
CIS352 Course
Wrapup
May 3, 2022

Projects
• Want to start by talking about project…

• Projects are the core part of the course

• Independent experience broadly related to the class

• Why do we do the projects?

• Main goal: require you to learn debugging

• The projects become conceptually nontrivial, and even the
most experienced programmers will make mistakes

• Understand how to make hypotheses about what may be
buggy is crucial—I would like to do a better job of teaching this
in subsequent (smaller) classes

2

Project Performance
• Overall quite good project performance

• About 85% of the class did P1

• Almost everyone got ~100%

• About 85% of the class did P2

• >75% of those got >85% (many >100)

• About 75% of the class did P3

• 2/3 of those got >80%, rest got ~40-80

• About 70% of the class did P4

• On average people did better than P3

3

Project Thoughts
• One was a warmup project with Racket / Autograder / …

• Reiterating lessons of recursion, symbols, lists

• Second is PageRank:

• Accumulating a hash—immutable maps are a key concept

• Three was a Scheme interpreter:

• Functionally implement set! via “threading” store through recursive
interpreter—this is an instance of the State monad (Haskell)

• Last, the Church encoder

• Teaches concepts of compiler design: consume syntax as input, transform
to new syntax to be executed as lambda calculus

4

Project Design Aspects
• Lots of the course was just learning Racket’s mix of features

• As a design feature of the course, this has upsides and downsides

• Projects get harder and more open-ended as they progress

• Different students report different projects hardest

• I think the right order is:

• P3 (hardest, coding-wise, lots of places to make mistakes)

• P4 (easier coding, conceptually harder, trickiest to debug)

• P1 (learning Racket is hard, can be tedious, fast-paced)

• P2 (surprisingly, many find this easy once they understand folds)

5

6

http://coursefeedback.syr.edu/

Some Course Concepts

7

Program with Expressions rather than Statements

• One significantly underrated aspect of functional programming

• Which of the following looks better?

8

(define (foo x)
 (if x #t #f))

(define (foo x) x)

Why are we so tempted to write code that looks like the first?

(Potential) answer: common idiom from statement-based languages
(Python/Java/…)—use sequence of if/else/switch to set a flag to return

Folds are specific kind of loop
• Folds are akin to a for loop that iterates over an ordered

sequence and accumulates a value

• Trivial extensions: iterate over a set (call set->list),
accumulate a hash / pair / set of values

9

10

(define (rec-reverse l)
 (define (h l acc)
 (match l
 ['() acc]
 [`(,hd . ,tl) (h tl (cons hd acc))]))
 (h l '()))

Every fold corresponds to a for loop and tail-recursive function

Every fold corresponds to a for loop and tail-recursive function

11

(define (fold-reverse l)
 (foldl (lambda (x acc) (cons x acc))
 '()
 l))

(define (rec-reverse l)
 (define (h l acc)
 (match l
 ['() acc]
 [`(,hd . ,tl) (h tl (cons hd acc))]))
 (h l '()))

12

(define (for-reverse l)
 (define acc '())
 (for ([i l])
 (set! acc (cons i acc)))
 x)

;; (for-reverse '(1 2 3))

(define (fold-reverse l)
 (foldl (lambda (x acc) (cons x acc))
 '()
 l))

(define (rec-reverse l)
 (define (h l acc)
 (match l
 ['() acc]
 [`(,hd . ,tl) (h tl (cons hd acc))]))
 (h l '()))

Every fold corresponds to a for loop and tail-recursive function

13

(define (for-reverse l)
 (define acc '())
 (for ([i l])
 (set! acc (cons i acc)))
 x)

;; (for-reverse '(1 2 3))

(define (fold-reverse l)
 (foldl (lambda (x acc) (cons x acc))
 '()
 l))

(define (rec-reverse l)
 (define (h l acc)
 (match l
 ['() acc]
 [`(,hd . ,tl) (h tl (cons hd acc))]))
 (h l '()))

Every fold corresponds to a for loop and tail-recursive function

Representing / Manipulating Syntax

• To define semantics / language features

• Interpreters—consume syntax and produce values

• Compilers—consume syntax and produce programs

• Subsequently run via lower-level machine, preserve semantics

14

15

(define (scoped-λ-term? t ρ)
 (match t
 [(? symbol? x) (set-member? ρ x)]
 [`(,t0 ,t1)
 (and (scoped-λ-term? t0 ρ) (scoped-λ-term? t1 ρ))]
 [`(lambda (,(? symbol? xs) ...) ,e)
 (scoped-λ-term? e (set-union ρ (list->set xs)))]))

(scoped-λ-term? '(lambda (x) (x x)) (set))
(scoped-λ-term? '((lambda (x) (lambda (y) (y x)))
 (lambda (z x y) (x y)))
 (set))
(scoped-λ-term? '((lambda (x) (lambda (y) (z x)))
 (lambda (z x y) (x y)))
 (set))

Metacircular Interpreters (P3)
• Write an interpreter for a target language in a source language reusing

features of source language

• Upside: expressive, succinct, straightforward to implement

• Downsides: (may be) slow if defining (meta) language is slow

16

Metacircular Interpreters (P3)
• Write an interpreter for a target language in a source language reusing

features of source language

• Upside: expressive, succinct, straightforward to implement

• Downsides: (may be) slow if defining (meta) language is slow

• Most dynamic languages (Pearl, Ruby, Python, …) have relatively-fast
interpreters that use high-performance native (C++/Rust/…) data structures
but follow these same principles

• Compilation has mostly focused on lower-level memory-unsafe languages
(C++) with the addition of compilation to bytecode (compile to IR; interpret
IR w/ very-efficient interpreter)

