
Higher-Order Structured Deduction

Abstract—State-of-the-art Datalog engines include expressive
features such as ADTs (structured heap values), stratified aggre-
gation and negation, various primitive operations, and the oppor-
tunity for further extension using FFIs. Current parallelization
approaches for state-of-art Datalogs target shared-memory lock-
ing data-structures using conventional multi-threading, or use
the map-reduce model for distributed computing. Furthermore,
current state-of-art approaches cannot scale to formal systems
which pervasively manipulate structured data due to their lack
of indexing for structured data stored in the heap.

In this paper, we describe a new approach to data-parallel
structured deduction that involves a key semantic extension of
Datalog to permit first-class facts and higher-order relations via
defunctionalization, an implementation approach that exposes
data parallelism uniformly both across sets of disjoint facts and
over individual facts with nested structure. We detail a core
language, DLs, whose key invariant (subfact closure) ensures that
all values are first-class facts and that all facts are first-class as
values and threads of execution. We extend DLs to SLOG, a fully-
featured language whose forms facilitate leveraging subfact clo-
sure to rapidly implement expressive, high-performance formal
systems. We demonstrate SLOG by building a family of control-
flow analyses from abstract machines, systematically, along with
several implementations of classical type systems. We performed
experiments on EC2, Azure, and Argonne’s Theta at up to 1000
threads, showing orders-of-magnitude scalability improvements
versus competing state-of-art systems.

Index Terms—declarative programming, semantics engineer-
ing, data-parallel deduction

I. STRUCTURED DECLARATIVE REASONING

Effective programming languages permit their user to write
high-performance code in a manner that is as close to the shape
of her own thinking as possible. A long-standing dream of
our field has been to develop especially high-level declarative
languages that help bridge this gap between specification and
implementation. Declarative programming permits a user to
provide a set of high-level rules and declarations that offer the
sought-after solution as a latent implication to be materialized
automatically by the computer. The semantics of a declarative
language does the heavy lifting in operationalizing this specifi-
cation for a target computational substrate—one with its own
low-level constraints and biases. Modern computers provide
many threads of parallel computation, may be networked to
further increase available parallelism, and are increasingly
virtualized within “cloud” services. To enable scalable cloud-
based reasoning, the future of high-performance declarative
languages must refine their suitability on both sides of this
gulf: becoming both more tailored to human-level reasoning
and to modern, massively-parallel, multi-node machines.

Logic-programming languages that extend Datalog have
seen repeated resurgences in interest since their inception, each
coinciding with new advances in their design and implementa-

tion. For example, Bddbddb [1] suggested that binary decision
diagrams (BDDs) could be used to compress relational data
while permitting fast algebraic operations such as relational
join, but required a priori knowledge of efficient BDD-variable
orderings to enable its compression, which proved to be a
significant constraint. LogicBlox and Soufflé [2], [3] have
since turned research attention back to semi-naı̈ve evaluation
over extensional representations of relations, using compres-
sion techniques sparingly (i.e., compressed prefix trees) and
focusing on the development of high-performance shared-
memory data structures. Soufflé represents the current state
of the art at a low thread count, but struggles to scale well
due to internal locking and its coarse-grained approach to par-
allelism. RadLog (i.e., BigDatalog) [4] has proposed scaling
deduction to many-thread machines and clusters using Hadoop
and the map-reduce paradigm for distributed programming.
Unfortunately, map-reduce algorithms suffer from a (hierar-
chical) many-to-one collective communication bottleneck and
are increasingly understood to be insufficient for leading high-
performance parallel-computing environments [5], [6].

Most modern Datalogs are Turing-equivalent extensions, not
simply finite-domain first-order HornSAT, offering stratified
negation, algebraic data-types (ADTs), ad hoc polymorphism,
aggregation, and various operations on primitive values. Or-
acle’s Soufflé has added flexible pattern matching for ADTs,
and Formulog [7] shows how these capabilities can be used to
perform deductive inference of formulas; it seems likely future
Datalogs will be used to implement symbolic execution and
formal verification in a scalable, parallel manner.

In this paper, we introduce a new approach to simulta-
neously improve the expressiveness and data-parallelism of
such deductive logic-programming languages. Our approach
has three main parts: (1) a key semantic extension to Datalog,
subfacts and a subfact-closure property, that is (2) imple-
mented uniformly via ubiquitous fact interning, supported
within relational algebra operations that are (3) designed from
the ground-up to automatically balance their workload across
available threads, using MPI to address the available data-
parallelism directly. We show how our extension to Datalog
permits deduction of structured facts, defunctionalization and
higher-order relations, and more direct implementations of
abstract machines (CEK, Krivine’s, CESK), rich program
analyses (k-CFA, m-CFA), and type systems. We detail our
implementation approach and evaluate it against the best
current Datalog systems, showing improved scalability and
performance.

We offer the following contributions to the literature:
1) An architecture for extending Datalog to structured

recursive data and higher-order relations, uniform with

respect to parallelism, allowing inference of tree-shaped
facts which are indexed and data-parallel both horizon-
tally (across facts) and vertically (over subfacts).

2) A formalism of our core language, relationship to Dat-
alog, and equivalence of its model theoretic and fixed-
point semantics, mechanized in Isabelle/HOL.

3) A high-performance implementation of our system,
SLOG, with a compiler, REPL, and runtime written in
Racket (10.6kloc), Python (2.5kloc), and C++ (8.5kloc).

4) An exploration of SLOG’s applications in the engi-
neering of formal systems, including program analyses
and type systems. We include a presentation of the
systematic development of program analyses from corre-
sponding abstract-machine interpreters—the abstracting
abstract machines (AAM) methodology—where each
intermediate step in the AAM process may also be
written using SLOG.

5) An evaluation comparing SLOG’s performance against
Soufflé and RadLog on EC2 and Azure, along with a
strong-scaling study on the ALCF’s Theta supercom-
puter which shows promising strong scaling up to 800
threads. We observe improved scaling efficiency and per-
formance at-scale, compared with both Soufflé and Rad-
Log, and better single-thread performance vs. Soufflé
when comparing SLOG subfacts to Soufflé ADTs.

II. SLOG: DECLARATIVE PARALLEL DEDUCTION OF
STRUCTURED DATA

For Datalogs used in program analysis, manipulation of
abstract syntax trees (ASTs) is among the most routine tasks.
Normally, to provide such ASTs as input to a modern Datalog
engine, one first requires an external flattening tool that walks
the richly structured syntax tree and produces a stream of flat,
first-order facts to be provided as an input database. For ex-
ample, the Datalog-based Java-analysis framework DOOP [8],
[9], ported to Soufflé [2] in 2017, has a substantial preproces-
sor (written in Java) to be run on a target JAR to produce an
input database of AST facts for analysis.

A key observation that initially motivated our work into
this subject was that although this preparatory transformation
is required to provide an AST as a database of first-order facts,
the same work could not be done from within these Datalogs
because it required generating unique identities (i.e., pointers
to intern values) for inductively defined terms. In fact, any
work generating ASTs as facts can not be done within Datalog
itself but must be an extension to the language. Consider the
pair of nested expressions that form an identity function:

(lam "x" (ref "x"))
flattens−→ (= lam-id (lam "x" ref-id))

(= ref-id (ref "x"))

Supplying unique intern values lam-id and ref-id as an
extra column for those relations, and thus permitting them to
be linked together, is the substance of this preparatory transfor-
mation. Our language, SLOG, proposes this interning behavior
for facts be ubiquitous, accounted for at every iteration of
relational algebra used to implement the fixed point.

In Soufflé, the language has more recently provided alge-
braic data-type (ADT) declarations and struct/record types for
heap-allocated values which can be built up into ASTs or
other such structured data. These datatypes must be declared
and can then be used as $ expressions within rules; e.g.,
$lam("x",$ref("x")). The downside of these ADTs in
Soufflé is that they are not treated as facts for the purposes
of triggering rules and are not indexed as facts, which would
permit more efficient access patterns.

Our language, SLOG, respects a subfact closure property:
every subfact is itself a first-class fact in the language and
every top-level fact (and subfact) is a first-class value and
has a unique identity (as an automatic column-0 value added
to the relation). A clause (foo x y) in SLOG, always has
an implied identity column and is interpreted the same as
(= (foo x y)) if it’s missing (where underscore is a
wildcard variable). A nested pair of linked facts such as
(foo x (bar y) z) is desugared as (= (foo x id
z)) and (= id (bar y)). Thus we can represent an
identity function’s AST in SLOG as the directly nested fact
and subfact (lam "x" (ref "x")); under the hood this
will be equivalent to two flat facts with a 0-column id provided
by an interning process that occurs at the discovery of each
new fact. In SLOG:

• Each structurally-unique fact/subfact has a unique
intern-id stored in its 0 column so it may be referenced
as another fact’s subfact and treated as a first-class value.

