Dependent Types

October 18th, 2014 Kristopher Micinski What are they?

1: Nat [1]: List(Nat)

First order terms and types Types depend on types

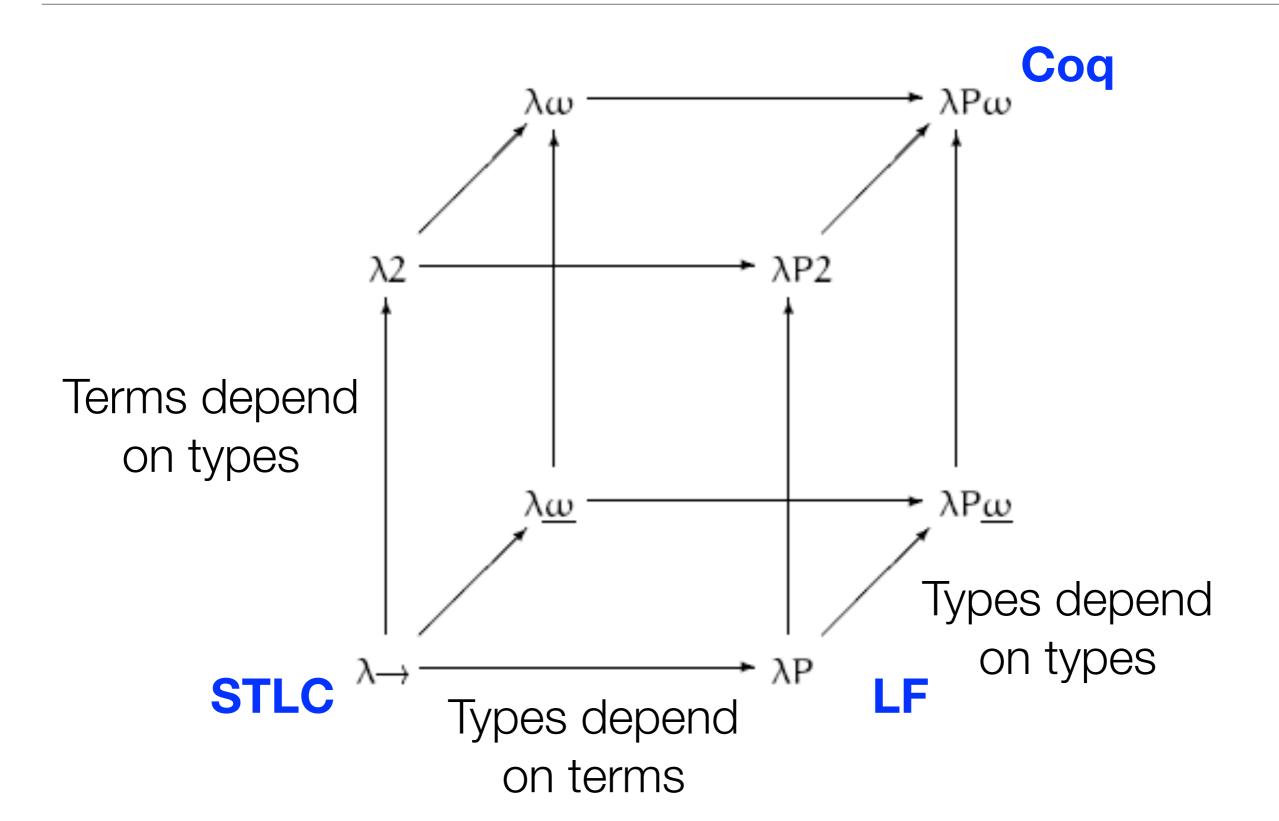
 $(\lambda x \ y \ z. \ if0 \ x \ then \ y \ else \ z)$ Terms depend on terms $(Animal \ a).speak()$

Terms depend on types

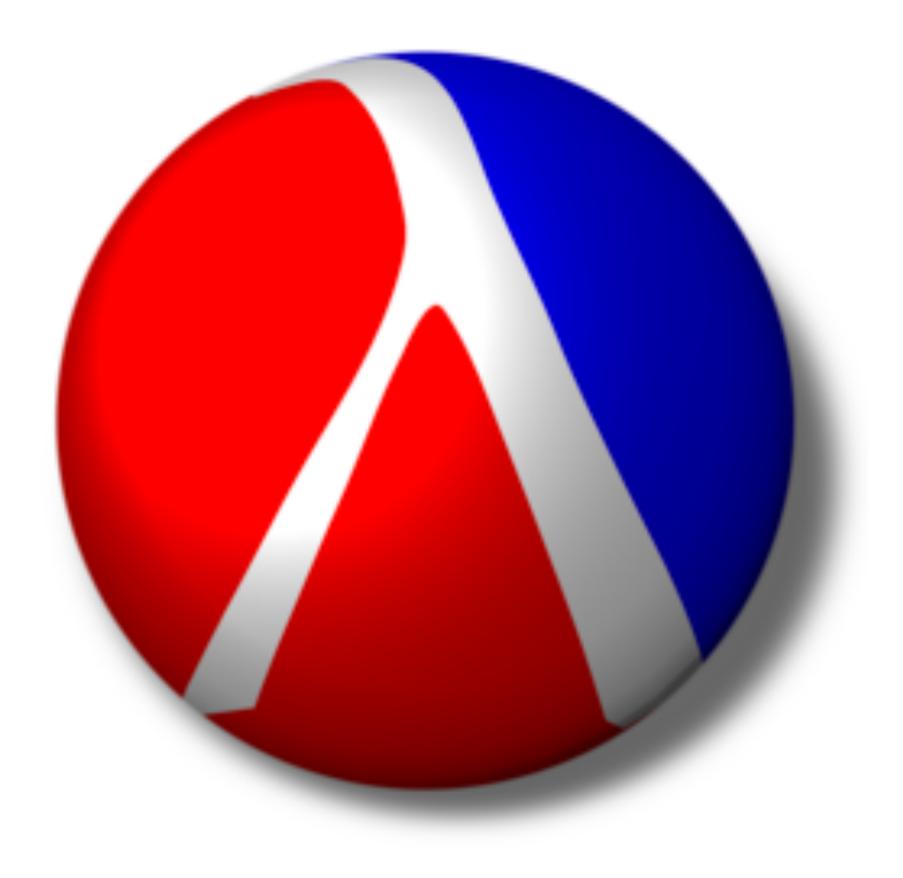
[1]@[2]: Vector(1+1)

Types depend on terms

Lambda cube



What about when our programs go wrong?



