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Projects
• Want to start by talking about project… 

• Projects are the core part of the course 

• Independent experience broadly related to the class 

• Why do we do the projects? 

• Main goal: require you to learn debugging 

• The projects become conceptually nontrivial, and even the 
most experienced programmers will make mistakes 

• Understand how to make hypotheses about what may be 
buggy is crucial—I would like to do a better job of teaching this 
in subsequent (smaller) classes
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Project Performance
• Overall quite good project performance 

• About 85% of the class did P1 

• Almost everyone got ~100% 

• About 85% of the class did P2 

• >75% of those got >85% (many >100) 

• About 75% of the class did P3 

• 2/3 of those got >80%, rest got ~40-80 

• About 70% of the class did P4 

• On average people did better than P3
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Project Thoughts
• One was a warmup project with Racket / Autograder / … 

• Reiterating lessons of recursion, symbols, lists 

• Second is PageRank: 

• Accumulating a hash—immutable maps are a key concept 

• Three was a Scheme interpreter: 

• Functionally implement set! via “threading” store through recursive 
interpreter—this is an instance of the State monad (Haskell) 

• Last, the Church encoder 

• Teaches concepts of compiler design: consume syntax as input, transform 
to new syntax to be executed as lambda calculus

4



Project Design Aspects
• Lots of the course was just learning Racket’s mix of features 

• As a design feature of the course, this has upsides and downsides 

• Projects get harder and more open-ended as they progress 

• Different students report different projects hardest 

• I think the right order is: 

• P3 (hardest, coding-wise, lots of places to make mistakes) 

• P4 (easier coding, conceptually harder, trickiest to debug) 

• P1 (learning Racket is hard, can be tedious, fast-paced) 

• P2 (surprisingly, many find this easy once they understand folds)
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Some Course Concepts
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Program with Expressions rather than Statements

• One significantly underrated aspect of functional programming 

• Which of the following looks better?
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(define (foo x)
  (if x #t #f))

(define (foo x) x)

Why are we so tempted to write code that looks like the first? 

(Potential) answer: common idiom from statement-based languages 
(Python/Java/…)—use sequence of if/else/switch to set a flag to return



Folds are specific kind of loop
• Folds are akin to a for loop that iterates over an ordered 

sequence and accumulates a value 

• Trivial extensions: iterate over a set (call set->list), 
accumulate a hash / pair / set of values
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(define (rec-reverse l)
  (define (h l acc)
    (match l
      ['() acc]
      [`(,hd . ,tl) (h tl (cons hd acc))]))
  (h l '()))

Every fold corresponds to a for loop and tail-recursive function



Every fold corresponds to a for loop and tail-recursive function
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(define (fold-reverse l)
  (foldl (lambda (x acc) (cons x acc))
         '()
         l))

(define (rec-reverse l)
  (define (h l acc)
    (match l
      ['() acc]
      [`(,hd . ,tl) (h tl (cons hd acc))]))
  (h l '()))
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(define (for-reverse l)
  (define acc '())
  (for ([i l])
    (set! acc (cons i acc)))
  x)

;; (for-reverse '(1 2 3))

(define (fold-reverse l)
  (foldl (lambda (x acc) (cons x acc))
         '()
         l))

(define (rec-reverse l)
  (define (h l acc)
    (match l
      ['() acc]
      [`(,hd . ,tl) (h tl (cons hd acc))]))
  (h l '()))

Every fold corresponds to a for loop and tail-recursive function
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(define (for-reverse l)
  (define acc '())
  (for ([i l])
    (set! acc (cons i acc)))
  x)

;; (for-reverse '(1 2 3))

(define (fold-reverse l)
  (foldl (lambda (x acc) (cons x acc))
         '()
         l))

(define (rec-reverse l)
  (define (h l acc)
    (match l
      ['() acc]
      [`(,hd . ,tl) (h tl (cons hd acc))]))
  (h l '()))