• All data is at once a first-class fact (able to trigger
rule evaluation), a first-class value (able to be referenced
by other facts), and a first-class thread of execution
(treated uniformly by a data-parallel MPI backend that
dynamically distributes the workload spatially within, and
temporally across, fixed-point iterations).

With subfacts as first-class citizens of the language (see
Section III for details), able to trigger rules, various useful
idioms emerge in which a subfact triggers a response from
another rule via an enclosing fact (see Section III-A for
extensions and idioms). Using these straightforward syntactic
extensions enables a wide range of deduction and reasoning
systems (see Section IV for a discussion of applications in
program analyses and type systems). Because subfacts are
first-class in SLOG, rules that use them will naturally force
the compiler to include appropriate indices enabling efficient
access patterns, and represent thread joins in the natural data-
parallelism SLOG exposes. As a result, we are able to show a
deep algorithmic and parallelism improvement over current
state-of-art systems in the implementations of analyses we
generate (see Section VI for our evaluation with apples-to-
apples comparisons against Soufflé and RadLog). In some
experiments, SLOG finishes in 4–8 seconds with Soufflé taking
1–3 hours—attesting to the importance of subfact indices. In
others, we observe efficient strong-scaling on up to hundreds
of threads, showing the value of our data-parallel backend.

III. STRUCTURALLY RECURSIVE DATALOG

The core semantic difference between SLOG and Datalog is
to allow structurally recursive, first-class facts. This relatively
minor semantic change enables both enhanced expressiv-
ity (naturally supporting a wide range of Turing-equivalent
idioms, as we demonstrate in Section IV) and anticipates
compilation to parallel relational algebra (which interns all
facts and distributes facts via their intern key). In this section,
we present the formal semantics of a language we call Struc-
turally Recursive Datalog (henceforth DLs), the core language
extending Datalog to which SLOG programs compile. All of
the definitions related to DLs have been formalized, and all of
the lemmas and theorems presented in this section have been
formally proven in Isabelle/HOL.

〈Prog〉 ::= 〈Rule〉∗
〈Rule〉 ::= 〈Clause〉 ← 〈Clause〉∗
〈Clause〉 ::= (tag 〈Subcl〉∗)
〈Subcl〉 ::= (tag 〈Subcl〉∗) | 〈Var〉 | 〈Lit〉
〈Lit〉 ::= 〈Number〉 | 〈String〉 | . . .

Fig. 1: Syntax of DLs; tag is a relation name.

Syntax: The syntax of DLs is shown in Figure 1. As
in Datalog, a DLs program is a collection of Horn clauses.
Each rule R contains a set of body clauses and a head
clause, denoted by Body(R) and Head(R) respectively. DLs

(and SLOG) programs must also be well-scoped: variables
appearing in a head clause must also be contained in the body.

We define a strict syntactic subset of DLs, DL as the
restriction of DLs to clauses whose arguments are literals (i.e.,
〈Subcl〉DL ::= 〈Var〉 | 〈Lit〉). This subset (and its semantics)
corresponds to Datalog.

Fixed-Point Semantics: The fixed-point semantics of a
DLs program P is given via the least fixed point of an imme-
diate consequence operator ICP : DB → DB. Intuitively, this
immediate consequence operator derives all of the immediate
implications of the set of rules in P . A database db is a set of
facts (db ∈ DB = P(Fact)). A fact is a literal s-expression:

Fact ::= (tag Val∗) Val ::= (tag Val∗) | Lit

In Datalog, Vals are restricted to a finite set of atoms
(ValDL ::= Lit). To define ICP , we first define the immediate
consequence of a rule ICR : DB → DB, which supplements
the provided database with all the facts that can be derived
directly from the rule given the available facts in the database;
we also define an unroll metafunction, which produces the
(reflexive) set of all subfacts of a fact. The semantics uses
unroll to ensure all subfacts are included in the database,
a property we call subfact closure. This property is crucial
to the semantics of DLs (and SLOG), because in DLs, each
nested fact is a top-level fact as well, and not merely a carrier
of structured data. Later sections (starting in section III-A)
illustrate the importance of subfact closure to enables idioms
that make SLOG more expressive.

The immediate consequence of a program is the union
of the immediate consequence of each of its constituent

rules, ICP (db) , db ∪
⋃

R∈P ICR(db). Observe that ICP

is monotonic over the the lattice of databases whose bottom
element is the empty database. Therefore, if ICP has any fixed
points, it also has a least fixed point [10]. Iterating to this least
fixed point directly gives us a naı̈ve, incomputable fixed-point
semantics for DLs programs. Unlike pure Datalog, existence
of a finite fixed point is not guaranteed in DLs. This is indeed
a reflection of the fact that DLs is Turing-complete. The DLs

programs whose immediate consequence operators have no
finite fixed points are non-terminating.

As discussed earlier, all SLOG databases must be subfact-
closed (i.e. all subfacts are first-class facts). We can show that
the least fixed point of the immediate consequence operator
has the property that it is subfact-closed.

Lemma III.1. (Formalized in Isabelle.) The least fixed point of
ICP is subfact-closed.

The fixed-point semantics of Datalog is similar to DLs, the
only difference being that the unroll function is not required,
as Datalog clauses do not contain subclauses.

Model Theoretic Semantics: The model theoretic seman-
tics of DLs closely follows the model theoretic semantics of
Datalog, as presented in, e.g., [11]. The Herbrand universe
of a DLs program is the set of all of the facts that can
be constructed from the relation symbols appearing in the
program. Because DLs facts can be nested, the Herbrand
universe of any nontrivial DLs program is infinite. One could,
for example, represent natural numbers in DLs using the zero-
arity relation Zero and the unary relation Succ. The Herbrand
universe produced by just these two relations, one zero arity
and one unary, is inductively infinite.

A Herbrand Interpretation of a DLs program is any subset
of its Herbrand universe that is subfact-closed. In other words,
if I is a Herbrand Interpretation, then I =

⋃
{unroll(f)

| f ∈ I}. For Datalog, the Herbrand Interpretation is defined
similarly, but subfact-closure is elided.

Given a Herbrand Interpretation I of a DLs program P ,
and a rule R in P , we say that R is true in I (I |= R) iff for
every substitution of variables in R with facts in I , if all the
body clauses with those substitutions are in I , so is the head
clause of R with the same substitutions of variables. If every
rule in P is true in I , then I is a Herbrand model for P . The
denotation of P is the intersection of all its Herbrand models.
We define M(P) to be the set of all Herbrand models of P ,
and D(P) to be the denotation of P . We then have D(P) to
be the intersection of I ∈ M(P); such intersection is also a
Herbrand model:

Lemma III.2. (Formalized in Isabelle.) The intersection of a set
of Herbrand models is also a Herbrand model.

Unlike Datalog, DLs programs may have Herbrand uni-
verses that are infinite, and also infinite Herbrand models. If
a DLs program has no finite Herbrand models, its denotation
is infinite and so no fixed-point may be finitely calculated
using the fixed-point semantics. We now relate the operational
semantics of DLs to its model-theoretic semantics.

Equivalence of Model-Theoretic and Fixed-Point Seman-
tics: To show that the model-theoretic and fixed-point seman-
tics of DLs compute the same Herbrand model, we need to
show that the least fixed point of the immediate consequence
operator is equal to the intersection of all the Herbrand models
for any program. We start by proving the following lemmas
(proved in Isabelle; proofs elided for space).

Lemma III.3. (Formalized in Isabelle.) Herbrand models of a
DLs program are fixed points of ICP .

Lemma III.4. (Formalized in Isabelle.) Fixed points of the
immediate consequence operator of a DLs program that are
subfact-closed are Herbrand models of the program.

By proving that the Herbrand models and subfact-closed
fixed points of the immediate consequence operator are the
same, we conclude that the least fixed point of the immediate
consequence operator ICP (a subfact-closed database) is equal
to the intersection of all its Herbrand models.

Theorem III.5. (Formalized in Isabelle.) The model theoretic
semantics and fixed point semantics of DLs are equivalent.