Therac 25

Patriot missile launcher

\$60 Billion a year in bugs



Mars Climate Orbiter

"10 historical software bugs with extreme consequences" — Pingdom, March 19, 2009.

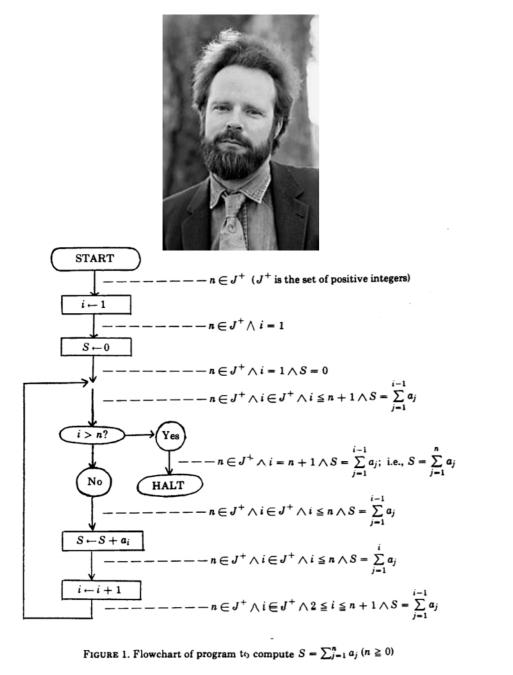
How do we verify software?

What do we need?

- **Program** we want to talk about
- **Specification** say when it's correct
- Verification show program meets spec
- Validation show system meets end to end goals

Probably basis of modern PL

This is why Robert Floyd and Tony Hoare are famous



```
\{ \mathbf{a} = m \land \mathbf{b} = n \land n > 0 \}
\{ a^{b} * 1 = m^{n} \land b > 0 \}
c := 1 ;
\{ \mathbf{a}^{\mathbf{b}} * \mathbf{c} = m^n \land \mathbf{b} \ge 0 \}
while b > 0
do
       \{ \mathbf{a}^{\mathbf{b}} * \mathbf{c} = m^n \land \mathbf{b} \ge 0 \land \mathbf{b} > 0 \}
       while 2 * (b \operatorname{div} 2) = b
        do
                 a^{b} * c = m^{n} \land b > 0 \land 2*(b \operatorname{div} 2) = b \}
                 a^{2*(b \text{ div } 2)} * c = m^n \land (b \text{ div } 2) > 0 \}
               \{ (a*a)^{b \text{ div } 2} * c = m^n \land (b \text{ div } 2) > 0 \}
               a := a * a ;
               \{ a^{b \ div \ 2} * c = m^n \land (b \ div \ 2) > 0 \}
               b := b div 2
               \{ \mathbf{a}^{\mathbf{b}} * \mathbf{c} = m^n \land \mathbf{b} > 0 \}
        \{a^{b} * c = m^{n} \land b > 0 \land 2*(b \operatorname{div} 2) \neq b \}
          \mathbf{a}^{\mathbf{b}} * \mathbf{c} = m^n \wedge \mathbf{b} > 0
        \{ a^{b-1} * a * c = m^n \land b-1 > 0 \}
        b := b - 1 :
          \mathbf{a}^{\mathbf{b}} * \mathbf{a} * \mathbf{c} = m^n \wedge \mathbf{b} \ge 0
        c := a * c
       \{ \mathbf{a}^{\mathbf{b}} * \mathbf{c} = m^n \land \mathbf{b} > 0 \}
   \mathbf{a}^{\mathbf{b}} \ast \mathbf{c} = m^n \land \mathbf{b} > 0 \land \mathbf{b} < 0 \}
   a^{0} * c = m^{n}
   c = m^n
```

Bunch of different techniques

- Program logic
 - Compositionally build programs with pre and post conditions
- Model checking
 - Write what program **should** and **shouldn't** do
 - Check formula over **abstraction** of the program
- Program analysis
 - E.g., dataflow / control flow / abstract interpretation
 - "Is this pointer ever null?"

Going to study dependent types

- Type system give us compositional static checks
- Key insight: stuff arbitrarily complex logic into types
- Now we can verify a program by type checking it
 - Type checking may be undecidable
- Verification: only one way to look at dependent types
 - Will discuss exactly what I mean