Every fold corresponds to a for loop and tail-recursive function



Representing / Manipulating Syntax

• To define semantics / language features 

• Interpreters—consume syntax and produce values 

• Compilers—consume syntax and produce programs 

• Subsequently run via lower-level machine, preserve semantics

14



15

(define (scoped-λ-term? t ρ)
  (match t
    [(? symbol? x) (set-member? ρ x)]
    [`(,t0 ,t1)
     (and (scoped-λ-term? t0 ρ) (scoped-λ-term? t1 ρ))]
    [`(lambda (,(? symbol? xs) ...) ,e)
     (scoped-λ-term? e (set-union ρ (list->set xs)))]))

(scoped-λ-term? '(lambda (x) (x x)) (set))
(scoped-λ-term? '((lambda (x) (lambda (y) (y x)))
                  (lambda (z x y) (x y)))
                (set))
(scoped-λ-term? '((lambda (x) (lambda (y) (z x)))
                  (lambda (z x y) (x y)))
                (set))



Metacircular Interpreters (P3)
• Write an interpreter for a target language in a source language reusing 

features of source language 

• Upside: expressive, succinct, straightforward to implement 

• Downsides: (may be) slow if defining (meta) language is slow
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Metacircular Interpreters (P3)
• Write an interpreter for a target language in a source language reusing 

features of source language 

• Upside: expressive, succinct, straightforward to implement 

• Downsides: (may be) slow if defining (meta) language is slow 

• Most dynamic languages (Pearl, Ruby, Python, …) have relatively-fast 
interpreters that use high-performance native (C++/Rust/…) data structures 
but follow these same principles 

• Compilation has mostly focused on lower-level memory-unsafe languages 
(C++) with the addition of compilation to bytecode (compile to IR; interpret 
IR w/ very-efficient interpreter)
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;; A language with two extra ops: getstk
;; and printstk.
;; Assume ρ is Variable -> Value
;; Value ::=
;;    (closure ρ e)
;;    (stack e ...)
;; e is source expressions
;; e ::= x
;;     | (e e)
;;     | (lambda (x) e)
;;     | (getstk)
;;     | (printstk e)
;; stk ::= list of expressions (stack e)
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(define (eval-λ+stack e ρ stk)
  (match e
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(getstk) `(stack ,stk)]
    [`(printstk ,e+)
     (define stk-v (eval-λ+stack e+ ρ (cons e stk)))
     (displayln "Captured stack:")
     (for ([expr stk-v])
       (pretty-print expr))]
    [`(,e0 ,e1)
     (define v-e0 (eval-λ+stack e0 ρ stk))
     (match v-e0
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (eval-λ+stack e1 ρ stk))
        (eval-λ+stack e-body (hash-set ρ+ x v-a) (cons e stk))]
       [_ (error (format "can't apply ~a" v-e0))])]))



Debugging
We want you to form hypotheses for broken code 

“When I have a piece of broken code, how can I interact with it to test a 
hypothesis about what it is doing?” 

Why is this hard? A: debugging difficulty / frustration is often related to the 
amount of time between experiments 

May have to modify code multiple times, hence multiple interactions
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (- (bad-eval e0 ρ))]))
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;; 5
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ x 2)) (+ 1 2)) (hash))
;; 5

Looks good; but crucially broken.
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))
;; hash-ref: no value found for key!

How could this happen?

This must fail!

But how!?
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

Now we look at the term and think: 
when does this case happen?

Based on the fact hash-ref is in the 
symbol case, it must be this 
subexpression
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (displayln “(evaluating (- …))”)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

But why would this cause problems?

Now we ask: what is the right thing 
that should happen? 

We think: “it should be executing 
the - branch.” 

