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What are they?

1 : Nat [1] : List(Nat)

First order terms and types Types depend on types

(�x y z. if0x then y else z)
Terms depend on terms

(Animal a).speak()
Terms depend on types

[1]@[2] : V ector(1 + 1)
Types depend on terms



Lambda cube

Terms depend 
on types

Types depend 
on terms

Types depend 
on types

STLC

Coq

LF



What about when our programs go wrong?







Therac 25

Mars Climate Orbiter

“10 historical software bugs with extreme consequences” — 
Pingdom, March 19, 2009.

$60 Billion a year in bugs

Patriot missile launcher



How do we verify software?



What do we need?

• Program — we want to talk about 

• Specification — say when it’s correct 

• Verification — show program meets spec 

• Validation — show system meets end to end goals



Probably basis of modern PL

• This is why Robert Floyd and Tony Hoare are famous



Bunch of different techniques

• Program logic 

• Compositionally build programs with pre and post conditions 

• Model checking 

• Write what program should and shouldn’t do 

• Check formula over abstraction of the program  

• Program analysis 

• E.g., dataflow / control flow / abstract interpretation 

• “Is this pointer ever null?”



Going to study dependent types

• Type system give us compositional static checks 

• Key insight: stuff arbitrarily complex logic into types 

• Now we can verify a program by type checking it 

• Type checking may be undecidable 

• Verification: only one way to look at dependent types 

• Will discuss exactly what I mean



Preliminaries

• This is intricate 

• Complex systems can be deceptively small 

• I’ll be working a lot with the natural numbers. 

• 0 : nat!

• k : nat, S(k) : nat!

• S(k) is k + 1!

• Lots of follow up work if you’re interested



Use types as the specification 

Program has type if it satisfies the property



Types are going to have to be more complex…



�f.(�x.f(xx))(�x.f(xx))

Lambda calculus Reduction relation

2 * =
Right?



What is the lambda calculus

• A grammar for forming program terms 

• Tells what programs “look like” 

• A reduction relation 

• Tells us what programs “do” 

• Denotational semantics 

• What programs “mean” (wrt a mathematical domain)



What is the lambda calculus

• A grammar for forming program terms 

• Tells what programs “look like” 

• A reduction relation 

• Tells us what programs “do” 

• Denotational semantics 

• What programs “mean” (wrt a mathematical domain)

(�x. x x)(�x. x x)
Some programs do something that 

has no “meaning”

(By which, I mean an undesirable meaning…)



Type systems syntactically rule out “bad” programs



Typed Lambda Complain about type errors

2 * = Error: * 2 
applied to canine 
when expected Int

Which would result in runtime 
errors…



type vector = int list!
!

let rec add_vector a b =!
  match (a,b) with!
    | ([],[]) -> []!
    | ((h1::t1),(h2::t2)) ->!
         h1+h2 :: add_vector t1 t2



# add_vector [1;2;3] [1;2;3];;!
- : int list = [2; 4; 6]



# add_vector [1;2;3] [1;2;3;4];;!
Exception: Match_failure ("//toplevel//", 26, 2).

Exceptions are one thing we might wish to rule out…



Use types as the specification

Borrowing from our previous idea…



What’s the specification…?



add_vector : vector -> vector -> vector

These need to be the same length

 forall n:nat,!
 a: vector(n) ->!
 b: vector(n) ->!
 c: vector(n)

For any number n, given vectors a b, of size n, I’ll 
give you c



type (n : nat) vector =

Vectors of length n

Let’s define…



A vector is a type family

Indexed by nat

“Give me a natural, and I’ll 
give you back a type”

vector : Nat ! Type

Similar to list…



Similar to…

3 : nat
succ : nat ! nat

[1, 2] : V ector2

[1, 2] : V ectorWRONG
All of the terms in our 
language have a type.

cons(1, nil) : list(nat)



vector :: Nat ! ⇤

Vector is a type producer 
                        operator

This is an alternative notation that is sometimes used…



[1, 2] : V ector2

We call Vector n a “dependent type”
Because the type depends on n

[1, 2] : V ector (1 + 1)

Depends on computation 1+1

This computation must terminate…



Designing a vector API



What can go wrong?
Make it so “bad” programs can’t typecheck…







Create an empty vector

Add an element to the end

Add two vectors
Take a vector to a list

Get first element of vector

Things you might want to do with vectors…



Use types as your guide
When you think about something you’d like to say about your 

program, you can bake it into your type system



Let’s define two constructors for vectors 
• Empty vector 
• Cons

Same as lists, but lists don’t carry 
around their length in their type

data list =!
  | []!
  | cons of nat -> list!
!

(* Equivalently … *)!
nil : list!
cons : nat -> list -> list



zero : V ector 0

“I assert that there is an object named 
zero, and its type is Vector 0”

nil : list

cf.



cons : ⇧n.V ector(n) ! N ! V ector(S(n))

“Give me a vector of length n, and a 
number to add to the end of it, and 
I’ll give you a vector of length S(n)”

cons : list ! nat ! list

cf.



Now for a few functions over vectors…



zero : ⇧n.V ector(n)

“Give me a number n, and I’ll give 
you an empty vector of size n”

Read π as ∀

Terms always need kind *, so 
we have to apply them until we 

get there!  In this case n.

Not quite right for logical reasons..