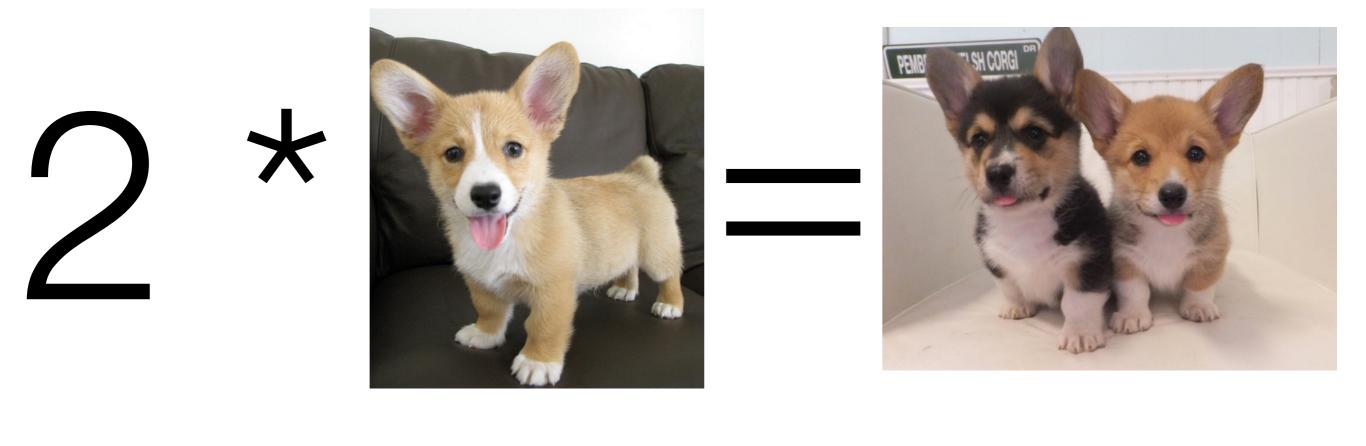
Preliminaries

- This is intricate
 - Complex systems can be deceptively small
- I'll be working a lot with the natural numbers.
 - 0 : nat
 - k : nat, S(k) : nat
 - S(k) is k + 1
- Lots of follow up work if you're interested

Use **types** as the specification Program has type if it **satisfies** the property Types are going to have to be more complex...

 $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ Lambda calculus

Reduction relation



Right?

What is the lambda calculus

- A grammar for forming program terms
 - Tells what programs "look like"
- A reduction relation
 - Tells us what programs "do"
- Denotational semantics
 - What programs "mean" (wrt a mathematical domain)

What is the lambda calculus

- A grammar for forming program terms
 - Tells what programs "look like" $(\lambda x. x \ x)(\lambda x. x \ x)$
- A reduction relation
 Some programs *do* something that has no "meaning"
 - Tells us what programs "do"
- Denotational semantics

(By which, I mean an undesirable meaning...)

• What programs "mean" (wrt a mathematical domain)

Type systems syntactically rule out "bad" programs

\rightarrow (typed)	Based on λ (5-3)
Syntaxt ::=terms:xvariable $\lambda x : T . t$ abstractiont tapplicationv ::=values: $\lambda x : T . t$ abstraction value	Evaluation $t \rightarrow t'$ $\frac{t_1 \rightarrow t'_1}{t_1 t_2 \rightarrow t'_1 t_2}$ (E-APP1) $\frac{t_2 \rightarrow t'_2}{v_1 t_2 \rightarrow v_1 t'_2}$ (E-APP2) $(\lambda x : T_{11} . t_{12}) v_2 \rightarrow [x \mapsto v_2] t_{12}$ (E-APPABS)
T ::= $to contexts:$ T ::= \bigcirc T ::= \bigcirc C ::= \bigcirc \oslash contexts: \heartsuit contexts: $(T, x:T)$ T term variable binding	Typing $\Gamma \vdash t : T$ $\underline{x}:T \in \Gamma$ $(T-VAR)$ $\Gamma, x:T_1 \vdash t_2 : T_2$ $(T-ABS)$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$
	$\frac{\Gamma \vdash \mathbf{t}_1 \cdot \mathbf{T}_{12} = \Gamma \vdash \mathbf{t}_2 \cdot \mathbf{T}_{11}}{\Gamma \vdash \mathbf{t}_1 \cdot \mathbf{t}_2 \cdot \mathbf{T}_{12}} $ (T-APP)

Figure 9-1: Pure simply typed lambda-calculus (λ_{\rightarrow})

Typed Lambda

Complain about type errors

Which would result in runtime errors...

2*

Error: * 2 applied to canine when expected Int

type vector = int list

add_vector [1;2;3] [1;2;3];;
 - : int list = [2; 4; 6]

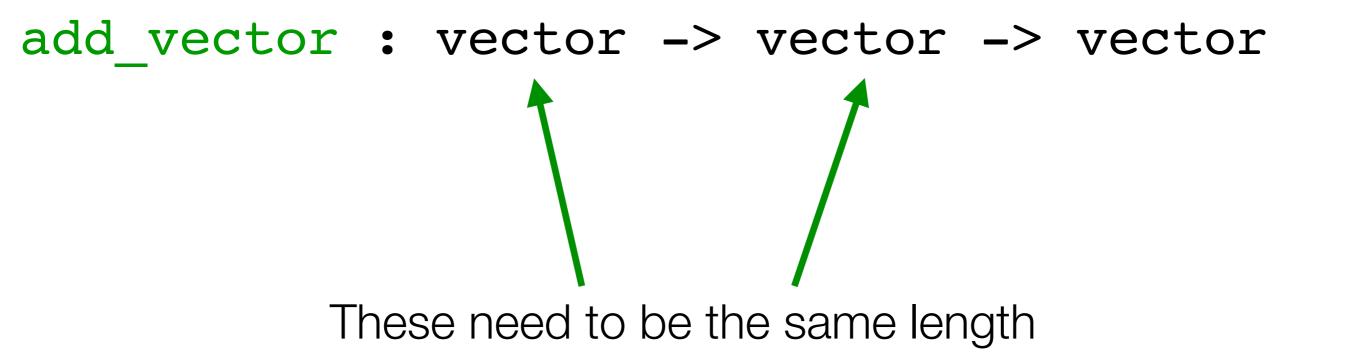
add_vector [1;2;3] [1;2;3;4];; Exception: Match_failure ("//toplevel//", 26, 2).

Exceptions are one thing we might wish to rule out...

Borrowing from our previous idea...

Use types as the specification

What's the specification...?



forall n:nat,

- a: vector(n) ->
- b: vector(n) \rightarrow
- c: vector(n)

For any number n, given vectors a b, of size n, I'll give you c

Let's define...

type (n : nat) vector = Vectors of length n

A vector is a type family

$vector: Nat \to Type$

Indexed by nat

"Give me a natural, and I'll give you back a type"

Similar to list...