To test this hypothesis we edit the 
code…
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (displayln “(evaluating (- …))”)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

Now we run the instrumented code 
with the same testcase 

But we never see our new code 

But how could that happen?
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (displayln “(evaluating (- …))”)
     (- (bad-eval e0 ρ))]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))

Answer: our match statement is 
broken! Function application 
eagerly matches (- x) 

Thus, - is looked up via the 
symbol case.. and crashes
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(define (bad-eval e ρ)
  (match e
    [(? number? n) n]
    [(? symbol? x) (hash-ref ρ x)]
    [`(lambda (,x) ,e-body)
     `(closure ,e ,ρ)]
    [`(+ ,e0 ,e1)
     (+ (bad-eval e0 ρ) (bad-eval e1 ρ))]
    [`(- ,e0)
     (- (bad-eval e0 ρ))]
    [`(,e0 ,e1)
     (match (bad-eval e0 ρ)
       [`(closure (lambda (,x) ,e-body) ,ρ+)
        (define v-a (bad-eval e1 ρ))
        (bad-eval e-body (hash-set ρ+ x v-a))])]))

(bad-eval '((lambda (x) (+ (- x) 2)) (+ 1 2)) (hash))
;; -1

Fix: move our expression match 
case down, copy and pasting it



Compilers (P4)
• Traditionally, the C++-style compiler-engineering workforce was small 

• As language technology evolves (Rust, WebAssembly, …), the language 
design landscape has become more granular 

• Developers harness application-specific algorithmic and hardware features 

• Examples include GPGPU (General-Purpose GPU)
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LLVM
• Compiler backend for C-like languages 

• If you run a Mac, this is your native build toolchain 

• Supersedes GCC in design methodology, robustness, & ease of extension 

• Common compiler target that abstracts around register allocation, etc…
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The future of Chips
• All languages ultimately execute in native instruction set of some chip 

• From 90s-2020: x86 (Pentium/Core iX/… chips), x86-64 (AMD64) 

• AMD chips currently offer leading core-density via manufacture at TSMC 

• TSMC able to print chips at densest scale due to its use of ASML’s Extreme 
UltraViolet (EUV) photolithography
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M1 Ultra (Apple)
• Apple has designed world-class chips since their experience w/ iPhone 

• Built on ARM, RISC assembly, much simpler than X86-64 (TSMC) 

• Instruction decoding much cheaper 

• Modern system-on-chips (M1 Ultra)  
integrate CPU+GPU to achieve awesome 
speeds 

• Application-specific instructions + toolchain  
integration (supports emulation)
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Languages Into the Future
• Fast, high-level abstractions 

• Highly-dynamic langs (Perl) intrinsically slow, good in-between spots (Rust)  

• Application-specific acceleration via GPUs/ISA/… 

• Safety generally prevails once runtime overhead effectively mitigated 

• Garbage-collected langs: once GC fast enough 

• “Fancy types for memory” languages (Rust)—once community built / good 
compiler error msgs for type / borrow issues, etc… 

• “Desktop OS” idea will become less dominant 

• Every app compiles its OS in, runs on a hypervisor situated on cloud/local server 

• Common components (libraries, runtime, GC) shared
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Exams and Participation
• Quizzes can be stressful, but designed to be checkpoints to 

motivate you to study topics on a specific timeline 

• Many students did corrections, almost all got 10/10 

• Overall, most students averaging B to B- on exams 

• Final will have 10 questions (like Q4)—up to 8 answers 

• Monday, May 9, LSC 105 (normal room), 5:15 to 7:15 PM 

• Roughly half of students will get bump to + for participation, 
other half will see no change, very few will (possibly) get a -
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Final Logistics
• Last call for projects is May 8, 2022 @ 11:59PM 

• Consult grade calculator, may trade up to 15 points between 
categories 

• In practice, I may average (i.e., let you take as many points as 
useful) the two categories 

• I will be flexible on grading in practice, but when bumping students 
up I will prefer those with higher project grades vs. exam grades 

• I may overlook late projects if they are otherwise correct 

• I expect many As, many Bs, some Cs, and (possibly) a few <C- 

• Great job in the course!
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