Micinski, Syracuse University

During my first three years at Syracuse, I have consistently published at top-tier venues, chaired several workshops,
raised $914k in federal grant funding, and been actively involved in community mentorship efforts. In my research, I have
branched out into novel directions relating to scaling program analyses engines to unprecedented levels of throughput
and expressivity. Significant innovations include novel all-to-all communication algorithms (HPDC ’22), scaling control-
flow analysis up to 800 threads of a supercomputer (CC ’21), lattice-oriented programming (in Rust) which beats
current systems (Flix) by 50× (CC ’22), and orders of magnitude (hours to seconds) runtime improvements for logic
programs which manipulate tree-shaped data. I have also continued to focus on reverse engineering (USENIX ’20) and
formal methods for security foundations (CSF ’22). My long-term goal is to use these tools to revolutionize reverse-
engineering by enabling high-fidelity decompilation, instrumentation, hardening, and exploit generation for stripped
binaries, powered by our high-performance engines and logical innovations.

In the rest of this document I include a research statement, a teaching statement, and conclude with a statement
of career goals and perspective. I have also included five selected papers. Each of these was produced during my first
three years at Syracuse:

• HPDC ’22. “Optimizing the Bruck Algorithm for Non-Uniform All-to-All Communication.” [4] Work I did in our
collaborative PPoSS grant to optimize all-to-all for parallel relational algebra—this came up in our implementation
and we mentored Sid’s student Ke to build new algorithms to optimize all-to-all for nonuniform comm workloads.

• CC ’22. “Seamless Deductive Inference via Macros” [14]. My PhD student’s first paper introducing Ascent, which
got all strong accepts at CC.

• CC ’21. “Compiling Data-Parallel Datalog” [5]. Our first paper on data-parallel Datalog, excluding language-level
innovations we have developed but detailing our parallelization approach.

• CSF ’20. “Abstracting Faceted Execution.” [10]. My paper on abstract interpretation for faceted execution, a
dynamic reference monitor. This approach can be seen as a new perspective on program analysis for information
flow which achieves high precision due to a novel representation.

• USENIX ’20. “An Observational Investigation of Reverse Engineers’ Processes.” [15]. Collaborative work (with
Dan Votipka) where we interviewed reverse engineers to understand and categorize a technical exposition of pain-
points and workflows that drove their reverse engineering process. This empirical work motivates my excitement
to apply static analyses (and machine-learning-based tools) to reverse engineers in the future.

I also include a draft:

• “Higher-Order, Data-Parallel Structured Deduction” [6] This work details an (a) state-of-the-art program analysis
/ deductive inference system, (b) a novel language implementation strategy for Datalogs using structured data
which (c) allows order-of-magnitude improvements compared to state-of-the-art engines.

1 Research

In my research, I design and implement formal systems for reasoning about computer security at an unprecedented
scale of computational and expressive power. Throughout my career, I have published top papers in a wide breadth
of areas, many inspired by an overarching goal: achieve orders-of-magnitude algorithmic breakthroughs necessary to
apply rich formal systems in reasoning about the security of production software systems. During my PhD, I worked on
interaction-based security, collaborating on foundational work (e.g., HyperLTL [3]) and using techniques such as abstract
interpretation and symbolic execution to check security properties of production Android applications [9, 11, 12]. At
Syracuse, I have built a large and diverse research group (consisting of three PhD students, four MS students, and over 10
undergraduates) which works to build state-of-the-art reasoning engines for expressive logical analytics tasks including
program analysis, model checking, and security auditing. My students have done foundational work and published at
strong venues, and I have raised $914k in extramural research funding from DOD, DARPA, and NSF.
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if secret%2 == 0:
output("even")

else:
output("odd")

Logic, Verification, and Program Analysis for Security A primary research focus of mine is
language-based security, a field which uses programming language semantics and logic to provide rich
formal guarantees of the security of a software system. For example, consider the program on the right: it is insecure
(assuming the output is publicly visible) because observing the output allows us to know secret’s evenness. This so called
implicit flow is a violation of noninterference, which says that no secret input may influence a program’s public outputs.
Noninterference was first formalized by Goguen and Meseguer in 1982 [7], but has proven extremely challenging to scale
to production systems. This is because noninterference is a hyperproperty, a statement that quantifies over multiple
executions of the program simultaneously (in this case, relating all input-output pairs to other input-output pairs).
Unfortunately, while hyperproperties are known to characterize a broad class of security properties, they face a serious
algorithmic challenge: checking hyperproperties often involves reasoning about pairs (or, in general, k-products) of
program states, leading to state explosion for program analyses based upon hyerproperties.