Similar to... cons(1, nil) : list(nat)

3: *nat*

$succ: nat \rightarrow nat$

All of the **terms** in our language have a **type**.

[1, 2]: Vector 2

Vector is a type **producer operator**

$vector:: Nat \to *$

This is an alternative notation that is sometimes used...

|1, 2| : Vector 2

We call **Vector** n a "dependent type" Because the type *depends* on n [1,2]: Vector (1+1)Depends on computation 1+1

This computation must terminate...

Designing a vector API

What can go wrong?

Make it so "bad" programs can't typecheck...

RISK ASSESSMENT / SECURITY & HACKTIVISM

How Heartbleed transformed HTTPS security into the stuff of absurdist theater

Certificate revocation checking in browsers is "useless," crypto guru warns.

by Dan Goodin - Apr 21 2014, 6:44pm EDT

ars

Ars subscribers get lots of benefits, one of which is they never see ads.

Learn more.

LATEST FEATURE STORY

FEATURE STORY (3 PAGES)

BLUISH CODER

PROGRAMMING LANGUAGES, MARTIALS ARTS AND COMPUTERS. THE WEBLOG OF CHRIS DOUBLE.

2014-04-11	Preventing heartbleed bugs with safe programming languages	Tags	
		acme	1
	The <u>Heartbleed bug</u> in OpenSSL has resulted in a fair amount of damage across the internet. The bug itself was <u>quite simple</u> and is a textbook case for why programming in unsafe languages like C can be problematic.	ajax	7
		alice	1
		ats	25
	As an experiment to see if a safer systems programming language could have prevented the bug I tried rewriting the problematic	audio	2
	function in the ATS programming language. I've written about ATS as a safer C before. This gives a real world testcase for it. I used	<u>b2g</u>	4
	the latest version of ATS, called ATS2.	backbase	1
	the latest version of ATS, caned ATS2.	bitcoin	3
	ATS compiles to C code. The function interfaces it concretes can exactly match existing C functions and be called from C. Lucad	bji	1
	ATS compiles to C code. The function interfaces it generates can exactly match existing C functions and be callable from C. I used	blackdog	3
	this feature to replace the dtls1_process_heartbeat and tls1_process_heartbeat functions in OpnSSL with ATS versions.	commonlisp	10
	These two functions are the ones that were patched to correct the heartbleed bug.	concurrency	4
	The approach I took was to follow something similar to that outlined by John Skaller on the ATS mailing list:	continuations	10
		cyclone	1
		<u>dojo</u>	1
	ATS on the other hand is basically C with a better type system.	<u>eee</u>	1
	You can write very low level C like code without a lot of the scary	erlang	19
	dependent typing stuff and then you will have code like C, that	facebook	2
	will crash if you make mistakes.	factor	60
		firefox	6
	If you use the high level typing stuff coding is a lot more work	<u>flash</u>	1
	and requires more thinking, but you get much stronger assurances of program correctness, stronger than you can get in Ocaml	<u>forth</u>	2
	or even Haskell, and you can even hope for *better* performance	<u>fxos</u>	1
	than C by elision of run time checks otherwise considered mandatory,	<u>git</u>	6
	due to proof of correctness from the type system. Expect over	gstreamer	5
	50% of your code to be such proofs in critical software and probably	<u>happs</u>	2
	90% of your brain power to go into constructing them rather than	haskell	14
	just implementing the algorithm. It's a paradigm shift.	hyperscope	1
		<u>inferno</u>	6
		ie	0

Things you might want to do with vectors...

Create an empty vector

Add an element to the end

Take a vector to a listAdd two vectors

Get first element of vector

Use types as your guide

When you think about something you'd like to say about your program, you *can* bake it into your type system

Let's define two constructors for vectors

- Empty vector
- Cons

```
data list =
    []
    cons of nat -> list
```

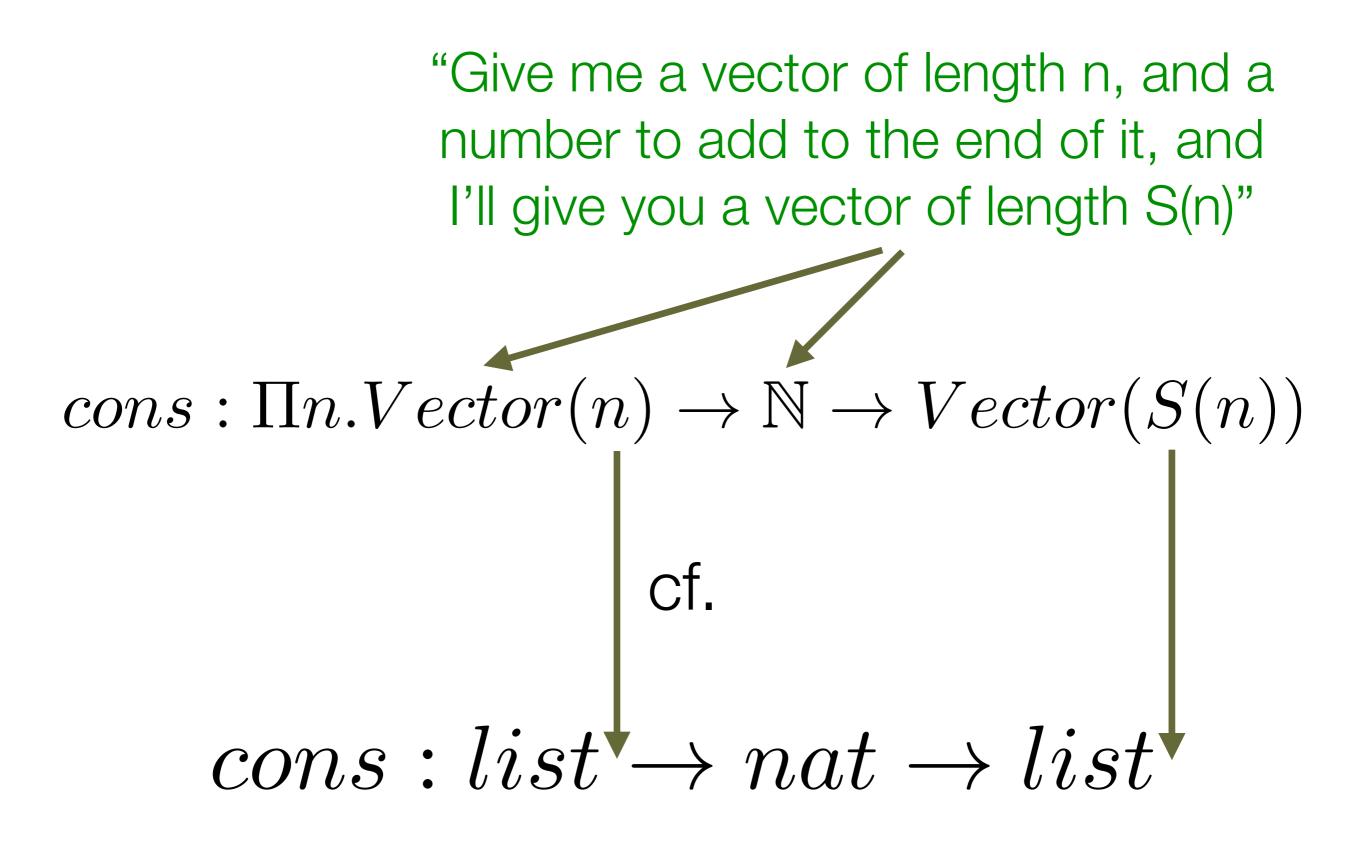
```
(* Equivalently ... *)
nil : list
cons : nat -> list -> list
```

