
CIS352 —
Spring 2022
Kris Micinski (Asst. Prof)

Davis Silverman, Chang Liu (TAs)

https://kmicinski.com/cis352-s22

Course Website:

• Main Course Objective

• Logistics, Instructors, Course Delivery

• Syllabus

• Projects

• Exams

• Course FAQs

2

Course Objective

3

The main goal of this course is to teach you to write completely
correct code that you can clearly explain and easily understand

Course Objective

4

The main goal of this course is to teach you to write completely
correct code that you can clearly explain and easily understand

We do this through five coding projects

And assess written skills through exam questions

Logistics

5

This is a flipped-classroom. You watch about ~80min video per
week (1-2 per lecture). There is a participation quiz for each class

We expect you have watched the videos before lecture; lectures
will involve problem-solving guided by examples

We expect you to be checking Slack often

https://kmicinski.com/cis352-s22

Instructors

6

Asst. Prof Kristopher Micinski is lead instructor

Davis Silverman (PhD) and Chang Liu (MS) are TAs

We are currently coordinating times for office hours; they will be
posted on the syllabus in the first week

Syllabus

7

Most up-to-date syllabus always available at:

https://kmicinski.com/cis352-s22/syllabus

https://kmicinski.com/cis352-s22/syllabus

Grade-Calculator

8

We encourage you to use the grade calculator

Projects

9

This course has projects (with deadlines) that are assigned and
graded via an autograder

https://autograder.org

You are expected to use the Git interface to the autograder;
Autograder credentials will be sent out by the first week

https://autograder.org

10

We try to make projects sync up with the material presented at
the corresponding time in the course

We hope you will reach out to us on Slack / office hours

Obviously: start early. The students who struggle most are those
who put projects off them get cumulatively behind

Project Grading

11

 Each project is graded on a percent scale; your grade is the %
of tests that pass (18/20 tests passing = 90%)

 Projects always due at 11:59PM Syracuse time

 Projects up to 72 hours after deadline—15% penalty (max 85%)

 Projects up to end of course—25% penalty

 I.e., you can always get a 75%

Exams

12

 There are four quizzes and one final

 There are only 12 questions total

 Question 1, 2, … will always be the same topic

 Question 1 on each quiz will be about Racket forms/callsites

 You always get your max score of any question

 I.e., you can raise your grade (you will have 5 attempts at Q1)

 There are only as many questions as topics introduced so far

 I.e., fewer attempts at Q12

 All questions are graded out of 10

 Your final exam grade is average of all 12 questions

Participation

13

 There are lots of “participation points” available

 Last semester, highest-participating student got 43

 <20 participation points = “minus” to your grade (A to A-)

 [20,30) participation points = no change to grade

 >= 30 participation points = “plus” to your grade (A- to A)

 No A+ available—but I will track it for recommendations / refs

Course FAQs

14

Q: Why teach Racket and not C++ / Java / JS / Rust / …

A: We have chosen to teach a language that you can fully-
understand so you can explain precisely how your code works

We do see value in C++/… and we will specifically comment on
idioms in those languages when possible—but languages such
as C++ are so complex (spec is 1000s of pages) we would need
multiple classes to properly cover it

Course FAQs

15

Q: Why not start with type theory?

A: Our intro course, CIS252, covers Haskell—a strongly-typed
language built on algebraic datatypes. Here, we focus on
building interpreters that give ground truth behavior; we build
up to types—as a means to rule out dynamic errors—at the end

Course FAQs

16

Q: Why emphasize functional programming / disallow set!

A: Functional programming is simpler (i.e., more restrictive),
and thus easier to reason about. We will discuss how to
implement state later on in the course, but we start by forcing
students to program in a restricted purely-functional model
because there are fewer opportunities for mistakes

17

Thanks! I’m excited for an enriching semester and look forward
to helping you hack on projects

Racket Basics
CIS352 — Spring 2022

Kris Micinski

Racket

• Dynamically-Typed: variables are untyped, values typed

• Functional: Racket emphasizes functional style

• Compositional—emphasizes black-box components

• Immutability—requires automatic memory management

• Imperative: allows data to be modified, in carefully-
considered cases, but doesn’t emphasize “impure” code

19

Racket
• Object-oriented: racket has a powerful object system

• Language-oriented: Racket is really a language toolkit

• Homoiconic: the same structure used to represent data (lists)
is also used to represent code

20

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

21

Calculating the slope of a line in Racket

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

22

Prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

23

Functions defined via prefix notation, too

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

// C - calculate-slope(0,0,3,2);

(calculate-slope 0 0 3 2)

24

Calls to user-defined functions also in prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

 (/ (- y1 y0) (- x1 x0)))

(calculate-slope 0 0 3 2)

25

Note: preferred style puts closing parens at end of blocks

• Numeric tower. Numeric types gracefully degrade

• E.g., (* (/ 8 3) 2+1i) is 16/3+8/3i

• Note that 2+1i is a literal value, as is 2.3

• Strings and characters (“foo” and #\a)

• Booleans (#t and #f) including logical operator (e.g., or)

• Note that operators “short circuit”

Basic Types

26

Basic Types contd.
• Symbols are interned strings ‘foo

• Implicitly only one copy of each, unlike (say) strings

• Impact on space / memory usage

• The #<void> value (produced by (void))

27

Exercise

Compute the sum of the following:

• 2/3 and 1.5

• 3+8i and 3i

• 0 and positive infinity (+inf.0)

28

Exercise

Compute the sum of the following:

• (+ 2/3 1.5) 
2.1666666666666665 (N.B., result is inexact)

• (+ 3+8i 0+3i) 
3+11i

• (+ 0 +inf.0) 
+inf.0

29

Racket Forms
and Callsites
CIS352 — Spring 2022

Kris Micinski

Forms
• A form is a recognized syntax in the language

• (if …), (and …) are forms

• But +, list refer to functions

• Core forms defined by the language (if/and/define/…)

• You can define new forms too! More on this later…

• Scheme prefers to give a small number of general forms.

