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What are they?

1 Nat 1] : List(Nat)

First order terms and types Types depend on types

(Ax y z. if0 x then y else z)

Terms depend on terms

(Animal a).speak()

Terms depend on types
11@|2] : Vector(1+ 1)

Types depend on terms
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What about when our programs go wrong?









$60 Billion a year in bugs

Patriot missile launcher

“10 historical software bugs with extreme consequences” —
Pingdom, March 19, 2009.



How do we verity software”?



What do we need”?

Program — we want to talk about
- Specification — say when it’s correct
- Verification — show program meets spec

- Validation — show system meets end to end goals



Probably basis of modern

2L

- This is why Robert Floyd and Tony Hoare are famous
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FiGURE 1. Flowchart of program to compute S = 3=y aj (7 2 0)

{a=m A b=n A n>0}
{a®+1=m" A b>0}
C’=1;
{a*xc=m" A b>0}
while b > 0
do
{a®*xc=m" A b>0 A b>0}
while 2 * (b div 2) =
do
{a *c=m" A b>0 A 2x(bdiv 2)
{ a2 dv 2 y c = m" A (bdiv2) > 0}
{ (@*a)®* ** 2 x ¢ = m" A (bdiv 2) > 0 }
a:=a*a;
{a*® 2% c=m" A (bdiv2)> 0}
b := b div 2
{a®>*xc=m" A b>0}
{a®xc=m" A b>0 A 2%(b div2) # b }
{a®>*xc=m" A b>0}
{a®*xaxc=m" A b-1>0}
b:=b-1;
{a®>*xaxc=m" A b>0}
c:=a*xc
{a®>xc=m" A b>0}
{a®*xc=m" A b>0 A b<0}
{a% % c=m"}
{c=m}

=b}



Sunch of different technigques

-+ Program logic

- Compositionally build programs with pre and post conditions
- Model checking

- Write what program should and shouldn’t do

- Check formula over abstraction of the program
-+ Program analysis

- E.qg., dataflow / control flow / abstract interpretation

- “Is this pointer ever null?”



Going to study dependent types

- Type system give us compositional static checks
- Key Insight: stuff arbitrarily complex logic into types
- Now we can verify a program by type checking it
- Type checking may be undecidable
- Verification: only one way to look at dependent types

- WIll discuss exactly what | mean



Preliminaries

- This is intricate
- Complex systems can be deceptively small
I'll be working a lot with the natural numbers.
0 : nat
- k : nat, S(k) : nat
- S(k) 1s k + 1

Lots of follow up work if you’re interested



Use types as the specification

2rogram has type It it satisfies the property



Types are going to have to be more complex...



Lambda calculus Reduction relation
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What is the lambda calculus

- A grammar for forming program terms
- lells what programs “look like”

- A reduction relation
- Tells us what programs “do”
Denotational semantics

- What programs “mean” (wrt a mathematical domain)



What is the lambda calculus

-+ A grammar for forming program terms

- Tells what programs “look like” ()\m 7 a:)()\w T :13)

. A reduction relation Some programs do something that
has no “meaning”

- Tells us what programs “do”

Denotational semantics (By which, | mean an undesirable meaning...)

- What programs “mean” (wrt a mathematical domain)



Type systems syntactically rule out “lbad” programs

— (typed) Based on A (5-3)
1 1
Syntax Evaluation t— t

t = termes: ot
X variable ] - (E-App1)
Ax :T .t abstraction it — 1
tt application t — t) (E-APP2)
-APPpP2
v T2 — V) té
Vo ou= values:
Ax :T .t abstraction value (Ax:Tin - ti2) v2 — [X — valti2 (E-APPABS)
Il = types:
T-T type of functions I“xl-—Txe°rT (T-VAR)
I = contexts: [ ox:Ti b to s T
%) empty context 2l e 2 (T-ABS)
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Figure 9-1: Pure simply typed lambda-calculus (A -)



Typed Lambda Complain about type errors

Which would result in runtime
errors...

Exrror: * 2
applied to canine
when expected Int




type vector = 1int 1list

let rec add vector a b
match (a,b) with
([]l[]) -> []
((hl::t1l),(h2::t2)) ->
hl+h2 :: add vector tl t2




# add vector [1;2;3] [1;2;3];;
— ¢ 1nt list = [2; 4; 6]



# add vector [1;2;3] [1;2;3;4];;
Exception: Match failure ("//toplevel//", 26, 2).

Exceptions are one thing we might wish to rule out...



Borrowing from our previous idea...