Same as lists, but lists don't carry around their length in their type

"I assert that there is an object named **zero**, and its type is **Vector 0**"

zero : Vector 0 cf.

nil: list



Now for a few functions over vectors...

"Give me a number n, and I'll give you an empty vector of size n"

zero : $\Pi n.Vector(n)$

Terms always need kind *, so we have to **apply** them until we get there! In this case n.

Read π as ∀

Not quite right for logical reasons..

This actually exists, by the way...

Inductive natvec : nat -> Type :=
 | UnitVec : natvec 0
 | ConsVec : forall n,
 natvec n -> nat -> natvec (S(n)).

Let a := ConsVec 1 (ConsVec 0 UnitVec 2) 3.

"For any n, if you give me a vector of size S(n), I'll give you back a natural."

first : $\Pi n : \mathbb{N}. Vector(S(n)) \to \mathbb{N}$

S(n) because this guarantees they can't give us an empty vector, *that's the magic*!

This **isn't** the strongest spec possible

 $add: \Pi n: \mathbb{N}. Vector(n) \to Vector(n) \to Vector(n)$

What happens if I try to add vectors of different lengths?

$\operatorname{zero}: \Pi n.Vector(n)$

to_list :
$$\Pi n.Vector(n) \rightarrow list(\mathbb{N})$$

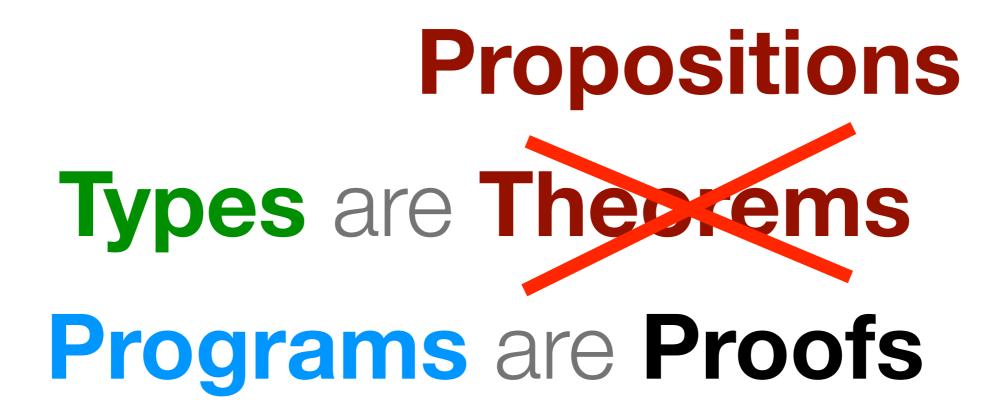
 $cons: \Pi n.Vector(n) \to \mathbb{N} \to Vector(n+1)$

first : $\Pi n.Vector(n+1) \to \mathbb{N}$

 $add: \Pi n.Vector(n) \rightarrow Vector(n) \rightarrow Vector(n)$

Types are TheoremsPrograms are Proofs

-Curry Howard Isomorphism



-Curry Howard Isomorphism

Not all propositions have proofs Not all types have programs

Every type is saying something...

23 : int

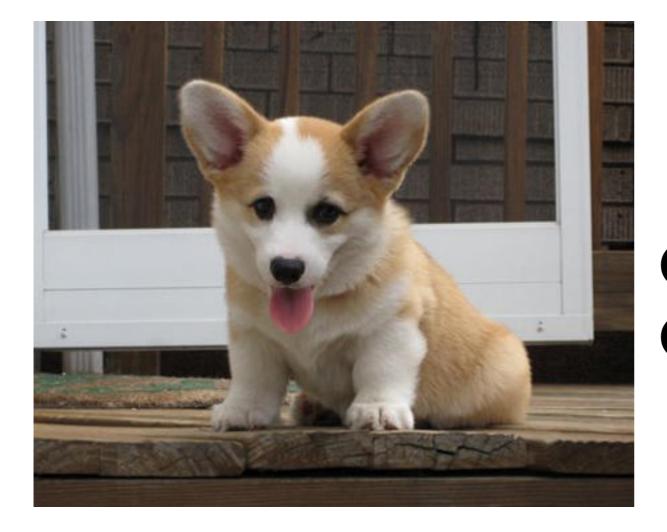
Proof that 23 is an integer

(Which is admittedly pretty boring...)