31

Forms
• The tag just after the open-paren determines the form:

• (define foo value) — Define a variable

• (define (foo a0 a1 …) body) — Define a function

• (if guard e-true e-false), (or e0 e1 …), etc

• By default, otherwise, (e0 e1 …) is a function call

32

Value and Expressions
• Every language has a set of values

• Primitive objects representable at runtime

• Expressions evaluate to values

• Numbers, strings, but also functions (closures)

• An expression is any syntax that evaluates to a value

• Very important term to know!

33

Exercise

Which of the following are expressions:

• (define x 23)

• x

• (+ x 3)

• (define (foo x) (+ x 1))

• (if x (foo x) (bar x))

34

Exercise

Which of the following are expressions:

• (define x 23) — Doesn’t evaluate to a value

• x

• (+ x 3)

• (define (foo x) (+ x 1)) — Doesn’t eval to value

• (if x (foo x) (bar x))

35

Exercise

36

Define a function that takes an argument, x, and
returns:

• x times 2, if x is greater than 0

• x times -2, otherwise 
 

Exercise

37

(define (f x)

 (if (< x 0)

 (* 2 x)

 (* -2 x)))

Exercise

38

Define a function that takes an argument, x, and
returns:

• x divided by 2, if x is even

• x times 3 plus 1, if x is odd 
 
Hint: use = and modulo to check if x is even/odd

Exercise

39

(define (collatz x)

 (if (= 0 (modulo x 2))

 (/ x 2)

 (+ 1 (* 3 x))))

Definitions and

the Environment

CIS352 — Spring 2021

Kris Micinski

40

Definitions
• The form define is used to define variables

• Define comes in two forms

• (define id expr) — Define variable id as expr

• (define (f a0 …) body …+)

• Define a function f with arguments a0, …

• At least one body (typically only one)

41

Exercise

42

• Define a variable named x to be 42

• Define a function foo, which behaves as the
identity function 
 

The Environment
• The environment at some point in the program includes the

set of variables in scope (accessible) at that point

• Every syntactic point has a (potentially) unique environment

43

(define x 23)

(+ x 1) ;; x is 23

(define y 24)

(+ x y) ;; x & y defined

Environments Nest
• Note that environments are hierarchical

• Definitions inside a function do not escape the function

• This relates to lexical scope which we will define soon

44

(define y 5)

(define (foo)

 (displayln y) ;; 5

 (define y 4)

 y) ;; 4

(foo) ;; 4

y ;; 5

Exercise

What does the following function return:

(define (foo)

 (define + 1)

 (define / (* 2 +))

 (- + /))

45

Exercise

What does the following function return:

 -1

Upshot: “built-in” functions are not special

(define (foo)

 (define + 1)

 (define / (* 2 +))

 (- + /))

46

Let
• Definitions with define are not expressions

• (let ([var e]) e-body)

• Expression: evaluates e-body with var defined as e

• Can have more than one var

47

(let ([x 2])

 (+ x 3)) ;; 5

(let ([x 2]

 [y 3])

 (+ x y)) ;; 5

Let
• Let does not allow simultaneous bindings to see each other

• I think of it as “parallel let”

48

(let ([x 2]

 [y x]) ;; bad

 (+ x y)) ;; 5

Let*
• Let* lets you define a sequence of variables

• I think of it as “sequential let”

49

(let* ([x 2]

 [y x]) ;; good

 (+ x y)) ;; 5

Textual Reduction
CIS352 — Spring 2021

Kris Micinski

50

51

This lecture takes place on the whiteboard.

Case Splitting and

Lists Intro
CIS352 — Spring 2021

Kris Micinski

52

Cond
• Cond allows multiple guards to be checked

• (cond [guard0 body0] 
 [guard1 body1]  
 …  
 [else bodyelse]) ;; optional

• Checks each guard sequentially, evaluates first body

53

(define (foo x)

 (cond [(= x 42) 1]

 [(> x 0) 2]

 [else 3]))

Exercise

The absolute value of a number x is:

• x is x is greater than 0

• 0 if x = 0

• -x if x is less than 0

Translate this definition into a function using cond

54

Exercise

The absolute value of a number x is:

• x is x is greater than 0

• 0 if x = 0

• -x if x is less than 0

Translate this definition into a function using cond

(define (abs x)

 (cond [(> x 0) x]

 [(= x 0) 0]

 [(< x 0) (- x)]))

55

Exercise

56

Say we have the following:

(cond [g0 b0] 
 [g1 b1]  
 …  
 [else belse])

How can we rewrite the above to use only if?

Exercise
Say we have the following:

(cond [g0 b0] 
 [g1 b1]  
 …  
 [else belse])

How can we rewrite the above to use only if?

57

(if g0 b0

 (if g1 b1 
 … 
 (if gn-1 bn-1 belse) …))

Example
((λ(x) (x x))

(λ(x) (x x)))

58

(cons 0 1)

0

1

The function cons builds a cons cell / pair

Example
((λ(x) (x x))

(λ(x) (x x)))

59

(cons 0 1)

0

1

The function car gets the left element

(car) is 0

Example
((λ(x) (x x))

(λ(x) (x x)))

60

(cons 0 1)

0

1

The function cdr gets the right element

(cdr) is 1

Example
((λ(x) (x x))

(λ(x) (x x)))

61

(cons 0 1)

0

1

(cdr) is 1

The names car and cdr come from the
original implementation of LISP on the
IBM 704

Lists
• Racket has lists—sequences of cons cells ending w/ ‘()

• The empty list (or “null") is special, ‘()

• Many ways to build them

• (list 1 2 3) ;; Variadic function

• ‘(1 2 3) ;; Datum representation

• There are three operations on lists

• empty? / null?