Use types as the specification



What'’s the specification...”



add vector : vector -> vector -> vector

These need to be the same length

forall n:nat,
a: vector(n) ->
b: vector(n) ->
c: vector(n)

For any number n, given vectors a b, of size n, I'll
give you c



Let’'s define...

type (n : nat) vector =

Vectors of length n



A vector is a type family

vector : Nat — 1'ype

Indexed by nat

“Give me a natural, and I’ll
give you back a type”

Similar to list...



Similar to... cons(1,nul) : list(nat)

3 : nat

succ : nat — nat

All of the terms In our
language have a type.

1V2]% Vedtor

1,2| : Vector2




Vector is a type producer
operator

vector :: Nat — x

This Is an alternative notation that iIs sometimes used...



1,2|: Vector2

We call vector n a “dependent type”

Because the type depends on n
1,2|: Vector (1 +1)
Depends on computation 1+1

This computation must terminate...



Designing a vector AP



What can go wrong?

Make it so “bad” programs can’t typecheck...
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BLUISH CODER

PROGRAMMING LANGUAGES, MARTIALS ARTS AND COMPUTERS. THE WEBLOG OF CHRIS DOUBLE.

P Preventing heartbleed bugs with safe programming languages

The Heartbleed bug in OpenSSL has resulted in a fair amount of damage across the internet. The bug itself was guite simple and is a
textbook case for why programming in unsafe languages like C can be problematic.

As an experiment to see if a safer systems programming language could have prevented the bug | tried rewriting the problematic
function in the ATS programming language. I've written about ATS as a safer C before. This gives a real world testcase for it. | used
the latest version of ATS, called ATS2.

ATS compiles to C code. The function interfaces it generates can exactly match existing C functions and be callable from C. | used
this feature to replacethe dt1s1_process_heartbeat and t1sl process_heartbeat functions in OpnSSL with ATS versions.
These two functions are the ones that were patched to correct the heartbleed bug.

The approach | took was to follow something similar to that outlined by John Skaller on the ATS mailing list:

ATS on the other hand is basically C with a better type system.

You can write very low level C like code without a lot of the scary
dependent typing stuff and then you will have code like C, that
will crash if you make mistakes.

If you use the high level typing stuff coding is a lot more work

and requires more thinking, but you get much stronger assurances

of program correctness, stronger than you can get in Ocaml

or even Haskell, and you can even hope for *better* performance

than C by elision of run time checks otherwise considered mandatory,
due to proof of correctness from the type system. Expect over

50% of your code to be such proofs in critical software and probably
90% of your brain power to go into constructing them rather than
just implementing the algorithm. It's a paradigm shift.
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Things you might want to do with vectors...

Create an empty vector

Add an element to the end

Take a vector 1o a list
Add two vectors

(Get first element of vector



Use types as your guide

When you think about something you'd like to say about your
program, you can bake it into your type system




L et’s define two constructors for vectors
+ Empty vector

- Cons

data list

[ ]

cons of nat -> list

(* Equivalently .. *)
nil : list
cons : nat -> list -> list

Sa
a

me as lists, but |

round their lengt

ists don’t carry

N In thelr type



‘| assert that there Is an object named
zero, and Iits type Is Vector 0~

zero . Vector O

Cft.

nil : l1st



“Give me a vector of length n, and a
number to add to the end of it, and
’'ll give you a vector of length S(n)”

—

cons : IIn.Vector(n) - N — Vector(S(n))

Cf.

cons : l1st™— nat — [1st



Now for a few functions over vectors...



“Give me a number n, and I'll give
you an empty vector of size n”

zero : IIn.Vector(n)

Terms always need kind *, so
we have to apply them until we
get there! In this case n.

Read rmas v

Not quite right for logical reasons..



This actually exists, by the way...

Inductive natvec : nat -> Type :=
UnitVec : natvec O
ConsVec : forall n,

natvec n -> nat -> natvec (S(n)).

Let a := ConsVec 1 (ConsVec 0 UnitVec 2) 3.

Fixpoint zero vec n : natvec n
match n with

0 => UnitVec

S(n) => ConsVec n (zero vec n) 0

end.



“For any n, If you give me a vector of
size S(n), I'll give you back a natural.”

first : IIn : N. Vector(S(n)) —» N

S(N) because this gu

they ca
vecto

arantees

N't give Us a

N empty

, that's the magic!

This isn’t the strongest
spec possible



add : IIn : N. Vector(n) — Vector(n) — Vector(n)

What happens if | try to add
vectors of different lengths®



zero : [In.Vector(n)

to_list : IIn.Vector(n) — list(N)

cons : IlIn.Vector(n) - N — Vector(n + 1)

first : IIn.Vector(n +1) — N

add : 1In.Vector(n) — Vector(n) — Vector(n)



Types are Theorems

Programs are Proofs

—Curry Howard Isomorphism



Propositions

Types are TMS

Programs are Proofs

—Curry Howard Isomorphism

Not all propositions have proofs
Not all types have programs



Every type Is saying something...