v: Vector 1

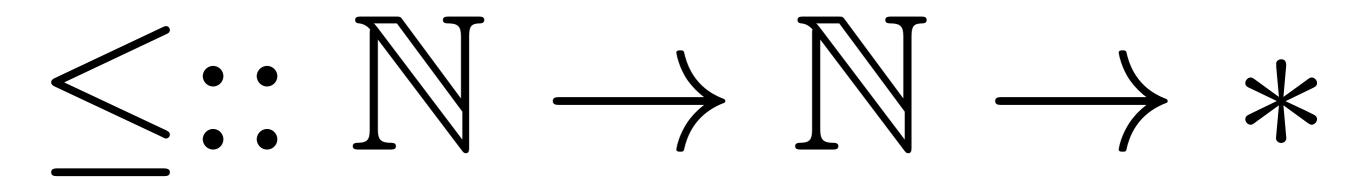
Proof that v has length 1

In other words, I don't have to be afraid that my program is going to crash if I run first v



Pretty cute

Let's define something else...



How we define <=

Inductive <= (n:nat) : nat -> Prop := | le_n : n <= n | le_S : forall m:nat, n <= m -> n <= S m</pre>

"Give me a number n, and I'll give you a proof it's <= itself"

le_n : $\Pi n \cdot n$

"For any n and m, if you can give me a proof that n <= m, then I'll give you a proof that n <= S(m)"

$le_S: \Pi n, m. n \le m \to n \le S(m)$

I produce proofs

How do I prove that $0 \le 1$?

What if I took a logic class IRL (I have)

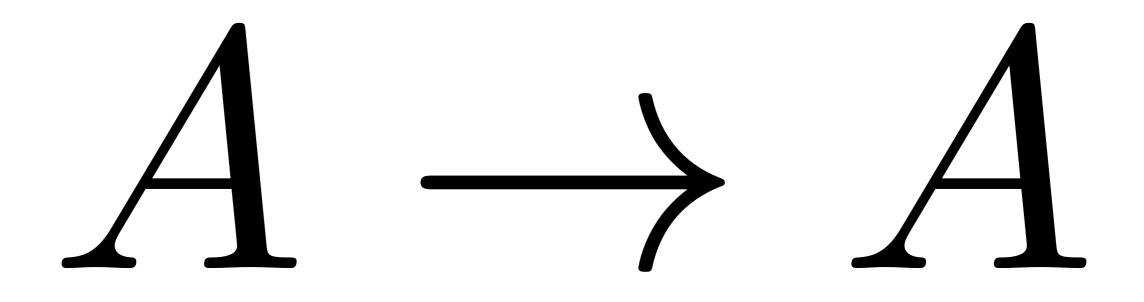
- "Well, zero is less than or equal to itself (le_n 0)
 - Let's call that proof pf
- for any n less than or equal to itself, we have this rule that says S(n) is less than or equal to that thing (**le_S**)
- So now 0 is less than or equal to S(0) = 1 too (**le_S 0 1 pf**)
- So now we know $0 \le 1$ "
 - Can repeat for any finite $n \ge 0$.

Curry Howard Isomorphism

- Not that complicated: read types as theorems
- In math we have modus ponens

$$(A \implies B) \implies A \implies B$$

- In programming we have this function
 - (A -> B) -> A -> B
- Which we usually just call "apply" :)



What's a program that has this type?

 $(A \to B \to C) \to (A \to B) \to A \to C$

Seriously, modus ponens is really just apply

λ / app can build the entire universe

Two steps

- Prove 0 <= 0
- Then use that proof to prove 0 <= 1

Definition zero_leq_one : 0 <= 1 := le_S 0 0 (le_n 0).</pre>

Computer is going to **check** proof for us

What about $0 \le 2$

Definition zero_leq_two : 0 <= 2 := le_S 0 1 (le_S 0 0 (le_n 0)).</pre>

Automating it...

How do I prove that n <= k

- Start with n,
- keep adding le_S
 - a lot... (10 <= 1000) Going to need hundreds of apps of le_S
 - keep going
 - give up eventually

The computer can do magic

- Prove a theorem: guess proofs and see if they work
 - Slightly more complicated in reality (search strategy?)
 - Some decision procedures (e.g., omega test)



$(A \to B \to C) \to (A \to B) \to A \to C$

Theorem a b c : forall A B C, $(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C$. Proof. Here's the proof! auto. Qed. a b c = fun (A B \overline{C} : Type)(X : A -> B -> C) (X0 : A -> B) (X1 : A) =>X X1 (X0 X1)

: forall A B C : Type, (A -> B -> C) -> (A -> B) -> A -> C Require Import Ascii String List EqNat NArith.

Open Scope N scope.

