Computer Security: Attacks and Defenses

Instructor: Kristopher Micinski

Number: 323

Prerequisites: Experience in C programming, CMSC245 at Haverford, CMSC246 at Bryn
Mawr, experience w/ or willingness to learn new languages (Python, SQL)

Workload: 3 hours/week in class, 1 hour/week lab, approximately 6-10 hours/week
outside of class. This will be a lab / project intensive class, and significant work outside
of class is expected.

Cap: 25 (may be lifted to 35)

Course Overview

This course will serve as a broad introduction to the field of computer security, from two
concurrent perspectives: attacks on systems, and defenses against those attacks. The goal of
this course will be to help build intuition so that--when designing your own systems--you can
intelligently assess and mitigate security risks.

To understand how attackers think, we will learn about the attacks they employ. We will
dissect a number of real-world attacks (such as Heartbleed or WannaCry) and reflect upon what
could have been done to prevent them. But understanding a collection of attacks is not alone
sufficient for helping us understand how to build secure systems. So alongside attacks, we will
also learn the theoretical underpinnings of security, and use it to build defenses into our
systems.

Labs will transition theory into practice. We will conclude with a group project exploring
advanced topics relevant to the state of the art in computer security. The course will begin with
a discussion on ethical application of techniques we learn.

Topics covered

We will cover parts of the following topics, adjusted for time and pace of the course, along with
student interest in each area.

e Low-level memory attacks and defenses
o Buffer overflows
o Stack canaries
o Access space randomization / derandomization
o Return to libc / return-oriented-programming
e Cryptography
o Symmetric and asymmetric-key cryptography
o Certificates, CAs, and PKI
o SSL/TLS
e Web security

o SQL injections
o Cross-site scripting
o Cross-site request forgery
Social engineering and security ethics
Ul design for security
o App permissions design
o Best practices for security Ul
o Permission lifetime and revocation
o Case study in privacy controls:
m Facebook privacy controls
m Android permissions
Information flow control in web apps
Reverse engineering
Theoretical underpinnings of security
o Full abstraction
o Information flow

Projects and Labs

Projects will be started in labs, and then continued individually. Some labs are structured so that
they begin with a concrete assignment to work on as an individual in the first week, and then
move on to a group assignment to complete a larger task.

Project 1: Memory attacks (Weeks 1-4 inclusive) (Uses C programming)

This project will cover low-level memory attacks using the C programming language. The
students will begin by executing an attack from starter code provided. They will then implement
their own buffer overflow attack, and demonstrate a way to prevent the attack by intelligent
programming, and also facilities provided by the compiler. After completing this task, students
will form groups to complete a more advanced attack studying ASLR or ROP. 1.5 weeks will be
allocated for independent programming, and 1.5 weeks will be allocated for group work.

Project 2: Cryptography (weeks 4-7 incl.) (Uses Python programming)

This project will involve creating a public / private key pair and manually exchanging keys to
collaborate secretly communicate with group members. The next week, students will either
implement a secure chat using cryptographic primitives provided, or explore an attack on an
insecure cryptographic hash.

Project 3: Web security (weeks 7-9 incl.) (Uses Python programming)

Students will be given an insecure web app written in Python which is vulnerable to an SQL
injection attack. They will then craft an input which causes the app to leak secret information (in
this case, student grades from a synthetic gradebook consisting of fictitious students). They will
then fix this attack in the app. Finally, students will attempt to break other students’ fixes.

Final project (weeks 10-14):
This will be a final project, either in a group or alone. Students requesting to work alone need
prior approval for a topic and expectations will be calibrated accordingly. Students will select
one of the following projects, or propose their own project:
e Information flow specification (uses Python/Jeeves)
Implement privacy policies for a secure student grades database using Jeeves, an
extension to the Python programming language.
e Designing a privacy Ul (uses Python / Javascript / etc..)
Use best practices to propose and implement a new Ul for some privacy-related
mechanism, and perform a mock implementation
e Malware reverse engineering
Use reverse engineering tools to understand and discuss how a particular piece of
malware works.
e Implement signature-based antivirus
Students will read about and implement a variant of signature-based antivirus detection
for a small sample of malware

Students will check in with the professor regularly, and collaboration will occur via Github.

Grading

e Labs and Projects: 50%

o Individual components: 30%

o Group components: 20%
e Two midterm exams: 30% (take home and open-note)

o Given 1/3rd and 2/3rd of the way through the course
e Final (group) project: 20%

Evaluation for group projects will be based on mutual student feedback and oral exam with
individual group members.

Books

Required
e Security Engineering, Second Edition, by Ross Anderson
o This book is freely available online from the author
e Online resources will be distributed throughout the course. These include blog articles
(e.g., by the Facebook privacy group), academic papers, and websites (e.g., the Android
security internals). These will all be freely available.
Optional
e The Web Application Hacker’s Handbook, by Dafydd Stuttard & Marcus Pinto
e Applied Cryptography, Second Edition, by Bruce Schneier