23 : 1nt

Proof that 23 Is an integer

(Which is admittedly pretty boring...)



v ¢ Vector 1

Proof that v has length 1

In other words, | don’t have to be afraid that my
program is going to crash if I run first v



Prettvy cute
® Y




Let’'s define something else...



< N — N — %



How we define <=

Inductive <= (n:nat) : nat
le n : n <=n
le S : forall m:nat,

n <=m-->n<= S m

->

Prop



“Give me a number n, and I'll give
you a proof it's <= itself”

len:1lIn.n <n



"For any n and m, if you can give me a proof that n
<=m, then I'll give you a proof that n <= S(m)”

leS:IIn,m.n<m —n < S(m)

| produce proofs



How do | prove that O <= 17



What if | took a logic class IRL (I have)

- “Well, zero is less than or equal to itself (le_n 0)
- Let’s call that proof pf

- for any n less than or equal to itself, we have this rule that
says S(n) is less than or equal to that thing (le_S)

- S0 now O is less than or equal to S(0) = 1 too (le_S 0 1 pf)

- So now we know 0 <= 1"

+ Can repeat for any finite n >= 0.



Curry Howard [somorphism

- Not that complicated: read types as theorems
- In math we have modus ponens

(A=— B) — A — B

- In programming we have this function
(A -=> B) -=> A -> B

- \Which we usually just call “apply” : )



What’s a program that has this type?



(A—-B—-(C)—-(A—-B)—-A—->C



Seriously, modus ponens is really just apply

A\ / app can build the entire universe



Two steps

- Prove 0 <=0

- Then use that proof to prove 0 <=1

|
-
|

Definition zero leq one : 0 <
le S 0 0 (1le n 0).

Computer is going to check proof for us



What about O <=2

Definition zero leq two
le S 0 1
(le S 0 0 (1len 0)).




Automating it...



How do | prove that n <=k

- Start with n,
- keep adding le S

- alot... (10 <= 1000) — Going to need hundreds of
apps of le_S

- keep going

+give up eventually



The computer can do magic

Prove a theorem: guess proofs and see if they work
- Slightly more complicated in reality (search strategy?)

+ Some decision procedures (e.g., omega test)

Theorem zero leq two' : 0 <= 2.
Proof.

auto.
Qed o \

Just guess for proofs



(A—-B—-(C)—»(A—-B)—-A—->C

Theorem a b c :
forall A B C,
(A ->B ->C) -> (A -=> B) -> A -> C.
Proof.

auto. ere’s the proof!

Qed. /

a bc=fun (ABC : Type)(X : A -=> B -> C)
(X0 ¢+ A => B) (X1 : A) =>
X X1 (X0 X1)

: forall A B C : Type,
(A -=>B ->C) -> (A -=>B) -=> A ->C



Require Import Ascii String List EgNat NArith.

Open Scope N_scope.

(*********************************************************************************)

(* *)

(* A Coq version of the 2048 game *)
(* tested with 8.4pl2 *)
(* Laurent.Thery@inria.fr *)

(* *)

(*********************************************************************************)

(* Possible moves *)
Inductive move := Rm (* right *) | Lm (* left *) | Um (* up *) | Dm (* down *).

(* Remove all the elements a of 1 such that p a holds ¥*)
Fixpoint strip {A : Type} (p : A -> bool) 1 :=
match 1 with

| nil => 1
| a :: 11 => if p a then strip p 11 else a :: strip p 11
end.

(* Cumulative action on a line *)
Fixpoint cumul (n : nat) (1 : list N) {struct n} : list N :=
match n with ] ] ]
| 0%nat => nil | 1%nat => hd 0 1 :: nil
| Oenat = nil | 1 Define winning boards as proofs
let a := hd 0 1 in
Tet 11 = 1 1 in of moves to get to 2048
let b := hd 0 11 in
if a =? b then (a + b) :: cumul nl (tl 11)
else a :: cumul nl 11
end.

(* Cumulative action + strip on lines *)
Definition icumul n := map (fun x => cumul n (strip (N.egb 0) x)).

(* Count the number of occurrences of p on a line *)

Definition count (p : N -> bool) := Automatic proof corresponds to automatic
fold right (fun n => if p n then N.succ else id) 0. SearCh Strategy fOr Winning 2048 game.“

(* Count the number of occurrences of p on lines *)
Definition icount p := fold right (fun 1 => N.add (count p 1)) O%N.