A. Key extensions to the core language

Subclauses, written with parentheses, are treated as top-level
clauses whose id column value is unified at the position of
the subclause. With subfacts, a common idiom becomes for a
subfact to appear in the body of a rule, while its surrounding
fact and any associated values are meant to appear in the head.
For these cases, we use a ? clause, an s-expression marked with
a “?” at the front to indicate that although it may appear to be
a head clause, it is actually a body clause and the rule does not
fire without this fact present to trigger it. The following rule
says that if a (ref x) AST exists, then x is a free variable
with respect to it. The rule

(free ?(ref x) x)
⇓ desugars to

[(= e-id (ref x)) --> (free e-id x)]

exposing that the ? clause is an implicit body clause. But
if there are no body clauses apart from the ? clauses, the rule
may be written without square braces and an arrow.

Two more rules are needed to define free:
[(=/= x y) (free Eb y)

--> (free ?(lam x Eb) y)]
[(or (free Ef x) (free Ea x))

--> (free ?(app Ef Ea) x)

The second of these shows another extension: disjunction
in the body of a rule is pulled to the top level and splits the
rule into multiple rules. In this case, there is both a rule saying
that a free variable in Ef is free in the application and a rule
saying that a free variable in Ea is free in the application.

Another core mechanism in SLOG is to put head clauses in
position where a body clause is expected. Especially because
an inner clause can be responded to by a fact surrounding
it, or by rules producing that fact, being able to emit a fact
on-the-way to computing a larger rule is what permits natural-
deduction-style rules through a kind of rule splitting, closely

related to continuation-passing-style (CPS) conversion [12]. A
! clause, under a ? clause or otherwise in the position of a body
clause, is a clause that will be deduced as the surrounding rule
is evaluated, so long as any ? clauses are satisfied and any
subexpressions are ground (any clauses it depends on have
been matched already). These ! clauses are intermediate head
clauses; technically the head clauses of subrules, into which
they are compiled internally.

(interp ?(do-interp (nat n)) n) [NAT] (nat n)⇓n

[(interp !(do-interp e0) v0)
(interp !(do-interp e1) v1)
(+ v0 v1 v)
--> ;-------- [plus]
(interp ?(do-interp (plus e0 e1)) v)]

[PLUS]
e0⇓v0 e1⇓v1 v=v0+v1

(plus e0 e1)⇓v

Fig. 2: Natural-deduction-style reasoning in SLOG.

For example, in Figure 2, we write the natural deduction
rules which let us prove statements such as (plus (plus

(nat 1) (nat 2)) (nat 1)) ⇓ 4. We may understand
these rules in a several equivalent ways; either (a) both
the expression and value may be provided, to be “proved”
according to these rules, or (b) the expression is provided as
input, the answer (alongside a certificate) may be generated.
Take note that our only creative decision in transliterating these
inference rules into SLOG was to explicitly mark inputs and
outputs using interp and do-interp, ? and !.

Another common use for a relation is as a function, or with
a designated output column, deterministic or not, so SLOG also
supports this type of access via { } inner clauses, which have
their final-column value unified at the position of the curly-
brace subclause. For example, the rule in Figure 2 could also
have been written as below, with the clause {+ v0 v1} in
place of variable v. This example illustrates that this syntax
can also be used for built-in relations such as +.

[(interp !(do-interp e0) v0)
(interp !(do-interp e1) v1)
--> ;-------- [plus]
(interp ?(do-interp (plus e0 e1))

{+ v0 v1})]
IV. APPLICATIONS

The abstracting abstract machines (AAM) methodology
[13], [14] proscribes a particular systematic application of ab-
stract interpretation [15], [16] on abstract-machine operational
semantics. AAM proposes key preparatory refactorings of an
abstract machine, to remove direct sources of unboundedness
through recursion, before more straightforward structural ab-
straction can be applied. A full development is elided for
space, but every step may be written in SLOG, in a way that
mirrors the natural inference rules one would write on paper.
A CEK machine, such as Krivine’s machine [17] or a call-
by-value variant of it, can be developed by adding an explicit
environment and continuation/stack. There are then two main
sources of unboundedness in the CEK machine that make
evaluation itself unbounded: environments and continuations.
Environments contain closures which themselves contain envi-
ronments; continuations are a stack of closures formed induc-
tively (in practice using SLOG’s list feature or by using nested

subfacts). AAM proposes threading each such fundamental
source of unboundedness through a store, added in a normal
store-passing transformation of the interpreter that might be
used to add direct mutation or other effects to the language.
Environments will map variables to addresses in the store, not
to closures directly, and the stack will be store allocated at
least once per function application so the stack may not grow
indefinitely without the store’s domain (addresses) likewise
growing without bound. These two changes will permit us to
place a bound on the addresses allocated, and thereby finitize
the machine’s state space as a whole.

Figure 3 shows a CEK interpreter that has been factored
into eval, apply, and ret states, and subjected to a store-
passing transformation. In SLOG we can instrument this with a
timestamp or abstract contour, tracking the previous k callsites,
by using a ! clause to request an updated timestamp in the
tick function. We then allocate addresses specific to the
variable name and current abstract contour, which at last gives
us a finite address set and analysis, in this case tuned to
implement k-call sensitivity or a classic k-CFA analysis.

;; Eval states
[(eval (ref x) env k _)
-->
(ret {store {env-map env x}} k)]

[(eval (lam x body) env k _)
-->
(ret (clo (lam x body) env) k)]

[(eval (app ef ea) env k c)
-->
(eval ef env

(ar-k ea env (app ef ea) c k)
c)]

;; Ret states
[(ret vf (ar-k ea env call c k))
-->
(eval ea env (fn-k vf call c k) c)]

[(ret va (fn-k vf call c k))
-->
(apply call vf va k c)]

[(ret v (kaddr e env))
(store (kaddr e env) k)
-->

(ret v k)]
;; Apply states
[(apply call (clo (lam x Eb) env) va k c)
-->
(eval Eb env’ (kaddr Eb env’) c’)
(store (kaddr Eb env’) k)
(store (addr x c’) va)
(= env’ (ext-env env x (addr x c’)))
(= c’ {tick !(do-tick call c)})]

;; tick (tuning for 3-k-CFA)
(tick ?(do-tick call [h0 h1 _]) [call h0 h1])

Fig. 3: An AAM for global-store k-CFA in SLOG. This and a
related m-CFA (not shown) are evaluated in Section VI.

To instantiate a monovariant control-flow analysis from this
abstract interpreter, it would be enough to use the variable
name itself as the address or to generate an address (addr
x). When the environment and store become finite, so does
the number of possible states. Consider what happens, as
the naturally relational store relation encoding the global
store conflates multiple values at a single address for the
same variable. Conflation in the store would lead naturally
to nondeterminism in the model of control-flow.

A (potentially) more precise, though (potentially) more

T-APP Γ` e0 :T0→T1 e1 :T0

Γ` (e0 e1) :T1

[(: !(ck Γ e0) (-> T0 T1))
(: !(ck Γ e1) T0)
-->;-------- T-App
(: ?(ck Γ (app e0 e1)) T1)]

Fig. 4: STLC Application: natural deduction and SLOG

costly analysis specializes all control-flow and store points to
a finite history of recent or enclosing calls, as in k-CFA. Such
a k-call-sensitive analysis can be instantiated using a specific
instrumentation and allocation policy, as can many others [18].
It requires an instrumentation to track a history of k enclosing
calls, and then an abstract allocation policy that specializes
variables by this call history at binding time. Such context-
sensitive techniques are a gambit that the distinction drawn
between variable x when bound at one call-site vs another
will prove meaningful—in that it may correlate with its distinct
values. Increasing the polyvariance allows for greater precision
while also increasing the upper-bound on analysis cost. In a
well-known paradox of program analyses, greater precision
sometimes goes hand-in-hand with lower cost in practice
because values that are simpler and fewer are simpler to repre-
sent [19]. At the same time, we use the polyvariant entry point
of each function, its body and abstract contour—(kaddr Eb
c’)—to store allocate continuations as suggested by previous
literature on selecting this address [20] so as to adapt to the
value polyvariance chosen.

The original k-CFA uses higher-order environments, unlike
analyses written for object oriented languages which implicitly
use flat environments (objects) [21]. The corresponding CFA
for functional languages is called m-CFA and is elided for
space, but is also used in Section VI to evaluate SLOG. m-
CFA has only the latest call history as a flat context. Instead
of a per-variable address with a per-variable history tracked
by a per-state environment, m-CFA stores a variable x at
abstract contour c (i.e., abstract timestamp, instrumentation,
3-limited call-history) in the store at the address (addr x
c). This means at every update to the current flat context c,
now taking the place of the environment, all free variables
must be propagated into an address (addr x c).