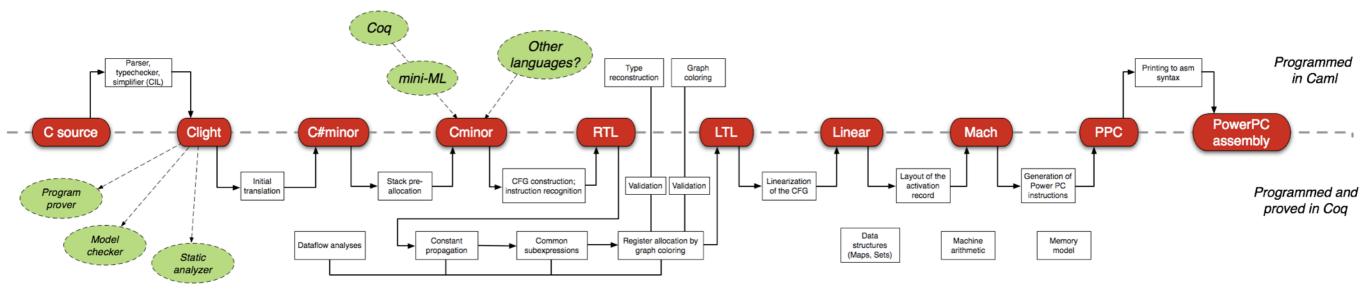
```
(*
                                                                     *)
(*
           A Coq version of the 2048 game
                                                                     *)
(*
               tested with 8.4pl2
                                                                     *)
                                        Laurent.Thery@inria.fr
(*
                                                                     *)
(*
                                                                     *)
(* Possible moves *)
Inductive move := Rm (* right *) | Lm (* left *) | Um (* up *) | Dm (* down *).
(* Remove all the elements a of 1 such that p a holds *)
Fixpoint strip {A : Type} (p : A -> bool) 1 :=
     match 1 with
      nil => 1
     a :: 11 => if p a then strip p 11 else a :: strip p 11
     end.
(* Cumulative action on a line *)
Fixpoint cumul (n : nat) (l : list N) {struct n} : list N :=
 match n with
                                            Define winning boards as proofs
   0%nat => nil | 1%nat => hd 0 l :: nil
   S (S as n1) =>
     let a := hd 0 l in
                                                  of moves to get to 2048
     let 11 := tl 1 in
     let b := hd 0 11 in
        if a = ? b then (a + b) :: cumul n1 (tl l1)
        else a :: cumul n1 l1
 end.
(* Cumulative action + strip on lines *)
Definition icumul n := map (fun x => cumul n (strip (N.eqb 0) x)).
(* Count the number of occurrences of p on a line *)
                                               Automatic proof corresponds to automatic
Definition count (p : N -> bool) :=
 fold right (fun n => if p n then N.succ else id) 0.
                                                search strategy for winning 2048 game...
(* Count the number of occurrences of p on lines *)
Definition icount p := fold_right (fun l => N.add (count p l)) 0%N.
```

Scale up to real projects: CompCert

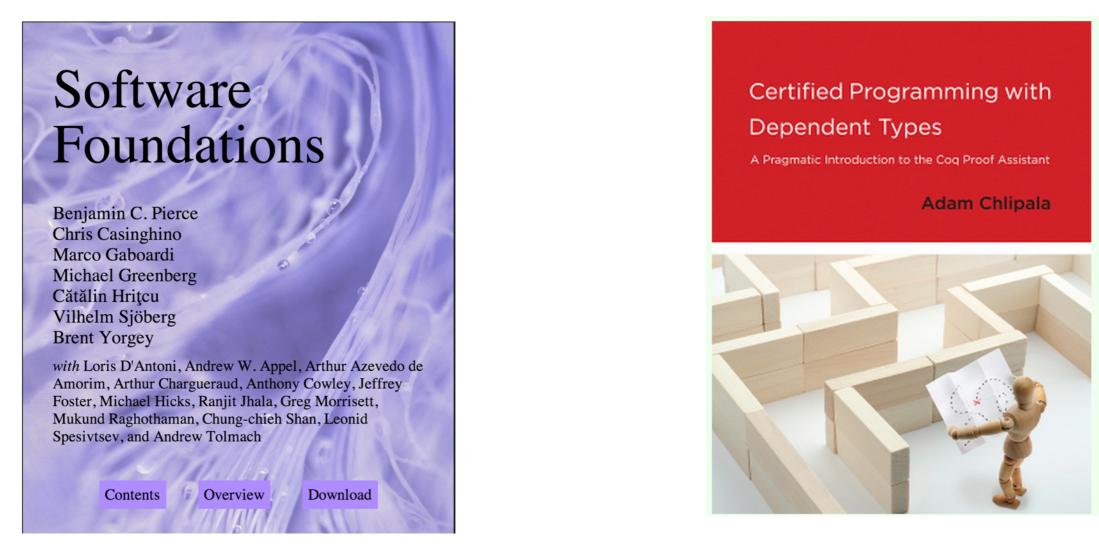
- Write logical specs for functions
- E.g., write a spec for a compiler
- Write specs for each pass
 - Prove translation of C to IR preserves semantics
- Chain together a bunch of small steps
 - Prove a compiler correct

```
Theorem transf_c_program_is_refinement:
forall p tp,
transf_c_program p = OK tp ->
(forall beh, exec_C_program p beh -> not_wrong beh) ->
(forall beh, exec_asm_program tp beh -> exec_C_program p beh).
```

- 50kloc Coq source
- 8koc source others are proofs
- No errors



Where can I learn about this stuff!?



Suitable for beginners

"Real" proof engineering

http://www.cis.upenn.edu/~bcpierce/sf/
 http://adam.chlipala.net/cpdt/

Auxiliary slides...

Just a quick run-through of LF...