• first / car

• rest / cdr

62

Lists continued…
• Using empty?, car, and cdr, we can write many utilities

• All definable ourselves, also in Racket by default

• (length l) — Length of l

• (list-ref l i) — Get ith element of list (0-indexed)

• (append l0 l1) — Append l1 to the end of l0

• (reverse l) — Reverse the list

• (member l x) — Check if x is in l

63

Exercise

Using cond, write a function that takes a list l and an
index x and returns…

• The first element if x = 0

• The second element if x = 1

• The third element if x = 2

• Otherwise return ‘unknown

64

Case Splitting and

Lists Intro
CIS352 — Spring 2021

Kris Micinski

65

Lambdas
CIS352 — Spring 2021

Kris Micinski

• In Racket, functions are first-class values

• Can be bound to vars, returned from fns, etc..

• Languages w/ functions as values are functional

First-Class Functions

67

• (lambda (x0 x1 …) body)

• Anonymous function: bind x0, … in body

• Can appear at any callsite (just like an identifier)

Lambdas (in Racket)

68

(define f (lambda (x) x))

(define (double g) 
 (lambda (x) (g (g x))))

Exercise

(define f (lambda (x) x))

(define (double g) 
 (lambda (x) (g (g x))))

Evaluate the following expressions:

• (f 1)

• ((double f) 42)

• ((double (lambda (x) (* x 2))) 2)

69

Exercise

Write a function, (foo f), that:

• Accepts a function f, maps ints to ints

• ((foo f) x) = (f |x|), |x| is abs. value of x

70

(define (f x) x)

;; equiv

(define f (lambda (x) x))

• Previously, we assumed environment of definitions

• Instead, can think of lambdas as primitive

• Environment maps identifiers to lambdas

Textual Reduction of Lambdas

Textual Reduction of Lambdas

• After reducing all args to values, substitute (into the body)
the actual arguments in place of the formal arguments.

72

((lambda (x y) x) (+ 1 1) 3)

=> ((lambda (x y) x) 2 3)

=> 2

Exercise

Use textual reduction to reduce the following:

((((lambda (x) x) (lambda (x) x))

 ((lambda (x) x) (lambda (x) x)))

 (+ 1 2))

73

Hint: remember, in applicative order we
always evaluate the leftmost, innermost
application. In other words, we process (e0
e1 …) by reducing e0 … to values in order,
then applying.

Exercise

Use textual reduction to reduce the following:

((((lambda (x) x) (lambda (x) x))

 ((lambda (x) x) (lambda (x) x)))

 (+ 1 2))

74

If this sounds complicated, you would be
right to just think about it as “left to right”

Languages w/o First-Class Functions
• In modern times, somewhat hard to imagine

• C is a good example: procedural but not functional

• C callsites: quasi-functional behavior via fn pointers

• But not really: C doesn’t have closures

75

// The C library QuickSort function

void qsort(void *base, // array to sort

 int items, // really size_t

 int elem_size,

 // pointer to compare fn

 int (*compare)(void*, void*))

Cons Diagrams
and Boxes
CIS352 — Spring 2021

Kris Micinski

77

Derived Types
• S-expressions (symbolic expression)

• Untyped lists that generalize neatly to trees:

• Computer represents these as linked structures

• Cons cells of head & tail (cons 1 2)

(this (is an) s expression)

78

Derived Types
• Racket also has structural types

• Defined via struct; aids robustness

• We will usually prefer agility of “tagged” S-expressions

• Also an elaborate object-orientation system (we won’t cover)

79

(cons 0 1)

0

1

The function cons builds a cons cell

80

(cons 0 1)

0

1

The function car gets the left element

(car) is 0

81

(cons 0 1)

0

1

The function cdr gets the left element

(cdr) is 1

82

(cons 0 1)

0

1

(cdr) is 1
At runtime, each cons cell sits at an address in memory

0x700000032acd1200

83

0

1
0x700000032acd1200

0

In fact, numbers are also stored in memory locations.

They are thus said to be a “boxed” type

0x700000012ace1564

84

(define x 23)

(displayln x)

(set! x 24)

(displayln x)

Actually, every Racket variable stores a value
in some “box” (i.e., memory location)

23x
0x700000033dea2280

85

(define x 23)

(displayln x)

(set! x 24)

(displayln x)

Actually, every Racket variable stores a value
in some “box” (i.e., memory location)

23x
0x700000033dea2280

Console output… 
> 23

86

(define x 23)

(displayln x)

(set! x 24)

(displayln x)

Actually, every Racket variable stores a value
in some “box” (i.e., memory location)

24x
0x700000033dea2280

x’s value changes to 24

87

(define x (vector 1 2 3))

(vector-set! x 1 0)

x

;; ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and
give O(1) indexing and updating

88

Unless we say otherwise, you should avoid
using set!, any use will be at your own risk

Similarly, avoid vector-set!, hash-set!, …

Using set! will, in CIS352, lead to hard-to-
debug code that will make it much harder
for instructors to understand your code

89

(cons 1 (cons 0 ‘()))

‘()

1 0
Empty list

This is how Racket represents lists in memory

Pairs enable us to build linked lists of data

90

(cons 2 (cons 1 (cons 0 ‘())))

Note that in Racket, the following are equivalent

‘(2 1 0)
But the following is called an improper list

(cons 2 (cons 1 0))
‘(2 1 . 0)

Dot indicates a cons cell of a left and right element

91

‘(this (is an) s expression)

Also can build compound expressions

92

‘(this (is an) s expression)

Also can build compound expressions

‘()

‘this ‘expression‘s

‘is ‘an

‘()

93

‘()

‘this ‘expression‘s

‘is ‘an

‘()

94

Draw the cons diagram for…

• (cons 0 (cons 3 4))

• Is this a list? If not, what is it?

• (cons 0 (cons 3 (cons 4 ‘())))

• Is this a list? If not, what is it?