17

18

;; A language with two extra ops: getstk
;; and printstk.
;; Assume ρ is Variable -> Value
;; Value ::=
;; (closure ρ e)
;; (stack e ...)
;; e is source expressions
;; e ::= x
;; | (e e)
;; | (lambda (x) e)
;; | (getstk)
;; | (printstk e)
;; stk ::= list of expressions (stack e)

19

(define (eval-λ+stack e ρ stk)
 (match e
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(getstk) `(stack ,stk)]
 [`(printstk ,e+)
 (define stk-v (eval-λ+stack e+ ρ (cons e stk)))
 (displayln "Captured stack:")
 (for ([expr stk-v])
 (pretty-print expr))]
 [`(,e0 ,e1)
 (define v-e0 (eval-λ+stack e0 ρ stk))
 (match v-e0
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (eval-λ+stack e1 ρ stk))
 (eval-λ+stack e-body (hash-set ρ+ x v-a) (cons e stk))]
 [_ (error (format "can't apply ~a" v-e0))])]))

Debugging
We want you to form hypotheses for broken code

“When I have a piece of broken code, how can I interact with it to test a
hypothesis about what it is doing?”

Why is this hard? A: debugging difficulty / frustration is often related to the
amount of time between experiments

May have to modify code multiple times, hence multiple interactions

20

21

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (- (bad-eval e0 ρ))]))

22

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;; 5

23

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;; 5

Looks good; but crucially broken.

24

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))
;; hash-ref: no value found for key!

How could this happen?

This must fail!

But how!?

25

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

Now we look at the term and think:
when does this case happen?

Based on the fact hash-ref is in the
symbol case, it must be this
subexpression

26

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (displayln “(evaluating (- …))”)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

But why would this cause problems?

Now we ask: what is the right thing
that should happen?

We think: “it should be executing
the - branch.”

To test this hypothesis we edit the
code…

27

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (displayln “(evaluating (- …))”)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

Now we run the instrumented code
with the same testcase

But we never see our new code

But how could that happen?

28

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (displayln “(evaluating (- …))”)
 (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

Answer: our match statement is
broken! Function application
eagerly matches (- x)

Thus, - is looked up via the
symbol case.. and crashes

29

(define (bad-eval e ρ)
 (match e
 [(? number? n) n]
 [(? symbol? x) (hash-ref ρ x)]
 [`(lambda (,x) ,e-body)
 `(closure ,e ,ρ)]
 [`(+ ,e0 ,e1)
 (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
 [`(- ,e0)
 (- (bad-eval e0 ρ))]
 [`(,e0 ,e1)
 (match (bad-eval e0 ρ)
 [`(closure (lambda (,x) ,e-body) ,ρ+)
 (define v-a (bad-eval e1 ρ))
 (bad-eval e-body (hash-set ρ+ x v-a))])]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))
;; -1

Fix: move our expression match
case down, copy and pasting it

Compilers (P4)
• Traditionally, the C++-style compiler-engineering workforce was small

• As language technology evolves (Rust, WebAssembly, …), the language
design landscape has become more granular

• Developers harness application-specific algorithmic and hardware features

• Examples include GPGPU (General-Purpose GPU)

30

LLVM
• Compiler backend for C-like languages

• If you run a Mac, this is your native build toolchain

• Supersedes GCC in design methodology, robustness, & ease of extension

• Common compiler target that abstracts around register allocation, etc…

31

The future of Chips
• All languages ultimately execute in native instruction set of some chip

• From 90s-2020: x86 (Pentium/Core iX/… chips), x86-64 (AMD64)

• AMD chips currently offer leading core-density via manufacture at TSMC

• TSMC able to print chips at densest scale due to its use of ASML’s Extreme
UltraViolet (EUV) photolithography

32

M1 Ultra (Apple)
• Apple has designed world-class chips since their experience w/ iPhone

• Built on ARM, RISC assembly, much simpler than X86-64 (TSMC)

• Instruction decoding much cheaper

• Modern system-on-chips (M1 Ultra)
integrate CPU+GPU to achieve awesome
speeds

• Application-specific instructions + toolchain
integration (supports emulation)

33 http://hrtapps.com/blogs/20220427/

Languages Into the Future
• Fast, high-level abstractions

• Highly-dynamic langs (Perl) intrinsically slow, good in-between spots (Rust)

• Application-specific acceleration via GPUs/ISA/…

• Safety generally prevails once runtime overhead effectively mitigated

• Garbage-collected langs: once GC fast enough

• “Fancy types for memory” languages (Rust)—once community built / good
compiler error msgs for type / borrow issues, etc…

• “Desktop OS” idea will become less dominant

• Every app compiles its OS in, runs on a hypervisor situated on cloud/local server

• Common components (libraries, runtime, GC) shared

34

Exams and Participation
• Quizzes can be stressful, but designed to be checkpoints to

motivate you to study topics on a specific timeline

• Many students did corrections, almost all got 10/10

• Overall, most students averaging B to B- on exams

• Final will have 10 questions (like Q4)—up to 8 answers

• Monday, May 9, LSC 105 (normal room), 5:15 to 7:15 PM

• Roughly half of students will get bump to + for participation,
other half will see no change, very few will (possibly) get a -

35

Final Logistics
• Last call for projects is May 8, 2022 @ 11:59PM

• Consult grade calculator, may trade up to 15 points between
categories

• In practice, I may average (i.e., let you take as many points as
useful) the two categories

• I will be flexible on grading in practice, but when bumping students
up I will prefer those with higher project grades vs. exam grades

• I may overlook late projects if they are otherwise correct

• I expect many As, many Bs, some Cs, and (possibly) a few <C-

• Great job in the course!

36