Taking a constructive logic interpretation allows us to
understand SLOG’s subfacts as proofs, naturally enabling
structural type systems. While the rules of many traditional
type systems readily transliterate into SLOG, we have focused
on algorithmic type checking due to its simple decidability
characteristics: synthesizing proofs is an area of future work.
We have written an implementation of the Simply-Typed λ-
calculus (STLC) and fragments of substructural and dependent
type systems [22]. Figure 4 shows the apply rule from STLC,
the ck relation forces the typechecking of subexpressions
and—if they result in a valid derivation—allows building the
derivation of the larger expression.

V. IMPLEMENTATION

We have implemented SLOG in a combination of Racket
(the compiler, roughly 10,600 lines), C++ (runtime system and
parallel RA backend; roughly 8,500 lines), Python (REPL and
daemon; roughly 2,500 lines) and SLOG (60 lines of utilities).

A. Compiler

Our Racket-based compiler translates SLOG source code
to C++ code that links against our backend. We follow the
nanopass style, building a chain of passes, each producing
increasingly-low-level intermediate representations (IRs) [23].
After parsing, organize-pass performs superficial simplifica-
tions and handles list splicing. SLOG’s distribution paradigm is
built upon binary joins, and thus partitioning-pass next breaks
down bodies with multiple clauses into sequences of binary
joins. While we elide a detailed discussion, partitioning into
binary joins represents an algorithmic challenge, as there may
be many ways to partition a set of clauses into a sequence of
binary joins. We use a combination of heuristics and manual
partitioning (we allow a -- syntax to indicate ordering) to
avoid overmaterialization. Next, split-selections-pass identifies
a set of indices for each relation determined by an anlysis of
its access patterns, and adds administrative rules to replicate
indices of the same relation. The last two passes are calculation
of strongly-connected components (SCCs) and incrementaliza-
tion (anticipating semi-naı̈ve evaluation), which further divides
representation of each relation-index into new, delta, and total
versions to support incrementalized evaluation; the backend
merges delta into total after each iteration—new becomes
delta. What is novel in our compiler is that it supports nested
clauses, !, ?, --, and {}, via first-class facts, which are then
supported all the way down to the implementation as rela-
tional algebra and within those operations as well, described
next. Besides these novelties, the compiler follows a well-
established implementation approach used by other modern
Datalogs. The other key difference from Soufflé’s compiler
is that SLOG does not currently support shared indicies and
heterogenous k-ary joins as Soufflé does due to its approach
to data-parallelism via MPI. If we approached parallelism as
Soufflé does, via shared-memory data structures on a single
node, then both k-ary joins and prefix-based index sharing
would be possible for SLOG as well.

B. Backend

Our parallel relational-algebra backend is designed to flex-
ibly scale up to large-scale multi-node HPC clusters, ex-
ploiting as many threads of parallelism as are available
using the Message-Passing Interface (MPI). Based on the
bulk-synchronous-processing protocol and built using the
MPI-everywhere approach [24], [25], our parallel RA
framework addresses the problem of partitioning and balancing
workload across processes by using a two-layered distributed
hash-table based on Balanced Parallel Relational Algebra
(BPRA) [26]. In order to materialize newly generated facts
within each iteration, and thus facilitate iterated RA (in a
fixed-point loop), an all-to-all data exchange phase is used at
every iteration. Figure 5 shows a schematic diagram of all the
phases (including the added interning phase) in the context of
an incrementalized TC computation. There are three primary
phases in the backend: (1) RA kernel computation, (2) all-to-
all communication and (3) local insertion.

RA kernel computation: The two-layered distributed ap-
proach, with local hash-based joins and hash-based distribution
of relations, is a foundational method to distribute RA-kernel
(primarily join) operations over many nodes in a networked
cluster computer. This algorithm involves partitioning relations
by their join-column values so that they can be efficiently
distributed to participating processes [27]. The main insight
behind this approach is that for each tuple in the outer relation,
all relevant tuples in the inner relation must be hashed to the
same MPI process or node, permitting joins to be performed
locally on each process.

The challenge with parallel workload partitioning is to
ensure every process is responsible for similar-sized work-
loads. The key issue in enforcing this load balance is to
deal with inherently imbalanced data coming from key-skewed
relations. To ensure uniform load across processes, we have
built on previous approaches [26], [28] that use dynamic
mitigation of load-imbalance. The approach [26] uses a two-
layered distributed hash-table to partition tuples over a fixed
set of buckets, and, within each bucket, to a dynamic set
of subbuckets which may vary across buckets. Each tuple is
assigned to a bucket based on a hash of its key-column values,
but within each bucket tuples are hashed on non-join-column
values, assigning them to a local subbucket, then mapped to
an MPI process. Within subbuckets, tuples are stored in B-
trees, organized by key-column values. The first step in a
join operation is an intra-bucket communication phase within
each bucket so that every subbucket receives all tuples for the
outer relation across all subbuckets (while the inner relation
only needs tuples belonging to the local subbucket). Following
this, a local join operation (with any necessary projection and
renaming) is performed in every subbucket.

All-to-all communication: To enable iterated parallel RA
(in a fixed-point loop), processes must engage in a non-
uniform all-to-all inter-process shuffle of generated tuples to
the process managing that tuple in the output index. This
data exchange is performed to materialize the output tuples
generated from the local compute phase (where RA kernels are
executed) to their appropriate processes (based on their bucket-
subbucket assignment). Materializing a tuple in an output
relation (resulting from an RA operation) involves hashing
on its join and non-join columns to find its bucket and sub-
bucket (respectively), and then transmitting it to the process
that maintains that bucket/sub-bucket.

The overall scalability of the RA backend relies on the
scalability of the all-to-all inter-process data exchange phase.
However, all-to-all is notoriously difficult to scale [29]–[31]—
largely because of the quadratic nature of its workload.
We address this scaling issue by adopting recent advance-
ments [32] that optimize non-uniform all-to-all communication
by extending the log-time Bruck algorithm [31], [33], [34] for
non-uniform all-to-all workloads.

Local inserts: After all-to-all data exchange, every pro-
cess receives a set of possibly-new facts that must be mate-
rialized to be used as input in the subsequent iteration of the
fixed-point loop. Local insert is a two-step process involving

Start
Intra-

bucket
Comm

Local join
All-to-all
comm

Rank 0

Rank 1

Rank2

Rank 3

Stoptuple
insertion

Fixed
point

?

No

Yes
Interning

RA kernel computation
All-to-all

Communication Local inserts

Fig. 5: An illustration of the main phases of our parallel RA backend.

interning and inserting newly generated facts in the appropriate
version of a relation (delta and total). Interning assigns a
unique 64-bit key to every fact, and in order to scale this
process, it must be is performed in an embarrassingly parallel
manner without the need for any synchronization among
processes. This is done by reserving the first 16 bits of the key
for unique sub-buckets ids, and the remaining 48-bits for facts.
Since, a sub-bucket is never split across a process, reserving
16 bits for sub-bucket ids ensures that globally unique intern
keys can be created concurrently across processes. The fact-
id component of the intern key is created by a bump pointer,
which ensures that locally all facts receive a unique key. A
check is performed by a global operation that checks the size
of all relations across all processes, and if all sizes remains
unchanged across a subset of iterations, this indicates that a
fixed-point has been attained and the program can terminate.

VI. EVALUATION

We aimed to measure and evaluate SLOG’s improved in-
dexing and data parallelism, using three sets of performance
benchmarks (PBs):

PB1 (Section VI-A) How does SLOG compare against
other systems designed for performance and par-
allelism on traditional Datalog workloads (without
ADTs): Soufflé and RadLog?

PB2 (Section VI-B) How do SLOG subfacts perform
against Soufflé ADTs in the context of the m-CFA
and k-CFA benchmarks developed in Section 4.

PB3 (Section VI-C) How well can SLOG scale to many
threads on a supercomputer?

We evaluated PB1 and PB2 by running a set of experiment
on large cloud machines from Amazon AWS and Microsoft
Azure. For PB1, we ran a set of strong scaling experiments
of transitive closure on large graphs, picking transitive closure

as an exemplary problem to measure end-to-end throughput of
deductive inference at scale. For PB2, we measure the perfor-
mance of the implementation of our k and m-CFA analyses
from Section IV compared to an equivalent implementation in
Soufflé using abstract datatypes (ADTs). We answer PB3 by
running experiments on the Theta supercomputer at Argonne
National Supercomputing Lab, scaling a control-flow analysis
for the λ-calculus to 1000 threads on Argonne’s Theta.