95

 (cons 0 (cons 3 4))

0 3

4

This is not a list (an improper list)

96

 (cons 0 (cons 3 (cons 4 ‘()))

0 3 4

‘()

Mapping over
Lists
CIS352 — Spring 2021

Kris Micinski

Project 0:

Tic-Tac-Toe
CIS352 — Spring 2021

Kris Micinski

Quasiquoting and
Pattern Matching
CIS352 — Spring 2021

Kris Micinski

• Racket quasi-quotes build S-expressions nicely

• `(,x y 3) is equivalent to (list x ‘y 3)

• I.e., Racket splices in values that are unquoted via ,

• (quasiquote …), or `…, substitutes any sub-expr ,e with
the return value of e within the quoted s-expression

100

• Works multiple list “levels” deep:

• `(square (point ,x0 ,y0) (point ,x1 ,y1))

• Can unquote arbitrary expressions, not just references:

• `(point ,(+ 1 x0) ,(- 1 y0))

101

Exercise

102

Define mk-point and mk-square using
Quasi-quotation:

(define (mk-point x y)

 (list ‘point x y))
(define (mk-square pt0 pt1)

 (list ‘square pt0 pt1))

Exercise

103

Define mk-point and mk-square using
Quasi-quotation:

(define (mk-point x y)

 (list ‘point x y))
(define (mk-square pt0 pt1)

 (list ‘square pt0 pt1))

(define (mk-point x y)

 `(point ,x ,y))
(define (mk-square pt0 pt1)

 `(square ,pt0 ,pt1))

• Racket also has pattern matching

• (match e [pat0 body0] [pat1 body1]…)

• Evaluates e and then checks each pattern, in order

• Pattern can bind variables, body can use pattern
variables

104

• Many patterns (check docs to learn various useful forms)

• Patterns checked in order, first matching body is executed

• Later bodies won’t be executed, even if they also match!

• Students make frequent mistakes on this!

• E.g., (match ‘(1 2 3) 
 [`(,a ,b) b] 
 [`(,a . ,b) b]) ; returns ‘(2 3)

105

106

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matching a literal

107

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches when e evaluates
to some number?

(binds n)

108

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Never matches!

Subsumed by previous case!

109

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a cons cell, binds x and y

110

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a list of length three

Binds first element as a0, second as a1, etc…

Called a “quasi-pattern”

Can also test predicates on bound vars:

`(,(? nonnegative-integer? x) ,(? positive? y))

111

(match e

 [‘hello ‘goodbye]

 [(? number? n) (+ n 1)]

 [(? nonnegative-integer? n)

 (+ n 2)]

 [(cons x y) x]

 [`(,a0 ,a1 ,a2) (+ a1 a2)]

 [_ 23])

Can also have a default case written via wildcard _

Exercise

112

Define a function foo that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” if it is anything else

(define (foo x)

 (match x

 [(? …) …]

 …))

Exercise

113

Define a function foo that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” if it is anything else

(define (foo x)

 (match x

 [(? number? n) (* n 2)]

 [`(,a ,b ,_) `(,a ,b)]

 [_ "error"]))

Answer (one of many) Observe how quasipatterns and
quasiquotes interact

• Using pattern matching, we can build type predicates

• Predicates that specify data formats

• We will frequently use these in-lieu of static typing

114

(define (tree? t)

 (match t

 ['empty #t]

 [`(leaf ,v) #t]

 [`(binary ,(? tree?) ,(? tree?)) #t]

 ;; don’t forget this!

 [_ #f]))

• We can use define/contract to specify dynamically-
checked contracts on functions

115

(define/contract (tree-min t0)

 (-> tree? any/c)

 (match t

 ['empty (error "no min of empty tree")]

 [`(leaf ,v) v]

 [`(binary ,t0 ,t1) (tree-min t0)]))

> (tree-min '(binary (leaf 2) empty))

2

116

> (tree-min '(binary 2 empty))

. . tree-min: contract violation

 expected: tree?

 given: '(binary 2 empty)

 in: the 1st argument of

 (-> tree? any/c)

 contract from: (function tree-min)

 blaming: anonymous-module

 (assuming the contract is correct)

117

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Defines base case

118

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Recursive case first computes the square of (car lst)

119

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Recursive case next recurs on the list’s tail (cdr lst)

120

Squaring every element of a list

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

Recursive case finally extends the new tail list

121

Squaring every element of a list

122

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

Squaring every element of a list
(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

123

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

Squaring every element of a list
(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

map takes a

(unary) function

and list

(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

124

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

(define (square-list-values lst)

 (if (null? lst)

 ‘()

 (cons (* (car lst) (car lst))

 (square-list-values (cdr lst)))))

(define (map f lst)

 (if (null? lst)

 ‘()

 (cons (f (car lst))

 (map f (cdr lst)))))

125

(define (square-list-values lst)

 (map (lambda (x) (* x x)) lst))

We can write the def of map in just one line!

126

Write an implementation of andmap, such that:

> (andmap list? ‘((1 2) () (3)))

#t

> (andmap list? ‘((1 . 2) ()))

#f

> (andmap list? ‘(1 2 3))

#f

Exercise

127

Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())

Exercise

128

Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())

Exercise

(define andmap

 (lambda (p? lst)

 (if (null? lst)

 #t

 (and (p? (car lst))

 (andmap p? (cdr lst))))))

Tail Calls and Tail
Recursion
CIS352 — Spring 2021

Kris Micinski

Practicing Tail
Recursion
CIS352 — Spring 2021

Kris Micinski

131

((lambda (x) x) ((lambda (y) y) 5))

((lambda (x) x) 5)

5

132

Calculating factorial in Racket

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

133

Calculating factorial in Racket

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

Defines base case

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

134

Calculating factorial in Racket

and inductive / recursive case

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

135

Calculating factorial in Racket

We can think of recursion as “substitution”

> (factorial 2)

> (factorial 2)

= (if (= 2 0)

 1

 (* 2 (factorial (sub1 2))))

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

136

We can think of recursion as “substitution”

Copy defn, substitute for argument n

(define (factorial n)

 (if (= n 0)

 1

 (* n (factorial (sub1 n)))))

> (factorial 2)

= (if (= 2 0)

 1

 (* 2 (factorial (sub1 2))))