Scale up to real projects: CompCert

- Write logical specs for functions
E.g., write a spec for a compiler
- Write specs for each pass
Prove translation of C to IR preserves semantics
- Chain together a bunch of small steps

Prove a compiler correct



Theorem transf c program is refinement:

forall p tp,
transf c program p = OK tp ->

(forall beh, exec C program p beh -> not wrong beh) ->

(forall beh, exec asm program tp beh -> exec C program p beh).

-+ 50kloc Coqg source
8Kkoc source — others are proofs

No errors
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Where can | learn about this stuff!?

Certified Programming with

Dependent Types

A Pragmatic Introduction to the Coq Proof Assistant

Suitable for beginners "Real” proot engineering

http://www.cis.upenn.edu/~bcpierce/sf/
http://adam.chlipala.net/cpdt/



Auxiliary slides...



Just a quick run-through of LF...



Syntax
t = terms:
X variable
AX:T.t abstraction
tt application
T = types:
X type/family variable
I[Ix:T.T dependent product type
Tt type family application
K = kinds:
% kind of proper types
I[Ix:T.K kind of type families
I' = contexts:
%, empty context
I, x:T term variable binding
I X::K type variable binding
Well-formed kinds 'K
[+ % (WF-STAR)
=TI % ILx:THK
(WF-P1)
I' -1Ix:T.K

Kinding '-T:: K
X:m:KeTl 'K
(K-VAR)
'X:: K
I'-T7 12 % I, x:T{ =Ty 12 %
(K-P1)
I'IIxX:T71.To 22 %
'S :: IIx:T.K 't :T
(K-APP)
I'=St:[x~t]K
[~T:: K I - K=K’
, (K-CONV)
I'—T:: K
Typing 't :T
x:Terl I'—T :: %
(T-VAR)
I'x:T
'S 1 % [Lx:S+Ht:T
(T-ABS)
' Ax:S.t : IIx:S.T
'ty @ IIx:S.T 't : S
(T-ApPpP)
Ity to: [x— t]T
't :T FrT=T :: %
- (T-CONV)
I'—t:T

Figure 2-1: First-order dependent types (ALF)



ALF

(Mostly) Lamlbda

Syntax
t = terms:
X variable
AX:T.t abstraction
tt application
T = types:
X type/family variable
I[Ix:T.T dependent product type
Tt type family application
K = kinds:
* kind of proper types
IIx:T.K kind of type families
I' = contexts:
%, empty context
[,x:T term variable binding
I X::K type variable binding
Well-formed kinds 'K
[+ % (WF-STAR)
T % ILx:T+K
(WE-P1)
I' -1Ix:T.K

Kinding I'-T::K
X:m:KeTl 'K
(K-VAR)
'X:: K
I'-T7 12 % I, x:T{ =Ty 12 %
(K-P1)
I'IIxX:T71.To 22 %
'S :: IIx:T.K 't :T
(K-APP)
I'=St:[x~t]K
F-T::K I K=K’
(K-Conv)
'—T:: K
Typing F'=t:T
x:Terl I'—T :: %
(T-VAR)
'-x:T
'St % Ix:SHt:T
(T-ABS)
' Ax:S.t : IIx:S.T
'ty : IIx:S.T 't : S
(T-APP)
Ity to: [x— t]T
't :T FrT=T :: %
- (T-CONV)
I't:T

Figure 2-1: First-order dependent types (ALF)



Syntax
t = terms:
X variable
AX:T.t abstraction
tt application
T u= types:
X type/family variable
IIx:T.T dependent product type
Tt type family application
K = kinds:
% kind of proper types
I[Ix:T.K kind of type families
I' = contexts:
%, empty context
I,x:T term variable binding
I X::K type variable binding
Well-formed kinds 'K
[+ % (WF-STAR)
=TI % I, x:THK
(WE-P1)
I' -1Ix:T.K

Kinding '-T:: K
X:m:KeTl 'K
(K-VAR)
'X:: K
I'-Tp 12 % I, x:T{ =Ty 12 %
(K-P1)
I'IIxX:T7.To 22 %
'S :: IIx:T.K 't :T
(K-APP)
I'=St:[x~t]K
[-T:: K I - K=K’
; (K-CONV)
'T:: K
Typing F'=t:T
x:Terl I'=T :: %
(T-VAR)
I'-x:T
'St % Ix:SHt:T
(T-ABS)
' Ax:S.t : [Ix:S.T
'ty @ IIx:S.T 't : S
(T-Aprp)
Ity to:[x— t2]T
't :T FrT=T :: %
- (T-CONV)
't:T

Figure 2-1: First-order dependent types (ALF)



In pure LF types depend on terms,
out can’t depend on types
(we can’t have List (A) )