A. Transitive Closure

We sought to compare SLOG’s full-system throughput on
vanilla Datalog against two comparable production systems:
Soufflé and Radlog. Soufflé is engineered to achieve the
best-known performance on unified-memory architectures, and
supports parallelism via OpenMP. Radlog is a Hadoop-based
successor to the BigDatalog deductive inference system, which
uses Apache Spark to perform distributed joins at scale [35].
We originally sought to compare SLOG directly against Big-
Datalog, but found it does not support recent versions of
either Spark or Java (being built to target Java 1.5). Under
direction of BigDatalog’s authors, we instead used Radlog,
which is currently under active development and runs on
current versions of Apache Spark.

We performed comparisons on an Standard M128s in-
stance rented from Microsoft Azure [36]. The node used in
our experiments has 64 physical cores (128 threads) running
Intel Xeon processors with a base clock speed of 2.7GHz and
2,048GB of RAM. To directly compare SLOG, Soufflé, and
Radlog, we ran each on the same machine using 15, 30, 60, and
120 threads. We ran SLOG using OpenMPI version 4.1.1 and
controlled core counts via mpirun. We compiled Soufflé from
its Git repository, using Soufflé’s compiled mode to compile
each benchmark separately to use the requisite number of
threads before execution. Radlog runs natively on Apache

TABLE I: Single-node TC Experiments

Graph Properties Time (s) at Process Count
Name Edges |TC| System 15 30 60 120

FB-MEDIA 206k 96M
SLOG 62 40 21 18

Soufflé 35 33 34 37
Radlog 254 295 340 164

RING10000 10k 100B
SLOG 363 218 177 115

Soufflé 149 143 140 141
Radlog 464 646 852 1292

SUITESPARSE 412k 3.35T
SLOG – 1,593 908 671

Soufflé 1,417 1,349 1,306 1,282
Radlog – – – –

Spark, which subsequently runs on Hadoop. To achieve a fair
comparison against Soufflé and SLOG, we ran Radlog using
Apache Spark configured in local mode; Spark’s local mode
circumvents the network stack and runs the application directly
in the JVM. We used three large graphs shown the first column
of Table I: FB-MEDIA is media-related pages on Facebook,
RING10000 is ring graph of 10,000 nodes, and SUITESPARSE
is from the UF Sparse Matrix Collection [37]. We configured
Radlog according the directions on its website, experimenting
with a variety of partitions (used for shuffling data between
phases) to achieve the best performance we could. Ultimately,
we used three times as many partitions as available threads,
except for RING10000, for which we found higher partition
counts caused significantly lower performance.

Table I details the results of our single-node performance
comparisons in seconds for each thread count, where each
datapoint represents the best of three runs (lower is better).
Experiments were cut off after 30 minutes. In every case, we
found that SLOG produced the best performance overall at 120
threads, even compared to Soufflé’s best time. However, as
expected, our results indicate that Soufflé outperforms SLOG
at lower core counts (below 60). Soufflé implements joins with
tight loops in C++, and (coupled with its superior single-node
datastructures) this allows Soufflé to achieve better perfor-
mance than either SLOG or Radlog at lower core counts. We
found that Radlog did not scale nearly as well as either Soufflé
or SLOG. We expected this would be the case: both SLOG and
Soufflé compile to C++. By comparison, Radlog’s Spark-based
architecture incurs significant sequential overhead due to the
fact that it is implemented on top of the JVM and pays a per-
iteration penalty by using Hadoop’s aggregation and shuffling
phase. SLOG also incurs sequential overhead compared to
Soufflé due to its distributing results after every iteration,
though results indicate that our MPI-based implementation
helps ameliorate this compared to Radlog.

B. AAMs and CFAs

Next, we sought to benchmark the analyses described in
Section IV at scale versus an equivalent implementation using
ADTs in Soufflé (we ignore Radlog in this comparison due to
its lack of support for ADTs). We developed a SLOG analysis
for each of six different polyvariance choices: three k-CFA

(k=3,4,5) and three m-CFA (m=10,12,15) implementations.
We then systematically derived six different Soufflé-based
variants. We tested each of these on six different term sizes,
drawn from a family of worst-case terms identified in David
Van Horn’s thesis [38]. We then benchmark both SLOG and
Soufflé on each of these instances and report upon their results,
scalability, and broad trends which we observed. Critically,
our Soufflé code is an exact port of the SLOG code we used,
except that $-ADT values are used in place of subfacts and the
analysis was designed in the first place to avoid the need for
these subfacts to trigger rule evaluation as they can in SLOG.

Experimental Setup: The experiments described in this
subsection were run on a c6a.metal instance rented from
Amazon Web Services (AWS), including 192 hardware threads
(when run using the .metal instance types) and 384 GiB
of RAM. Because both SLOG and Soufflé are designed to
enable parallelism, we ran each experiment at two distinct
scales: 8 and 64 processes (threads). SLOG was invoked
using mpirun, and Soufflé’s compiled mode was used to
produce a binary which was subsequently run and timed
using GNU time. We did not systematically measure memory
usage; recent microbenchmarks for TC report 3-5x memory
blowup versus Soufflé. We record and report the best of three
runs for each experiment (imposing a four hour cutoff). To
avoid an unfair comparison to Soufflé with respect to on-disc
ADT materialization (which may explode due to linearization
of linked data), our Soufflé implementation does not output
control-flow points or store directly—instead we measure and
report their size using the sum aggregate (built in to Soufflé).

Results: We report our results in Table II. Each of
six distinct analysis choices is shown along the left side.
Along rows of the table, we show experiments for a specific
combination of analysis, precision, and term size. We detail the
total number of iterations taken by the SLOG backend, along
with control-flow points, store size, and runtime at both eight
and 64 processes for SLOG and Soufflé. Times are reported in
minutes / seconds form; several runs of Soufflé took under 1
second (which we mark with <0:01), and � indicates that the
run timed out after four hours.

Inspecting our results, we observed several broad trends.
First, as problem size increases, SLOG’s runtime grows less-
rapidly than Soufflé’s. This point may be observed by inspect-
ing runtimes for a specific set of experiments. For example,
10-m-CFA with term size 200 took SLOG 26 seconds, while
Soufflé’s run took 56 seconds. Doubling the term size to 400
takes 104 seconds in SLOG, but 398 seconds in Soufflé—a
slowdown of 4× in SLOG, compared to a slowdown of 7× in
Soufflé. A similar trend happens in many other experiments,
e.g., 15 minutes to over three hours for Soufflé (13× slow-
down) vs. 2 to 4 seconds (2× slowdown) in SLOG’s runtime
on 5-k-CFA. Inspecting the output of Soufflé’s compiled C++

code for each experiment helped us identify the source of the
slowdown. For example, the following rule for return joins
on the subfact $KAddr(e, env)—because Soufflé does not
index subfacts, a scan-then-filter approach is used.
ret(v,sto,k) :- ret(v,sto,$KAddr(e, env)),

TABLE II: Control-Flow Analysis Experimental Results: Slog vs. Soufflé

Size Iters Cf. Pts Sto. Sz. 8 Processes 64 Processes Size Iters Cf. Pts Sto. Sz. 8 Processes 64 Processes
Slog Soufflé Slog Soufflé Slog Soufflé Slog Soufflé

3-
k

-C
FA

8 1,193 98.1k 23.4k 00:01 01:07 0:02 00:15

10
-m

-C
FA

50 6,120 21k 656k 00:02 00:02 00:10 00:01
9 1,312 371k 79.8k 00:02 14:47 0:03 02:56 100 11,670 42k 2.78M 00:07 00:09 00:20 00:04

10 1,431 1.44M 291k 00:06 � 0:05 45:49 200 22,770 86.5k 11.4M 00:26 00:56 00:42 00:23
11 1,550 5.68M 1.11M 00:27 � 0:16 � 400 44,970 173k 46.4M 01:44 06:26 01:38 01:56
12 1,669 22.5M 4.32M 02:14 � 1:07 � 800 89,370 348k 187M 07:35 45:22 04:21 09:33
13 1,788 89.8M 17.0M 12:17 � 5:08 � 1600 178,170 698k 750M 32:56 � 14:36 1:02:35

4-
k

-C
FA

9 1,363 312k 65k 00:01 14:38 00:03 02:08

12
-m

-C
FA

25 3,559 17k 385k 00:01 <:01 0:06 <:01
10 1,482 1.2M 229k 00:05 � 00:05 40:30 50 6,434 36k 1.89M 00:04 00:03 0:11 00:03
11 1,601 4.69M 853k 00:20 � 00:13 � 100 12,184 74k 8.82M 00:16 00:24 0:23 00:10
12 1,720 18.5M 3.28M 01:40 � 00:53 � 200 23,684 151k 34.6M 01:10 02:37 0:53 00:55
13 1,839 73.8M 12.9M 08:44 � 03:58 � 400 46,684 305k 142M 05:04 18:39 2:23 04:12
14 1,958 294M 50.8M 60:53 � 35:46 � 800 92,684 611k 574M 22:46 2:38:22 7:28 24:58