= (if #f 1 (* 2 (factorial (sub1 2))))

= (* 2 (factorial (sub1 2)))

= (* 2 (factorial 1))

= (* 2 (if …))

137

We can think of recursion as “substitution”

138

…

= (* 2 (if (= 2 0)

 1

 (* n (factorial (sub1 2))))

= (* 2 (factorial 1))

= …

= (* 2 (* 1 1))

= (* 2 1)

= 2

Notice we’re building a big stack of calls to *

139

Tail Calls
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

140

Tail Position

• A subexpression is in tail position if it’s:

• The last subexpression to run, whose return value is also the
value for its parent expression

• In (let ([x rhs]) body); body is in tail position…

• In (if grd thn els); thn & els are in tail position…

141

Tail Recursion

• A function is tail recursive if all recursive calls in tail
position

• Tail-recursive functions are analogous to loops in
imperative langs

Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

• A function is tail recursive if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative
langs

142

143

Instead, use dynamic programming: 
design a recursive solution top-down, but implement

as a bottom-up algorithm!

0 1

0 1 2 43

Start with first two, then build up

144

0 1 1 2 3

0 1 2 43

…

…

Instead, use dynamic programming: 
design a recursive solution top-down, but implement as a

bottom-up algorithm!

145

Key idea: only need to look at two most recent numbers

0 1 1 2 3 5

0 1 2 43 5

146

Accumulate via arguments

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Exercise

147

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Question: what is the runtime complexity of fib?

Exercise

148

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Answer: O(n), fib-helper runs from n to 0

149

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Consider how fib-h executes

150

(fib-helper 3 0 1)

= (if (= 3 0) 0 (fib-h (- 3 1) 1 (+ 0 1)))

= …

= (fib-h 2 1 1)

= (if (= 2 0) 1 (fib-h (- 2 1) 1 (+ 1 1)))

= …

= (fib-h 1 1 2)

Notice that we don’t get the “stacking” behavior:

recursive calls don’t grow the stack

151

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

(We call these tail calls)

(define (fib-h i n0 n1)

 (if (= i 0)

 n0

 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

152

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

Both of these are tail calls

(We call these tail calls)

Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

• A subexpression is in tail position if it’s the last subexpression to
run, whose return value is also the value for its parent expression:

• In (let ([x rhs]) body); body is in tail position…

• In (if grd thn els); thn & els are in tail position…

• A function is tail recursive if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative langs

153

Exercise

Which of the following is tail recursive?

154

(define (length-0 l)

 (if (null? l)

 0

 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)

 (if (null? l)

 n

 (length-1 (cdr l) (+ n 1))))

Exercise

155

(define (length-0 l)

 (if (null? l)

 0

 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)

 (if (null? l)

 n

 (length-1 (cdr l) (+ n 1))))

Answer

Not tail recursive
Adds (+ 1 _) operation to stack

Is tail recursive!

Call to length-1 in tail position

Folding over Lists
CIS352 — Spring 2021

Kris Micinski

157

158

Iterating over a list to accumulate a result is one of the
most typical programming patterns

159

Iterating over a list to accumulate a result is one of the
most typical programming patterns

(define (sum-list l)

 (match l

 ['() 0]

 [`(,hd . ,tl) (+ hd (sum-list tl))]))

160

Iterating over a list to accumulate a result is one of the
most typical programming patterns

(define (list-product l)

 (match l

 ['() 1]

 [`(,hd . ,tl) (* hd (list-product tl))]))

161

Iterating over a list to accumulate a result is one of the
most typical programming patterns

(define (filter f l)

 (match l

 ['() '()]

 [`(,hd . ,tl)

 (if (f hd)

 (cons hd (filter f tl))

 (filter f tl))]))

162

What do all these functions have in common?

(define (filter f l)

 (match l

 ['() '()]

 [`(,hd . ,tl)

 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

 (match l

 ['() 1]

 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

 (match l

 ['() 0]

 [`(,hd . ,tl) (+ hd (sum-list tl))]))

163

Each matches on the list

(define (filter f l)

 (match l

 ['() '()]

 [`(,hd . ,tl)

 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

 (match l

 ['() 1]

 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

 (match l

 ['() 0]

 [`(,hd . ,tl) (+ hd (sum-list tl))]))

164

Each returns an initial value

(define (filter f l)

 (match l

 ['() '()]

 [`(,hd . ,tl)

 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

 (match l

 ['() 1]

 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

 (match l

 ['() 0]

 [`(,hd . ,tl) (+ hd (sum-list tl))]))

165

Each of them makes a recursive call and then combines
the result with hd

(define (filter f l)

 (match l

 ['() '()]

 [`(,hd . ,tl)

 (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

 (match l

 ['() 1]

 [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

 (match l

 ['() 0]

 [`(,hd . ,tl) (+ hd (sum-list tl))]))

166

Let’s think about how sum-list operates over lists…

(define (sum-list l)

 (match l

 ['() 0]

 [`(,hd . ,tl) (+ hd (sum-list tl))]))

(sum-list (cons 1 (cons 2 ‘())))

 … => (+ 1 (+ 2 0))

You can think of this as replacing cons with + and ‘() with 0

167

Now let’s look at list-product

(define (list-product l)

 (match l

 ['() 1]

 [`(,hd . ,tl) (* hd (list-product tl))]))

(list-product (cons 1 (cons 2 ‘())))

 … => (* 1 (* 2 1))

You can think of this as replacing cons with * and ‘() with 1

168

(fold f i (cons 1 (cons 2 ‘())))

 … => (f 1 (f 2 i))

169

Folds abstract this common pattern:

• Iterating over list to accumulate some result

• Some default or initial value to handle empty list

• Some two-argument reducer function

• Combines first element w/ processed tail

(define (fold reducer init lst)

 (match lst

 ['() init]

 [`(,hd . ,tl)

 (reducer hd (fold reducer init tl))]))

170

Use fold to write sum-list

(define (fold reducer init lst)

 (match lst

 ['() init]