During my PhD, I collaborated to build model checking algorithms for hyperproperties. In this work, we defined
new temporal logics for security, notably HyperLTL [3]. HyperLTL extends the well-known linear temporal logic with
trace quantifiers, which explicitly bind traces so that multiple traces may be mentioned simultaneously. For example,
we may express noninterference via the HyperLTL formula ∀π0.∃π1.

(
G (input empty π1)

)
∧
(
π0 =L π1

)
, which reads:

“for all traces π0, there exists π1 such that globally (always, G) π1’s input is empty, and π1’s output is low-equivalent
to π2 (i.e., their public views agree, π0 =L π1). HyperLTL is strictly more expressive than LTL, as LTL’s temporal
quantifiers globalize the notion of a trace and thus preclude mentioning two traces at once. I codesigned HyperLTL and
implemented the model checker for HyperLTL for labeled transition systems, the first model checker capable of verifying
general hyperproperties based on temporal logics. Our paper “Temporal logics for hyperproperties” has been cited over
200 times, and HyperLTL has spawned numerous efforts in verification for security properties [8, 2, 1].

Our work on HyperLTL, while a rich and expressive result, was unsatisfactory to me personally because of its high
algorithmic overhead: our model checking algorithm uses an explicit cross-product construction on the state space,
incurring state explosion and inhibiting its application to nontrivial software systems. I became inspired by faceted
execution, a dynamic enforcement mechanism for noninterference wherein program values may be faceted, representing
a decision tree of views based upon the observer. For example, the facet 〈Alice : 1 � ⊥〉 would signify a value which
is 1 when viewed by Alice, and ⊥ (null) when viewed by anyone else. After implementing facets as a set of Scheme
macros with an undergraduate advisee (at Haverford [13]) I came to see facets as powerful, but far too slow to apply
to production languages (paying a penalty at every indirect control transfer). This led me to an insight: I could use
facets in an abstract execution of the program, soundly approximating which values may be faceted via a novel program
analysis. I elaborated this idea in my CSF ’20 paper, “Abstracting Faceted Execution,” which presents a novel approach
to noninterference by combining abstract interpretation with faceted execution [10].

Next-Generation Program Analysis and Data Analytics Engines After spending a decade working on formal
methods for security, I became disheartened by the fact that so many of the rich formal systems I studied were infrequently
applied to ensure security for production systems. Upon joining Syracuse, this gulf between theory and practice inspired
me to shift my focus to the design and high-performance implementation of expressive declarative languages for program
analysis and similar formal systems. I have led the development of two complementary declarative languages targeting
the implementation of formal systems, Slog (an MPI-based data-parallel Datalog) and Ascent (for large unified-
memory machines), both of which achieve orders-of-magnitude performance improvements compared to the state of the
art. My work on Slog and Ascent has been funded by DARPA V-SPELLS ($400k) and NSF PPoSS (planning, $83k).

path(x, y) :- (edge x y)
path(x, z) :- (path x y),

(edge y z)

Our work was initially motivated by several major deficiencies inherent to Datalog, a sub-
Turing logic programming language based on Horn-SAT. For example, the Datalog program
on the right computes the transitive closure of edge by asserting that (a) every edge is a
path, and (b) any path from x to y may be extended by an edge from y to z. Datalog has
attracted significant recent interest due to highly-efficient implementations (e.g., Soufflé) which power applications such
as ddisasm (the most precise disassembler currently available) and DOOP (which scales context-sensitive analysis of
Java to thousands of lines).

ret(av, k) :- ret(av, $Frame(e, env)),
store($Frame(e, env), k).

While Soufflé achieves best-in-class performance for graph analytics tasks such
as transitive closure and triangle counting, our experiments revealed orders-of-

magnitude inefficiencies when using Soufflé for the implementation of formal systems which rely upon structured data
such as lists, trees, and abstract syntax trees. To understand the problem, consider the code on the left which comes from
an abstract interpreter and uses the constructor $Frame to represent a stack frame. This rule performs a join between
the ret and store relation; crucially, however, the join matches the common value $Frame(e,env). Unfortunately, Soufflé’s
compilation methodology does not allow indexing for structured data, and instead uses a select-then-filter approach,
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implicitly materializing a cross-product and inducing superlinear algorithmic complexity. This inefficiency is a symptom
of a general problem inherent to conventional Datalogs: structured data is second-class, compared to facts proper.