5-
k

-C
FA

9 1,429 203k 50.7k 00:02 05:30 0:03 01:15

15
-m

-C
FA

12 2,211 14.4k 137k 00:01 <:01 0:04 <:01
10 1,548 757k 167k 00:04 65:20 0:04 015:08 24 3,591 35.9k 1.44M 00:03 00:02 0:06 00:01
11 1,667 2.91M 597k 00:13 � 0:08 196:06 48 6,351 78.6k 8.29M 00:14 00:15 0:14 00:07
12 1,786 11.4M 2.24M 00:56 � 0:27 � 96 11,871 164k 38.9M 01:08 01:41 0:36 00:36
13 1,905 45.2M 8.69M 04:38 � 2:00 � 192 22,911 335k 168M 05:15 12:10 1:49 02:51
14 2,024 180M 34.2M 25:14 � 9:58 � 384 44,991 678k 697M 24:10 1:32:35 6:45 16:30

kont_map($KAddr(e, env),k).

For a fixed problem size, we found that Soufflé and
SLOG both scaled fairly well. Soufflé consistently performed
well on small input sizes; additional processes did not incur
slowdowns, and Soufllé’s efficiency was generally reasonable
(roughly 50%) when algorithmic scalability did not incur
slowdowns. For example, in 3-k-CFA (n=8), Soufflé took
67 seconds at 8 processes, and 15 seconds at 64 processes.
SLOG’s parallelism doesn’t outweigh communication overhead
on smaller problems, particularly on problems with high
iteration count and low per-iteration work. As problem size
increases, our SLOG implementations show healthy scalability;
efficiency grows as problem size grows (e.g., 24:10 to 6:45 on
15-m-CFA/384, 22:46 to 7:28 on 12-m-CFA/800).

C. Multi-node Scaling Experiments

In recent years, several cloud providers have launched MPI-
capabable HPC nodes for their cloud services and significantly
upgraded their network interconnects [39], [40]. Alongside
related advances in cloud architectures and MPI implemen-
tations, this move signals the ability for massively parallel
analytics to be deployed as a service in the near future. In
this spirit, we also conduct some preliminary strong-scaling
experiments on the Theta supercomputer. For this we used a
fully monomorphized m-CFA (distinct from the m-CFA used
in the previous subsection)—experiments we had ready to go
when our allocation on Theta became possible. The Theta
Supercomputer [41] at the Argonne Leadership Computing
Facility (ALCF) of the Argonne National Laboratory is a Cray
machine with a peak performance of 11.69 petaflops. It is
based on the second-generation Intel Xeon Phi processor and
is made up of 281,088 compute cores. It has an aggregate
of 843.264 TiB of DDR4 RAM, 70.272 TiB of MCDRAM
and 10 PiB of online disk storage. The supercomputer has a
Dragonfly network topology uses the Lustre filesystem.

0
100
200
300
400
500
600
700
800
900

1000

TI
m

e
(s

ec
on

ds
)

Process Count

DVH 110-6 DVH 110-7 DVH 110-8

Fig. 6: Strong-scaling experiments on Theta.

We ran three sets of m-CFA worst-case experiments with
110 terms and m = 6, 7 and 8. The results of the three
sets of experiments, referred to as dvh-110-6, dvh-110-7
and dvh-110-8 are plotted in Figure 6. For all three
set of experiments we observe improvement in performance
with increase in process counts, until maximum efficiency is
attained, after which performance degrades with increasing
process counts, due to communication overhead and workload
starvation. In general, for a given workload (problem size), we
observe a range of processes that exhibit healthy scalability.
dvh-110-6 shows a near 100% scaling efficiency (2×
speedup while increasing the process count from 100 to 200),
performance however drops when the number of processes is
increased to 300. Similarly, dvh-110-7 shows a 75% scaling
efficiency (3× speedup when the process count is increased
from 100 to 400), and dvh-110-8 shows a 71% scaling
efficiency (1.42× speedup going 400 to 800).

VII. RELATED AND FUTURE WORK

Distributed Datalog: There have been significant im-
plementation efforts to scale Datalog-like languages to large
clusters of machines. For example, BigDatalog [4], Distributed

SociaLite [42], Myria [43], and Radlog [44] all run on Apache
Spark clusters (servers networked together via commodity
switches within a datacenter). Extending Spark’s architecture
with recursive queries (and aggregates), these frameworks
scale to large datasets typical of Spark queries. SLOG dif-
fers from these systems in two primary ways. First, com-
pared to SLOG’s MPI-based implementation, Apache Spark’s
framework-imposed overhead is increasingly understood to
be a bottleneck in scalable data analytics applications, with
several authors noting order-of-magnitude improvements when
switching from Spark to MPI [5], [6], [45]. Second, none of
the aforementioned systems support first-class subfacts; for
example, while Radlog can compute the length of the shortest
path from a specific point, it cannot materialize the path per-se.
Recently, Radlog’s authors have created DCDatalog, a parallel
Datalog which targets shared-memory SMP architectures and
demonstrate a 10× runtime speedup compared to Soufflé on a
machine with four eight-core processors and 256GB of RAM.
Unfortunately, DCDatalog is not open-source, and we have
not been able to obtain a copy for evaluation; we believe
it is difficult to interpret DCDatalog’s results compared to
SLOG and Soufflé, as their paper notes “Soufflé does not allow
aggregates in recursion, and thus it must use a stratified query
that results in very poor performance” for several evaluation
queries. Last, Nexus (also closed-source) has claimed a signif-
icant performance boost (up to 4×) compared to BigDatalog
by using Apache Flink, a data-flow processing language [46].

Datalog Extensions: Noting the first-order nature of
vanilla Datalog—and often inspired by Datalog’s efficient
semi-naı̈ve evaluation strategy—there has been extensive work
in extending Datalog with additional expressive power [7],
[47]–[50]. Flix augments Datalog with lattices [47], [48],
but is not specifically focused on efficient compilation; re-
cently, Ascent is a macro-based implementation of Datalog in
Rust which includes lattices and shows orders-of-magnitude
runtime improvements versus Flix [51]. Similarly, Datafun
is a pure functional language which computes fixed points
of monotone maps on semilattices [49], [50]. Compared to
SLOG, Datafun’s evaluation strategy is top-down and based
on the λ-calculus; the authors have recently studied semi-
na ive evaluation of Datafun upon work on the incremental
λ-calculus [52], [53]. SLOG’s primary difference from this
work is that it is based on DLs rather than the λ-calculus;
because of this, semi-naı̈ve evaluation for functions in SLOG
(using defunctionalization) requires no extra logic.

Datalog + Constraints: An increasingly-popular seman-
tic extension to Datalog is adding first-class constraints [7],
[54]–[56]. These constraints typically allow interfacing with
an SMT solver, potentially in a loop with subsequent anal-
ysis [7]. Formulog includes ADTs and first-order functions
over ADTs, allowing Turing-equivalent to build formulas of
arbitrary size to be checked by Z3 [7]; we anticipate SLOG will
perform well compared to Formulog when subfact-indexing
is of concern, though by Amdahl’s law this effect will be
smaller in code whose computation is dominated by calls to
Z3. Similarly, Rosette efficiently compiles solver-aided queries

to efficient implementations using host language constructs
and a symbolic virtual machine (SVM) [55], [56]. SLOG is
largely orthogonal to these systems, which focus on shared-
memory implementations and are not primarily concerned
with parallelization. We have transliterated proof-of-concept
examples from both of these projects into SLOG, but it is
currently impossible to call Z3 from SLOG as doing so would
require all facts be resident on a single node. Semantically,
SLOG is more directly comparable to constrained HornSAT
or existential fixed-point logic, which have attracted recent
interest for their application to program verification [57]–[60].
DLs can express constrained HornSAT problems as long as a
decision procedure for the background logic is available; we
plan to study usage of SLOG for CHCs in subsequent work.