 [`(,hd . ,tl)

 (reducer hd (fold reducer init tl))]))

Exercise

171

Use fold to write list-product

(define (fold reducer init lst)

 (match lst

 ['() init]

 [`(,hd . ,tl)

 (reducer hd (fold reducer init tl))]))

Exercise

172

Use fold to write filter-list

(define (fold reducer init lst)

 (match lst

 ['() init]

 [`(,hd . ,tl)

 (reducer hd (fold reducer init tl))]))

Exercise

173

This version of fold is direct-style, meaning it will push
stack frames

(define (foldr reducer init lst)

 (match lst

 ['() init]

 [`(,hd . ,tl)

 (reducer hd (fold reducer init tl))]))

174

This version of fold is direct-style, meaning it will push
stack frames

(define (foldr reducer init lst)

 (match lst

 ['() init]

 [`(,hd . ,tl)

 (reducer hd (fold reducer init tl))]))

Traditionally this is called a “right” fold because it bottoms
out at the end (right side) of the list, and reconstructs back
up.

* Diagram from the Haskell wiki

175

We can also write a tail-recursive version of fold by
swapping the argument order to reducer

(define (foldl reducer acc lst)

 (match lst

 ['() acc]

 [`(,hd . ,tl)

 (fold reducer (reducer hd acc) tl)]))

This is called a left fold because it “starts” from the left
(reducer will be called on first element w/ the “zero”)

* Diagram from the Haskell wiki

176

Use foldl to write reverse

(define (foldl reducer acc lst)

 (match lst

 ['() acc]

 [`(,hd . ,tl)

 (fold reducer (reducer hd acc) tl)]))

Exercise

177

Biggest takeaways for you:

• Consider using fold when possible

• Use Racket’s foldl or foldr

• Mostly the same, but process list differently

• You need a two argument reducer function

• You need an initial value

Interpreting

IfArith
CIS352 — Spring 2021

Kris Micinski

179

Today, we’re going to start building our own languages

We’re going to do this by writing interpreters

180

To build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an
interpreter or a compiler

181

For this class, all of our programs are going to be
written as Racket datums

This means we can just write programs in our
language just by building data in Racket

We specify syntax via a predicate that uses pattern
matching

182

(define (expr? e)

 (match e

 [(? integer? n) #t]

 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

 [`(div ,(? expr? e0) ,(? expr? e1)) #t]

 [`(not ,(? expr? e-guard)) #t]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

 [_ #f]))

Here is the first language we will define:

183

(define (expr? e)

 (match e

 [(? integer? n) #t]

 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

 [`(div ,(? expr? e0) ,(? expr? e1)) #t]

 [`(not ,(? expr? e-guard)) #t]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

 [_ #f]))

“Any integer is a program in our language.”

184

(define (expr? e)

 (match e

 [(? integer? n) #t]

 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

 [`(div ,(? expr? e0) ,(? expr? e1)) #t]

 [`(not ,(? expr? e-guard)) #t]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

 [_ #f]))

“If e0 is an expression in our language, and e1 is an

expression in our language, `(plus ,e0 ,e1) is, too.”

185

(define (expr? e)

 (match e

 [(? integer? n) #t]

 [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

 [`(div ,(? expr? e0) ,(? expr? e1)) #t]

 [`(not ,(? expr? e-guard)) #t]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

 [_ #f]))

Here are some example expressions:

‘(plus 1 (div 2 3))

'(if 0 (plus 1 2) (div 2 2))

'(if 0 (plus 1 (div 2 3)) (if 1 (plus 2 3) 0))

186

IMPORTANT NOTE

We are defining a new language by using Racket. But
our language is not Racket. In Racket, booleans are #t
and #f. In our language, we will use 0 to represent false
and non-0 to represent true (as in C).

187

Again, because this is confusing

When writing interpreters, always be careful to mentally
separate the language you are defining and the
language you are using to build the interpreter (Racket).

This can become confusing as the languages we build
will “look like” Racket. Try to be mindful.

188

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

189

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

(define value? integer?)

The “result” of programs will be a Racket integer:

190

Key idea: write an interp function that takes in
expressions as an argument, and returns Racket values

(define value? integer?)

(define/contract (evaluate e)

 (-> expr? value?)

 ‘todo)

The “result” of programs will be a Racket integer:

191

What should the following return…?

Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate '(plus 1 2))

=> 3

(evaluate '(if 0 (plus 1 2) (div 2 2)))

=> ‘todo

(evaluate '(if 1 (div 4 3) (plus 1 -1)))

=> ‘todo

192

What should the following return…?

Remember, this is our own new language we are
defining, not necessarily Racket

(evaluate '(plus 1 2))

=> 3

(evaluate '(if 0 (plus 1 2) (div 2 2)))

=> 1

(evaluate '(if 1 (div 4 3) (plus 1 -1)))

=> 4/3

193

Now, let’s build evaluate ourselves

194

In this lecture, we built a metacircular interpreter

Important Definition

A metacircular interpreter is an interpreter which uses
features of a “host” language to define the semantics of
a “target” language

Which features of Racket did we use to define our
language…?

195

(define (evaluate e)

 (match e

 [(? integer? n) n]

 [`(plus ,(? expr? e0) ,(? expr? e1))

 (+ (evaluate e0) (evaluate e1))]

 …

Important Definition

A metacircular interpreter is an interpreter which uses
features of a “host” language to define the semantics of
a “target” language

Notice how we inherit the definition of + from Racket

196

John Reynolds introduced metacircular interpreters in
1978. One key idea: metacircular interpreters inherit
properties of their host language!