λLF

Syntax			l •.	· · · · · · · · · · · · · · · · · · ·
-		torma	Kinding	$\Gamma \vdash T :: K$
t ::=	x λx:T.t	terms: variable abstraction	$\frac{X::K\in\Gamma\Gamma\vdashK}{\Gamma\vdashX::K}$	(K-VAR)
T ::=	tt	application types:	$\frac{\Gamma \vdash T_1 :: * \Gamma, x:T_1 \vdash T_2 :: *}{\Gamma \vdash \Pi x:T_1 . T_2 :: *}$	- (K-PI)
	X Πx:T.T Tt	type/family variable dependent product type type family application	$\frac{\Gamma \vdash S :: \Pi x : T.K \Gamma \vdash t : T}{\Gamma \vdash S t : [x \mapsto t]K}$	(K-App)
К ::=	*	kind of proper types	$\frac{\Gamma \vdash T :: K \qquad \Gamma \vdash K \equiv K'}{\Gamma \vdash T :: K'}$	(K-Conv)
	Πx:T.K	kind of type families	Typing	$\Gamma \vdash t : T$
Г ::=	Ø Г, х: Т	contexts: empty context term variable binding	$\frac{\mathbf{x}:T\in\Gamma\Gamma\vdashT::*}{\Gamma\vdashx:T}$	(T-VAR)
Well-for	Γ, X::K med kinds	type variable binding $\Gamma \vdash K$	$\frac{\Gamma \vdash S :: * \Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x : S . t : \Pi x : S . T}$	(T-Abs)
Г	Γ⊢᠈ ⊢ Τ:: *	Γ, х:Т ⊢ К	$\frac{\Gamma \vdash t_1 : \Pi x : S.T \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 t_2 : [x \mapsto t_2]T}$	(T-App)
	$\Gamma \vdash \Pi \mathbf{x}$:	T.K (WF-PI)	$\frac{\Gamma \vdash \texttt{t}: \texttt{T} \Gamma \vdash \texttt{T} \equiv \texttt{T}' :: *}{\Gamma \vdash \texttt{t}: \texttt{T}'}$	(T-Conv)

Figure 2-1: First-order dependent types (λ LF)

λLF	stly) Lambda		
Syntax	ity/Lambua	Kinding	Γ ⊢ T :: K
t ::= x λx:T.t	terms: variable abstraction	$\frac{X :: K \in \Gamma \Gamma \vdash K}{\Gamma \vdash X :: K}$	(K-VAR)
tt T ::=	application types:	$\frac{\Gamma \vdash T_1 :: * \Gamma, x : T_1 \vdash T_2 :: *}{\Gamma \vdash \Pi x : T_1 . T_2 :: *}$	(K-PI)
Х Пx:T.T Tt	type/family variable dependent product type type family application	$\frac{\Gamma \vdash S :: \Pi x : T.K \Gamma \vdash t : T}{\Gamma \vdash S t : [x \mapsto t]K}$	(K-App)
K ::= *	kind of proper types	$\frac{\Gamma \vdash T :: K \qquad \Gamma \vdash K \equiv K'}{\Gamma \vdash T :: K'}$	(K-Conv)
Π x: T.K	kind of type families	Typing	$\Gamma \vdash t:T$
Γ ::= Ø Γ, x : T	contexts: empty context term variable binding	$\frac{\mathbf{x}:T\in\Gamma\Gamma\vdashT::\ \ast}{\Gamma\vdashx:T}$	(T-VAR)
Γ, X::K Well-formed kinds	type variable binding	$\frac{\Gamma \vdash S :: * \Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x : S . t : \Pi x : S . T}$	(T-ABS)
$\Gamma \vdash$	- * (WF-STAR)	$\Gamma \vdash t_1 : \Pi x : S . T \qquad \Gamma \vdash t_2 : S$	(T-App)
$\frac{\Gamma \vdash T :: *}{\Gamma \vdash \Pi}$	(WF-PI)	$\Gamma \vdash \mathbf{t}_1 \ \mathbf{t}_2 : [\mathbf{x} \mapsto \mathbf{t}_2] T$ $\underline{\Gamma \vdash \mathbf{t} : T} \Gamma \vdash T \equiv T' :: *$ $\Gamma \vdash \mathbf{t} : T'$	(T-CONV)

Figure 2-1: First-order dependent types (λ LF)

ΛLI

Syntax		Kinding	Г⊢Т :: К
t ::= x λx:T.t	terms: variable abstraction	$\frac{X::K\in\Gamma\Gamma\vdashK}{\Gamma\vdashX::K}$	(K-VAR)
tt	application	$\frac{\Gamma \vdash T_1 :: * \Gamma, \mathbf{x} : T_1 \vdash T_2 :: *}{\Gamma \vdash \Pi \mathbf{x} : T_2 :: *}$	(K-PI)
T ::= X Πx:T.T Tt	types: type/family variable dependent product type type family application	$\Gamma \vdash \Pi \mathbf{x} : T_1 \cdot T_2 :: *$ $\frac{\Gamma \vdash S :: \Pi \mathbf{x} : T \cdot K \qquad \Gamma \vdash t : T}{\Gamma \vdash S t : [x \mapsto t]K}$	(K-App)
K ::= *	kind of proper types	$\frac{\Gamma \vdash T :: K \qquad \Gamma \vdash K \equiv K'}{\Gamma \vdash T :: K'}$	(K-Conv)
Пх:Т.К	kind of type families	Typing	$\Gamma \vdash t:T$
Г ::= Ø Г, х : Т	contexts: empty context term variable binding	$\frac{\mathbf{x}:T\in\Gamma\Gamma\vdashT::\ *}{\Gamma\vdashx:T}$	(T-VAR)
Γ, X::K Well-formed kinds	type variable binding $\Gamma \vdash K$	$\frac{\Gamma \vdash S :: * \Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x : S . t : \Pi x : S . T}$	(T-ABS)
$\Gamma \vdash *$ $\Gamma \vdash T :: * \Gamma,$	(WF-STAR) $x: T \vdash K$	$\frac{\Gamma \vdash \mathbf{t}_1 : \Pi \mathbf{x} : \mathbf{S} . \mathbf{T} \qquad \Gamma \vdash \mathbf{t}_2 : \mathbf{S}}{\Gamma \vdash \mathbf{t}_1 \mathbf{t}_2 : [\mathbf{x} \mapsto \mathbf{t}_2] \mathbf{T}}$	(T-App)
Γ⊢Π x: Τ	(WF-PI)	$\frac{\Gamma \vdash \mathbf{t} : T \qquad \Gamma \vdash T \equiv T' :: *}{\Gamma \vdash \mathbf{t} : T'}$	(T-Conv)

Figure 2-1: First-order dependent types (λ LF)

In pure LF types depend on terms, but can't depend on types (we can't have List(A))