Parallel Program Analyses: Given the algorithmic com-
plexity intrinstic to large-scale program analyses, there has
been significant interest in its parallelization [2], [8], [61]–[64]
or implementation using special-purpose datastructures [65]–
[69]. There are a variety of fundamental approaches to scal-
ability; for example, summarization-based analyses (such as
Saturn [62], [63]) are attractive due to the task-level paral-
lelism they expose. Much work in scaling program analysis
has focused on context-insensitive analyses—wherein task-
level parallelism is more directly exploitable. The goals of
SLOG are most closely related to current efforts on scaling
rich, whole-program context-sensitive analyses using deduc-
tive inference [2], [3], [70].

Parallel Relational Algebra: SLOG’s backend builds
upon recent successes in balanced, parallel relational algebra
(BPRA) and follow-up work on compilation of vanilla Datalog
to parallel relational algebra kernels [71]–[73]. However, that
work focuses mainly on the low-level implementation of
relational algebra kernels rather than a unified programming
language, compiler, and runtime.

VIII. CONCLUSION

In this work we extended Datalog with subfacts, explicating
a core language, DLs, which supports subfacts as first-class
facts, values, and threads. This straightforward semantic ex-
tension enables several key innovations, including the expres-
sion of higher-order functions via defunctionalization, subfact
indexing, and a rich connection to constructive logic via the
proofs-as-programs interpretation. We have implemented these
ideas in SLOG, a fully featured language for data-parallel
structured deduction, using a new MPI-based relational algebra
backend, and we demonstrate its application to operational
semantics, abstract interpreters, and formal systems broadly.
Our experiments show that SLOG is competitive with, or
(when programming with algebraic data) orders-of-magnitude
faster than state-of-the-art systems, showing improved data-
parallelism and scaling up to hundreds of cores on large unified
machines and high-performance clusters.

REFERENCES

[1] J. Whaley, D. Avots, M. Carbin, and M. S. Lam, “Using datalog with
binary decision diagrams for program analysis,” in Asian Symposium on
Programming Languages and Systems. Springer, 2005, pp. 97–118.

[2] T. Antoniadis, K. Triantafyllou, and Y. Smaragdakis, “Porting DOOP to
soufflé: a tale of inter-engine portability for datalog-based analyses,” in
Proceedings of the 6th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis. ACM, 2017, pp. 25–30.

[3] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in Computer Aided Verification, S. Chaudhuri and A. Farzan,
Eds. Cham: Springer International Publishing, 2016, pp. 422–430.

[4] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and
C. Zaniolo, “Big data analytics with datalog queries on spark,” in
Proceedings of the 2016 International Conference on Management
of Data, ser. SIGMOD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 1135–1149. [Online]. Available:
https://doi.org/10.1145/2882903.2915229

[5] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,
N. Satish, and T. L. Willke, “Bridging the gap between hpc and big
data frameworks,” Proc. VLDB Endow., vol. 10, no. 8, p. 901–912, apr
2017. [Online]. Available: https://doi.org/10.14778/3090163.3090168

[6] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data
analytics in the cloud: Spark on hadoop vs mpi/openmp on
beowulf,” Procedia Computer Science, vol. 53, pp. 121–130,
2015, iNNS Conference on Big Data 2015 Program San
Francisco, CA, USA 8-10 August 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050915017895

[7] A. Bembenek, M. Greenberg, and S. Chong, “Formulog: Datalog for
smt-based static analysis,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–31, 2020.

[8] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification
of sophisticated points-to analyses,” in Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’09. New
York, NY, USA: ACM, 2009, pp. 243–262. [Online]. Available:
http://doi.acm.org/10.1145/1640089.1640108

[9] ——, “Strictly declarative specification of sophisticated points-to
analyses,” SIGPLAN Not., vol. 44, no. 10, p. 243–262, Oct. 2009.
[Online]. Available: https://doi.org/10.1145/1639949.1640108

[10] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications.”
Pacific journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.

[11] S. Ceri, G. Gottlob, L. Tanca et al., “What you always wanted to know
about datalog(and never dared to ask),” IEEE transactions on knowledge
and data engineering, vol. 1, no. 1, pp. 146–166, 1989.

[12] A. W. Appel, Compiling with continuations. Cambridge university
press, 2007.

[13] M. Might, “Abstract interpreters for free,” in International Static Anal-
ysis Symposium, ser. SAS ’10. Springer, 2010, pp. 407–421.

[14] D. Van Horn and M. Might, “Abstracting abstract machines,”
in Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’10. New
York, NY, USA: ACM, 2010, pp. 51–62. [Online]. Available:
http://doi.acm.org/10.1145/1863543.1863553

[15] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL ’77.
New York, NY, USA: ACM, 1977, pp. 238–252. [Online]. Available:
http://doi.acm.org/10.1145/512950.512973

[16] ——, “Systematic design of program analysis frameworks,” in Proceed-
ings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, 1979, pp. 269–282.

[17] J.-L. Krivine, “A call-by-name lambda-calculus machine,” Higher-order
and symbolic computation, vol. 20, no. 3, pp. 199–207, 2007.

[18] T. Gilray, M. D. Adams, and M. Might, “Allocation characterizes
polyvariance: A unified methodology for polyvariant control-flow
analysis,” in Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’16. New
York, NY, USA: ACM, 2016, pp. 407–420. [Online]. Available:
http://doi.acm.org/10.1145/2951913.2951936

[19] A. K. Wright and S. Jagannathan, “Polymorphic splitting: An effective
polyvariant flow analysis,” ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), vol. 20, no. 1, pp. 166–207, 1998.

[20] T. Gilray, S. Lyde, M. D. Adams, M. Might, and D. Van Horn,
“Pushdown control-flow analysis for free,” in Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’16. New York,

NY, USA: ACM, 2016, pp. 691–704. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837631

[21] M. Might, Y. Smaragdakis, and D. Van Horn, “Resolving and exploiting
the k-cfa paradox: illuminating functional vs. object-oriented program
analysis,” in Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2010, pp. 305–
315.

[22] B. C. Pierce, Types and Programming Languages, 1st ed. The MIT
Press, 2002.

[23] A. W. Keep and R. K. Dybvig, “A nanopass framework for commercial
compiler development,” in Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
343–350. [Online]. Available: https://doi.org/10.1145/2500365.2500618

[24] M. P. Forum, “Mpi: A message-passing interface standard,” 1994.
[25] R. Zambre, D. Sahasrabudhe, H. Zhou, M. Berzins, A. Chandramowlish-

waran, and P. Balaji, “Logically parallel communication for fast mpi+
threads applications,” IEEE Transactions on Parallel and Distributed
Systems, 2021.

[26] S. Kumar and T. Gilray, “Distributed relational algebra at scale,” in
International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, 2019.

[27] P. Valduriez and S. Khoshafian, “Parallel evaluation of the transitive
closure of a database relation,” Int. J. Parallel Program., vol. 17, no. 1,
pp. 19–42, Feb. 1988.

[28] S. Kumar and T. Gilray, “Load-balancing parallel relational algebra,”
in High Performance Computing, P. Sadayappan, B. L. Chamberlain,
G. Juckeland, and H. Ltaief, Eds. Cham: Springer International
Publishing, 2020, pp. 288–308.

[29] R. Kumar, A. Mamidala, and D. K. Panda, “Scaling alltoall collective on
multi-core systems,” in 2008 IEEE International Symposium on Parallel
and Distributed Processing, April 2008, pp. 1–8.

[30] D. S. Scott, “Efficient all-to-all communication patterns in hypercube
and mesh topologies,” in The Sixth Distributed Memory Computing
Conference, 1991. Proceedings. IEEE Computer Society, 1991, pp.
398–399.

[31] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[32] K. Fan, T. Gilray, V. Pascucci, X. Huang, K. Micinski, and S. Kumar,
“Optimizing the bruck algorithm for non-uniform all-to-all communi-
cation,” in Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing, 2022, pp. 172–184.

[33] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
algorithms for all-to-all communications in multiport message-passing
systems,” IEEE Transactions on parallel and distributed systems, vol. 8,
no. 11, pp. 1143–1156, 1997.

[34] J. L. Träff, A. Rougier, and S. Hunold, “Implementing a classic: Zero-
copy all-to-all communication with mpi datatypes,” in Proceedings of
the 28th ACM international conference on Supercomputing, 2014, pp.
135–144.

[35] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang,
L. Ding, and C. Zaniolo, “Rasql: Greater power and performance
for big data analytics with recursive-aggregate-sql on spark,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 467–484. [Online]. Available:
https://doi.org/10.1145/3299869.3324959

[36] Microsoft, “Azure — m-series,” https://docs.microsoft.com/en-
us/azure/virtual-machines/m-series, accessed: 2021-11-19.

[37] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[38] D. V. Horn, “The complexity of flow analysis in higher-order languages,”
Ph.D. dissertation, Brandeis University, 2009.