Table 1: 3-k-CFA: Slog vs. Soufflé

n Iters Cf. Pts
64 Processes

Slog Soufflé

8 1,193 98,114 0:02 00:15
9 1,312 371,010 0:03 02:56
10 1,431 1,441,090 0:05 45:49
11 1,550 5,678,402 0:16 �

12 1,669 22,541,634 1:07 �

13 1,788 89,822,530 5:08 �

We hoped to use Datalog to write highly-scalable implementations of for-
mal systems, which would perform whole-program static analysis on large
codebases and scale to hundreds of threads while retaining the succinctness
of declarative languages. However, the algorithmic and scalability deficien-
cies we observed in modern Datalog solvers pushed us to create Slog, a
data-parallel declarative language designed to enable scaling formal systems
up to hundreds of threads on large unified machines and leadership-class
supercomputers. Our approach has three main parts: (1) a key seman-
tic extension to Datalog, subfacts and a subfact-closure property, that is
(2) implemented uniformly via ubiquitous fact interning, supported within
relational algebra operations that are (3) designed from the ground-up to
automatically balance their workload across available threads, using MPI to address the available data-parallelism di-
rectly. Slog was designed in collaboration with Thomas Gilray and Sidharth Kumar (UAB), and inspired a wide array
of problems (e.g., new innovations in all-to-all communication algorithms, which we published at HPDC ’22 [4]). Slog’s
subfact-closure property lifts all subfacts to the top level, allowing them to be indexed just as relations in vanilla Datalog.
Table 1 (right) illustrates the importance of Slog’s subfacts, revealing the exponential gap between Slog and Soufflé
on a control flow analysis (k-CFA): as program size (n) increases, analysis complexity (control-flow points, third column)
grows exponentially, but the superlinear overhead induced by Soufflé quickly makes the analysis intractable (e.g., five
seconds in Slog versus 45 minutes in Soufflé). Slog’s Datalog subset was published at CC 2021 [5]—demonstrating
scalability of whole-program control-flow analysis up to 800 threads on the Theta supercomputer; the full language and
runtime system are currently in submission to several top conferences.

lattice shortest_path(i32, i32, Dual<u32>);
relation edge(i32, i32, u32);
shortest_path(*x, *y, Dual(*w)) <-- edge(x, y, w);
shortest_path(*x, *z, Dual(w + l))

<-- edge(x, y, w), shortest_path(y, z, l);

While Slog represents a major innovation in declarative language de-
sign and scales to hundreds of threads, its distributed nature (a) imposes
sequential overhead (most significant at low core counts) and (b) forbids
computations that would require materializing an entire relation on a single
thread. To complement Slog, we designed Ascent—a macro-embedded language (in Rust) which beats Soufflé on
a single thread and allows programming with non-powerset lattices. For example, the Ascent program on the right
computes the shortest path between pairs of nodes. At each iteration, the Ascent implementation uses the lattice’s join
operator (min, in this case) to store only the shortest path. This is impossible to express in vanilla Datalog, which would
force enumeration of all paths. Lattices are crucial for achieving acceptable algorithmic complexity for many program
analysis and graph analytics tasks. Ascent’s parallel, Rust-based implementation beats all competitor systems, e.g.,
beating Flix (a lattice-oriented program analysis language) by 50–100×. Our single-threaded Ascent implementation
appeared at CC ’22 [14]; we are currently adding parallelism (beating Soufflé at all core counts) and integration with
SMT solvers to enable parallel symbolic execution, model checking, and property-directed reachability.

Building and Analyzing Binary Corpuses: Assemblage My long-term goal is to apply program analysis (partic-
ularly for security) to large corpuses of production software. To support this, I have spent the past two years leading a
team of (masters and undergraduate) students to build Assemblage, a software system which scrapes all of GitHub and
automatically builds Windows PE (currently 600k) and Linux executables (2M) in a diverse set of build configurations.
Crucially, Assemblage also builds a rich source-to-binary mapping. We are currently using Assemblage to benchmark
a wide array of binary analysis and malware classification tools, and are preparing a submission to the VLDB Scalable
Data Science track. Assemblage is collaborative work with the US Laboratory for Physical Sciences ($430k).

2 Teaching

Passion for teaching motivates every aspect of my scholarship. Since completing my PhD, I have taught 13 courses at
the undergraduate and PhD level, consistently achieving top teaching reviews and producing freely-available content (on
YouTube) which has gained significant popularity (thousands of views) outside of Syracuse. Central to my approach is
a project-focused style, which pairs hands-on programming exercises with challenging projects that demand students to
cultivate skill in debugging and software engineering. I consistently innovate in course delivery, leveraging my computing
expertise to build highly-interactive courses. However, I also realize that effective teaching requires humility, compassion,
and communication. I check in with students frequently and personally, pushing them to achieve as much as I know
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they can. And I reflect on the ways in which I fall short, learning from my failures and helping me become better at
these things.