Inductive natvec : nat -> Type := !
  | UnitVec : natvec O!
  | ConsVec : forall n, !
     natvec n -> nat -> natvec (S(n)).!
!
Let a := ConsVec 1 (ConsVec 0 UnitVec 2) 3.!
!
Fixpoint zero_vec n : natvec n :=!
  match n with!
    | 0    => UnitVec!
    | S(n) => ConsVec n (zero_vec n) 0!
  end.!

This actually exists, by the way…



first : ⇧n : N. V ector(S(n)) ! N

“For any n, if you give me a vector of 
size S(n), I’ll give you back a natural.”

This isn’t the strongest 
spec possible

S(n) because this guarantees 
they can’t give us an empty 

vector, that’s the magic!



add : ⇧n : N. V ector(n) ! V ector(n) ! V ector(n)

What happens if I try to add 
vectors of different lengths?



first : ⇧n.V ector(n+ 1) ! N

zero : ⇧n.V ector(n)

to list : ⇧n.V ector(n) ! list(N)

cons : ⇧n.V ector(n) ! N ! V ector(n+ 1)

add : ⇧n.V ector(n) ! V ector(n) ! V ector(n)



–Curry Howard Isomorphism

Types are Theorems 
Programs are Proofs



–Curry Howard Isomorphism

Types are Theorems 
Programs are Proofs

Propositions

Not all propositions have proofs
Not all types have programs



Every type is saying something…



23 : int
Proof that 23 is an integer

(Which is admittedly pretty boring…)



v : Vector 1

Proof that v has length 1

In other words, I don’t have to be afraid that my 
program is going to crash if I run first v



:Pretty cute



Let’s define something else…



:: N ! N ! ⇤



Inductive <= (n:nat) : nat -> Prop :=!
  | le_n : n <= n!
  | le_S : forall m:nat, !
       n <= m -> n <= S m!

How we define <=



le n : ⇧n.n  n

“Give me a number n, and I’ll give 
you a proof it’s <= itself”



le S : ⇧n,m. n  m ! n  S(m)

“For any n and m, if you can give me a proof that n 
<= m, then I’ll give you a proof that n <= S(m)”

I produce proofs



How do I prove that 0 <= 1?



What if I took a logic class IRL (I have)

• “Well, zero is less than or equal to itself (le_n 0) 

• Let’s call that proof pf 

• for any n less than or equal to itself, we have this rule that 
says S(n) is less than or equal to that thing (le_S) 

• So now 0 is less than or equal to S(0) = 1 too (le_S 0 1 pf) 

• So now we know 0 <= 1” 

• Can repeat for any finite n >= 0.



Curry Howard Isomorphism

• Not that complicated: read types as theorems 

• In math we have modus ponens 

!

• In programming we have this function 

• (A -> B) -> A -> B!

• Which we usually just call “apply” : )

(A =) B) =) A =) B



A ! A
What’s a program that has this type?



(A ! B ! C) ! (A ! B) ! A ! C



Seriously, modus ponens is really just apply

λ / app can build the entire universe



Two steps

• Prove 0 <= 0 

• Then use that proof to prove 0 <= 1

Definition zero_leq_one : 0 <= 1 :=!
  le_S 0 0 (le_n 0).

Computer is going to check proof for us



What about 0 <= 2

Definition zero_leq_two : 0 <= 2 := !
  le_S 0 1!
    (le_S 0 0 (le_n 0)).!
!



Automating it…



How do I prove that n <= k

• Start with n, 

• keep adding le_S 

• a lot… (10 <= 1000) — Going to need hundreds of 
apps of le_S 

• keep going 

• give up eventually



The computer can do magic

• Prove a theorem: guess proofs and see if they work 

• Slightly more complicated in reality (search strategy?) 

• Some decision procedures (e.g., omega test)

Theorem zero_leq_two' : 0 <= 2.!
  Proof.!
  auto.!
  Qed.!

Just guess for proofs



(A ! B ! C) ! (A ! B) ! A ! C
Theorem a_b_c : !
! forall A B C, !
      (A -> B -> C) -> (A -> B) -> A -> C.!
  Proof.!
   auto.!
  Qed.

a_b_c = fun (A B C : Type)(X : A -> B -> C) 
(X0 : A -> B) (X1 : A) =>!
!  X X1 (X0 X1)!
!
: forall A B C : Type, !
  (A -> B -> C) -> (A -> B) -> A -> C!

Here’s the proof!



Define winning boards as proofs 
of moves to get to 2048

Automatic proof corresponds to automatic 
search strategy for winning 2048 game…



Scale up to real projects: CompCert

• Write logical specs for functions 

• E.g., write a spec for a compiler 

• Write specs for each pass 

• Prove translation of C to IR preserves semantics 

• Chain together a bunch of small steps 

• Prove a compiler correct



Theorem transf_c_program_is_refinement:!
forall p tp,!
transf_c_program p = OK tp ->!
(forall beh, exec_C_program p beh -> not_wrong beh) ->!
(forall beh, exec_asm_program tp beh -> exec_C_program p beh).!

• 50kloc Coq source 
• 8koc source — others are proofs 
• No errors



Where can I learn about this stuff!?

http://www.cis.upenn.edu/~bcpierce/sf/
http://adam.chlipala.net/cpdt/

Suitable for beginners “Real” proof engineering



Auxiliary slides…



Just a quick run-through of LF…





(Mostly) Lambda





In pure LF types depend on terms, 
but can’t depend on types 
(we can’t have List(A) )