197

Note: our interpreter is direct-style, it is not tail recursive

(define (evaluate e)

 (match e

 [(? integer? n) n]

 [`(plus ,(? expr? e0) ,(? expr? e1))

 (+ (evaluate e0) (evaluate e1))]

 …

This means we are relying on Racket’s stack as well

We will later see how to eliminate the need for this

Natural Deduction
for IfArith
CIS352 — Spring 2021

Kris Micinski

199

In this lecture, we’ll introduce natural deduction

Natural deduction is a mathematical formalism that helps
ground the ideas in metacircular interpreters

200

Natural deduction first used in mathematical logic, to
specify proofs using inductive data

We will use natural deduction as a framework for
specifying semantics of various languages throughout the
course

201

When we specify the semantics of a language using
natural deduction, we give its semantics via a set of
inference rules

202

Rules read: if the thing on the top is true, then the thing
on the bottom is also true.

Const :
c ∈ ℚ
c ⇓ c

This rule says: “if c is an integer
(mathematically: c ∈ ℚ), then c evaluates to c.”

Note: the notation e ⇓ v is read “e evaluates to v.”

203

Some rules will have more than one antecedent (thing on
the top).

You read these: “if the first thing, and second thing, and …
are all true, then the thing on the bottom is true.”

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

204

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

“If e₀ ⇓ n₀, and e₁ ⇓ n₁, and n' = n₀ + n1, then I can say

(plus e₀ e₁) ⇓ n’.”

205

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

The natural deduction rule for div is similar

206

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

We have two rules for not

207

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

Natural Deduction Rules for IfArith

IfT :
e0 ⇓ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

208

Question: Now that we have the rules, what
can we do with them?

Answer: Use them to formally prove that
some program calculates some result

209

Let’s say I want to prove that the following
program evaluates to 4:

(if (plus 1 -1) 3 4)

210

???

(if (plus 1 − 1) 3 4) ⇓ 4

What rule could go here..?

211

???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

212

???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

To apply a natural-deduction rule,
we must perform unification

There can be no variables in the
resulting unification!

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

213

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

We perform unification:

e₀: (plus 1 -1), e₁: 3

e₂: 4, n’: 4

(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

214

(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Not done yet, now we have to prove
these things

215

(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Why can we say 4 ⇓ 4? Because of
the Const rule

216

(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

We’re not done yet, because plus
requires an antecedent:

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

217

1 ⇓ 1 − 1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

But we’re still not done, because we
need to finish these three

218

1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Things that are simply true from
algebra require no antecedents, we
take them as “axioms.”

219

1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

This is a complete proof that the
program computes 4

220

Question: could you write this
proof..? What would happen if you
tried…?

???

(if (plus 1 − 1) 3 4 ⇓ 3)

221

: (

(if (plus 1 − 1) 3 4) ⇓ 3

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

Answer: you can’t write this proof,
because IfT will only let you evaluate
e1 when e0 is non-0!

222

???

(plus (plus 0 1) 2) ⇓ 3
???

(if 1 (div 1 1) 2) ⇓ 1

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

Small-Step
Semantics of IfArith
CIS352 — Spring 2021

Kris Micinski

224

Code in the description!

225

Last Week: Defined Big-Step semantics for IfArith

226

Last Week: Defined Big-Step semantics for IfArith

Two different, but similar, formulations:

• Metacircular Interpreter in Racket

• Natural Deduction

The metacircular interpreter is our
“implementation” of natural deduction

227

(define (evaluate e)

 (match e

 [(? integer? n) n]

 [`(plus ,(? expr? e0) ,(? expr? e1))

 (+ (evaluate e0) (evaluate e1))]

 [`(div ,(? expr? e0) ,(? expr? e1))

 (/ (evaluate e0) (evaluate e1))]

 [`(not ,(? expr? e-guard))

 (if (= (evaluate e-guard) 0) 1 0)]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2))

 (if (equal? 0 (evaluate e0)) (evaluate e2) (evaluate e1))]

 [_ "unexpected input"]))

228

(define (evaluate e)

 (match e

 [(? integer? n) n]

 [`(plus ,(? expr? e0) ,(? expr? e1))

 (+ (evaluate e0) (evaluate e1))]

 [`(div ,(? expr? e0) ,(? expr? e1))

 (/ (evaluate e0) (evaluate e1))]

 [`(not ,(? expr? e-guard))

 (if (= (evaluate e-guard) 0) 1 0)]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2))

 (if (equal? 0 (evaluate e0)) (evaluate e2) (evaluate e1))]

 [_ "unexpected input"]))

229

(define (evaluate e)

 (match e

 [(? integer? n) n]

 [`(plus ,(? expr? e0) ,(? expr? e1))

 (+ (evaluate e0) (evaluate e1))]

 [`(div ,(? expr? e0) ,(? expr? e1))

 (/ (evaluate e0) (evaluate e1))]

 [`(not ,(? expr? e-guard))

 (if (= (evaluate e-guard) 0) 1 0)]

 [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2))

 (if (equal? 0 (evaluate e0)) (evaluate e2) (evaluate e1))]

 [_ "unexpected input"]))

230

This week we’ll be looking at small-step interpreters

Implement and formalize textual reduction

231

Small-step interpreters specify execution as a
sequence of steps, where each step makes only a
small, local computation

 (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

We will define the rules precisely in a few slides…

232

This allows us to reason about, and implement,
control over execution in a fine-grained way at each
step.

 (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

Allows us to reason about traces of the program more
easily. Useful for things like…

- Reasoning about finite prefix of infinitely-looping

programs (servers)

- Temporal properties of the program (data-race

freedom, etc…)

233

 (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

Our job is to define this step function / operator,
written mathematically as e₀ → e₁

 (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

234

First observation: can only take a step when
both arguments to plus / div are values

235

 (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

We can immediately evaluate (plus 2 2) to 4,
and then to step the whole expression, we
substitute 4 in place of (plus 2 2)

We first identify a redex (“reducible
expression”)

236

 (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

Now two rules (so far)

- Immediately reduce plus/div when args are values

- When e₀ or e₁ is not a value, reduce one of them

and replace it

237

- Immediately reduce plus/div when args are values

Let’s translate this into the natural deduction style..