Teaching History and Goals I have taught a broad array of courses including introductory computing (in Python),
programming languages (at Maryland, Haverford, and Syracuse), compilers, and graduate seminars in program analysis
and security. After my PhD, I further committed myself to teaching by accepting a teaching-focused postdoc (visiting
professorship) at Haverford College. In each of these experiences, I have observed a unifying challenge: undergraduate
students have weak end-to-end problem-solving skills, reifying as an inability to successfully identify the proximate source
of a bug. This has inspired the following overarching goal: equip students with the the problem-solving (i.e., debugging)
skills they need to write correct, robust programs on their own. To reach this goal, I design engaging programming
projects which tackle foundational CS concepts and build upon collaborative in-class exercises. For example, during my
module on the λ-calculus, students build a Church encoder, compiling a significant subset of Scheme into just the λ-
calculus; students say this allows them to viscerally experience the Turing-completeness (of the λ-calculus) in a familiar
language. While I design these projects to reinforce course topics, an unstated goal is to force students to grow practical
debugging skills.

Flipped-Classroom and Course Delivery Early in my career, I focused on developing thoughtful lectures, hoping
to inspire students in the same way I was inspired to love computing. As I gained experience, I came to understand
the myriad learning styles my students have. However, I observed one common issue: once a student gets lost, they will
quickly feel defeated and become disinterested. I structure my courses to directly confront this problem in several ways.
First, I developed my undergraduate course as a series of 15–30 minute video lectures. While this required serious time
investment in filming, editing, and production, students universally report that engaging, well-produced videos encourage
them to repeatedly absorb the most challenging concepts. I am proud of these videos, and (if you are so inclined) I
invite you to watch one (e.g., “L5: Recursion over Lists”) to get a sense of my teaching style. During class proper, I
begin by recapping the video, giving a slightly different perspective. However, I also integrate in-class worksheets and
programming exercises. These exercises have significantly helped my course outcomes: instead of students becoming
cumulatively more lost through lecture, exercises force students to “check in,” and force me to devote more time to
topics that students find most confusing.

Building a Growth-Positive Classroom Effective instruction requires motivating students to push themselves
beyond their limits. I want my students to confront failure as rapidly as possible, understanding these failures as a
necessary vehicle for growth rather than a rebuke of their efforts or person. In the beginning of my career, I often
wasted my time perfecting content that was useful only to the highest-achieving students, and failing to help lower-
achieving students meet their potential. There is no technical solution this problem, because it is a human problem.
As such, I use technology to automate repetitive teaching tasks to enable an unprecedented level of personal attention
to students. I am always available in office hours, Zoom, Slack, and email. I directly email students who are lagging
on projects, asking them when they plan to finish and emphasizing that I want them to succeed. My teaching reviews
reflect this: students often say that I am the most supportive instructor they have ever had, and praise my commitment
to fairness and student support.

3 Goals and Perspective

My current career ambition is to continue to grow a productive research group that consistently produces top-quality
work. This includes mentoring and successfully graduating high-quality PhD students, along with mentoring more
junior (MS and undergraduate) students in my research lab. I will continue to compete for grant money (focusing on
NSF), and am currently planning $1.1 million of a 5-year PPoSS Large to be submitted in January. I will also put
together a competitive application for NSF career and will submit each year until I go up for tenure. I see myself
as a strong candidate for CAREER, having spent the last several years working to build my research output (after a
teaching-focused postdoc) in preparation to compete for the CAREER grant.

In terms of concrete outputs, I plan to submit to multiple top venues every year in areas such as security (USENIX,
CCS), programming languages (POPL, PLDI, ICFP, SPLASH), and formal methods (CAV). I will also submit to several
lower-tier venues each year with MS and undergraduate students, using these papers as training exercises with the long-
term goal of building a student’s research productivity. However, I have found that the quality if feedback from lower-tier
conferences is much lower, and I am most eager to submit extremely strong papers to top-tier venues.

In terms of research direction, I hope to use my pre-tenure years to establish myself as a researcher who has made
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foundational contributions to binary analysis, reverse engineering, and formal methods for security. My students and I
have engineered unique tools, datasets, and techniques for analyzing large (millions of binaries) binary corpuses. These
systems-building projects have taken a long time, and we must capitalize on that effort to produce novel results using
our group’s collective knowledge and perspective.

Last, I hope to continue to be more active in various areas of teaching and service. I see teaching as a strength of
mine that does not require a large amount of effort, though I will continue to work hard to deliver top-quality courses
and to maintain high engagement with my students. I also have chaired several workshops, and this has been a positive
and enriching experience for me. However, one area of necessary improvement I see is involvement on PCs at top-tier
conferences. I see this as something that will naturally come as I continue to routinely submit to top-tier venues, but
I will work to improve this. Last, I need to continue to improve mentorship and diversity efforts. Chairing PLMW is
a start in this direction, but I am working to brainstorm a “reverse engineering / security” mentorship program that
seeks to appeal to both industry and academic participants (e.g., undergraduates seeking to go into security, or even
professionals without formal credentials seeking jobs as reverse engineers). I hope to flesh out these plans as part of my
NSF CAREER proposal.
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