[39] E. Burness, “Introducing the new hbv2 azure virtual machines for
high-performance computing,” 2019, https://azure.microsoft.com/en-
us/blog/introducing-the-new-hbv2-azure-virtual-machines-for-high-
performance-computing/; accessed August 11, 2019.

[40] “AWS ParallelCluster,” https://aws.amazon.com/hpc/parallelcluster/, ac-
cessed: 2022-06-01.

[41] S. Parker, V. Morozov, S. Chunduri, K. Harms, C. Knight, and K. Ku-
maran, “Early evaluation of the cray xc40 xeon phi system ‘theta’at

argonne,” Argonne National Lab.(ANL), Argonne, IL (United States),
Tech. Rep., 2017.

[42] J. Seo, J. Park, J. Shin, and M. S. Lam, “Distributed socialite: A
datalog-based language for large-scale graph analysis,” Proc. VLDB
Endow., vol. 6, no. 14, p. 1906–1917, sep 2013. [Online]. Available:
https://doi.org/10.14778/2556549.2556572

[43] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris,
D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker, S. Xu,
M. Balazinska, B. Howe, and D. Suciu, “Demonstration of the myria big
data management service,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
881–884. [Online]. Available: https://doi.org/10.1145/2588555.2594530

[44] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang,
L. Ding, and C. Zaniolo, “Rasql: Greater power and performance
for big data analytics with recursive-aggregate-sql on spark,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 467–484. [Online]. Available:
https://doi.org/10.1145/3299869.3324959

[45] D. S. Kumar and M. A. Rahman, “Performance evaluation of apache
spark vs mpi: A practical case study on twitter sentiment analysis,”
Journal of Computer Science, vol. 13, no. 12, pp. 781–794, Dec 2017.
[Online]. Available: https://thescipub.com/abstract/jcssp.2017.781.794

[46] M. Imran, G. E. Gévay, J.-A. Quiané-Ruiz, and V. Markl, “Fast
datalog evaluation for batch and stream graph processing,” World Wide
Web, vol. 25, no. 2, p. 971–1003, mar 2022. [Online]. Available:
https://doi.org/10.1007/s11280-021-00960-w

[47] M. Madsen, M.-H. Yee, and O. Lhoták, “From datalog to flix: A declar-
ative language for fixed points on lattices,” ACM SIGPLAN Notices,
vol. 51, no. 6, pp. 194–208, 2016.

[48] M. Madsen and O. Lhoták, “Safe and sound program analysis with flix,”
in Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 38–48. [Online].
Available: https://doi.org/10.1145/3213846.3213847

[49] M. Arntzenius and N. R. Krishnaswami, “Datafun: A functional
datalog,” in Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 214–227.
[Online]. Available: https://doi.org/10.1145/2951913.2951948

[50] M. Arntzenius and N. Krishnaswami, “Seminaı̈ve evaluation
for a higher-order functional language,” Proc. ACM Program.
Lang., vol. 4, no. POPL, dec 2019. [Online]. Available:
https://doi.org/10.1145/3371090

[51] A. Sahebolamri, T. Gilray, and K. Micinski, “Seamless deductive
inference via macros,” in Proceedings of the 31st ACM SIGPLAN
International Conference on Compiler Construction, ser. CC 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
77–88. [Online]. Available: https://doi.org/10.1145/3497776.3517779

[52] P. G. Giarrusso, Y. Régis-Gianas, and P. Schuster, “Incremental λ-
calculus in cache-transfer style,” in Programming Languages and Sys-
tems, L. Caires, Ed. Cham: Springer International Publishing, 2019,
pp. 553–580.

[53] Y. Cai, P. G. Giarrusso, T. Rendel, and K. Ostermann, “A theory of
changes for higher-order languages: Incrementalizing λ-calculi by static
differentiation,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
145–155. [Online]. Available: https://doi.org/10.1145/2594291.2594304

[54] M. Madsen and O. Lhoták, “Fixpoints for the masses:
Programming with first-class datalog constraints,” Proc. ACM Program.
Lang., vol. 4, no. OOPSLA, nov 2020. [Online]. Available:
https://doi.org/10.1145/3428193

[55] E. Torlak and R. Bodik, “Growing solver-aided languages with
rosette,” in Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software, ser. Onward! 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 135–152. [Online]. Available:
https://doi.org/10.1145/2509578.2509586

[56] ——, “A lightweight symbolic virtual machine for solver-aided host
languages,” SIGPLAN Not., vol. 49, no. 6, p. 530–541, jun 2014.
[Online]. Available: https://doi.org/10.1145/2666356.2594340

[57] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Solving
constrained horn clauses using syntax and data,” in 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX,
USA, October 30 - November 2, 2018, N. S. Bjørner and
A. Gurfinkel, Eds. IEEE, 2018, pp. 1–9. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8603011

[58] A. Blass and Y. Gurevich, Existential fixed-point logic. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1987, pp. 20–36. [Online].
Available: https://doi.org/10.1007/3-540-18170-9 151

[59] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko, Horn
Clause Solvers for Program Verification. Springer LNCS, 09 2015,
vol. Fields of Logic and Computation II (pp.24-51), pp. 24–51.

[60] A. Gurfinkel, “Program verification with constrained horn clauses (in-
vited paper),” in Computer Aided Verification, S. Shoham and Y. Vizel,
Eds. Cham: Springer International Publishing, 2022, pp. 19–29.

[61] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic
execution for automated real-world software testing,” in Proceedings
of the Sixth Conference on Computer Systems, ser. EuroSys ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
183–198. [Online]. Available: https://doi.org/10.1145/1966445.1966463

[62] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins,
“An overview of the saturn project,” in Proceedings of the 7th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, ser. PASTE ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 43–48. [Online].
Available: https://doi.org/10.1145/1251535.1251543

[63] Y. Xie and A. Aiken, “Saturn: A scalable framework for error
detection using boolean satisfiability,” ACM Trans. Program. Lang.
Syst., vol. 29, no. 3, p. 16–es, may 2007. [Online]. Available:
https://doi.org/10.1145/1232420.1232423

[64] J. H. Siddiqui and S. Khurshid, “Parsym: Parallel symbolic execution,”
in 2010 2nd International Conference on Software Technology and
Engineering, vol. 1, 2010, pp. V1–405–V1–409.

[65] J. Whaley, D. Avots, M. Carbin, and M. S. Lam, “Using datalog with
binary decision diagrams for program analysis,” in Proceedings of the
Third Asian Conference on Programming Languages and Systems, ser.
APLAS’05. Berlin, Heidelberg: Springer-Verlag, 2005, p. 97–118.
[Online]. Available: https://doi.org/10.1007/11575467 8

[66] T. Prabhu, S. Ramalingam, M. Might, and M. Hall, “Eigencfa:
Accelerating flow analysis with gpus,” in Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 511–522. [Online].
Available: https://doi.org/10.1145/1926385.1926445

[67] R. Kramer, R. Gupta, and M. Soffa, “The combining dag: a technique
for parallel data flow analysis,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 8, pp. 805–813, 1994.

[68] Y.-f. Lee, T. J. Marlowe, and B. G. Ryder, “Performing data flow
analysis in parallel,” in Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, ser. Supercomputing ’90. Washington, DC, USA:
IEEE Computer Society Press, 1990, p. 942–951.

[69] M. Méndez-Lojo, A. Mathew, and K. Pingali, “Parallel inclusion-
based points-to analysis,” in Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 428–443. [Online]. Available:
https://doi.org/10.1145/1869459.1869495

[70] B. Scholz, H. Jordan, P. Subotić, and T. Westmann, “On fast large-scale
program analysis in datalog,” in Proceedings of the 25th International
Conference on Compiler Construction, ser. CC 2016. New York, NY,
USA: ACM, 2016, pp. 196–206.

[71] S. Kumar and T. Gilray, “Load-balancing parallel relational algebra,”
in High Performance Computing, P. Sadayappan, B. L. Chamberlain,
G. Juckeland, and H. Ltaief, Eds. Cham: Springer International
Publishing, 2020, pp. 288–308.

[72] T. Gilray and S. Kumar, “Distributed relational algebra at scale,” in 2019
IEEE 26th International Conference on High Performance Computing,
Data, and Analytics (HiPC), 2019, pp. 12–22.

[73] T. Gilray, S. Kumar, and K. Micinski, “Compiling data-parallel
datalog,” in Proceedings of the 30th ACM SIGPLAN International
Conference on Compiler Construction, ser. CC 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 23–35. [Online].
Available: https://doi.org/10.1145/3446804.3446855