By the way, in this lecture we are defining a new set
of rules for the small-step semantics, which I will call
SmallIfArith

These rules are separate from the rules for IfArith

238

“Immediately reduce plus/div when args are values”

239

“Immediately reduce plus/div when args are values”

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0 + n1

(plus n0 n1) → n′￼

240

“When e₀ or e₁ is not a value, reduce one of them
and replace it”

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
e1 → e′￼

(plus n e1) → (plus n e′￼)

The n here is a bit crucial: it adds determinism
to our semantics!

241

“When e₀ or e₁ is not a value, reduce one of them
and replace it”

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

“To process (plus e₀ e₁), first check if is a value.
If it is, then check if e₁ is a value. If both are,

perform the addition.”

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0 + n1

(plus n0 n1) → n′￼

242

“When e₀ or e₁ is not a value, reduce one of them
and replace it”

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

These are the three cases you need to
consider for +

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0 + n1

(plus n0 n1) → n′￼

243

Very similar operation for division…

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

244

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
e1 → e′￼

(plus e0 e1) → (plus e0 e′￼)

What would happen if we did this instead…?

Semantics would be nondeterministic

((plus 1 2) (plus 2 2)) -> (plus (plus 1 2) 4)

((plus 1 2) (plus 2 2)) -> (plus 3 (plus 2 2))

245

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
e1 → e′￼

(plus e0 e1) → (plus e0 e′￼)

This will manifest by complicating our definition of step

(define/contract (step e)

 (expr? -> expr?)

 …)

(define/contract (step e)

 (expr? -> (listof expr?))

 …)

We would need instead…

246

What about not..?

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

247

IfT
n ≠ 0

(if n e1 e2) → e1

IfF
n = 0

(if n e1 e2) → e2

Finally, if…

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)

248

So many rules! Rules are overly complicated: next
lecture we will refactor them to be more attractive…

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼= n0 + n1

(plus n0 n1) → n′￼

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

IfT
n ≠ 0

(if n e1 e2) → e1
IfF

n = 0
(if n e1 e2) → e2

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)

249

One very important omission: there is no defined
step for values!

These rules only tell us how to step expressions. We
need to keep doing that (in a loop) until we reach a
value.

250

Now that we have the rules, let’s code them up as a
small-step interpreter

(define/contract (step e)

 (-> (lambda (x) (and (expr? x) (not (value? x))) expr?)

 ‘todo)

Context and
Redex Semantics
CIS352 — Spring 2021

Kris Micinski

252

Last lecture: so many rules! How could you ever
remember all of these!?

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼= n0 + n1

(plus n0 n1) → n′￼

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

IfT
n ≠ 0

(if n e1 e2) → e1
IfF

n = 0
(if n e1 e2) → e2

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)

In this case, it was much easier to write the
interpreter!

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼= n0 + n1

(plus n0 n1) → n′￼

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

IfT
n ≠ 0

(if n e1 e2) → e1
IfF

n = 0
(if n e1 e2) → e2

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)

254

Also, our small-step rules violate a basic principle:

We might prefer that each step of the semantics to
have a maximum (bounded) runtime.

Our small-step semantics needs to “dig down”
arbitrarily far into the term before it makes progress.

1 ∈ ℚ
(not 1) → 0

(not (not 1)) → 1

⋮

(not (…(not (not 1))…) → 0

255

In our last interpreter, the step function is not tail-
recursive, instead step is direct-style recursive and
then called in a tail-recursive loop by evaluate!

(define (step e)

 (match e

 …

 [`(not 0) 1]

 [`(not ,n) #:when (not (equal? n 0)) 0]

 …))

256

This is not necessarily a problem, but it is often
desirable for our step function to be finite. For
example, assembly languages must operate in finite
time because instructions are executed

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

257

Also: our semantics is very wasteful with respect to
work. Again: for large terms it “digs down” to find
the correct redex (reducible expression)…

(plus (plus (plus 1 1) 2) 3)

Then “rebuilds” the term, only to then “dig down”
again during the next step…

Lots of wasted effort digging, rebuilding, and
digging again…

258

In this lecture, we’re going to talk about context
and redex semantics, which is anoptimization of the
small-step semantics we saw last lecture.

(define (step e)

 (match e

 …

 [`(not 0) 1]

 [`(not ,n) #:when (not (equal? n 0)) 0]

 …))

259

In this lecture, we’re going to talk about context
and redex semantics, which is anoptimization of the
small-step semantics we saw last lecture.

(define (step e)

 (match e

 …

 [`(not 0) 1]

 [`(not ,n) #:when (not (equal? n 0)) 0]

 …))

P1: PageRank
CIS352 — Spring 2021

Kris Micinski

261

Graphs
• A graph is a pair〈N,E〉of

• A set of nodes, N

• A set of edges, E, of the form

• (n₀,n₁) ∣ n₀,n₁ ∈ N

• Can equivalent represent in several ways:

• Adjacency list (list of edges)

• Graphs can be be composed of either undirected
or directed edges

n₀

n₁
n₂

1/3

1/3
1/3

262

• Algorithm that originally powered Google

• Calculates a probability distribution on a graph

• I.e., assigns a number in [0,1] to each node

• This number is the page’s “rank.”

• Forms a probability distribution

• Page ranks sum to 1 across all pages

• f ∈ N → [0,1]

• ∑ᵢ f(i) = 1 over i ∈ dom(f)

PageRank

n₀

n₁
n₂

1/3

1/3
1/3

263

• For this assignment we will use list of edges

• Can use this to calculate:

• Neighbors

• Num of nodes in graph (total)

• As input to PageRank n₀

n₁
n₂

(define x '((n0 n1)

 (n1 n0)

 (n2 n0)

 (n2 n1)))

264

(define x '((n0 n1)

 (n1 n0)

 (n2 n0)

 (n2 n1)))

Write a function that calculates the pages to which
a given page links

265

Write a function that calculates the pages to which
a given page links

(define (links-of graph node)

 (define (loop graph l)

 (match graph

 [`() l]

 [`((,p0 ,p1) . ,rst)

 (if (equal? p0 node)

 (loop rst (cons p1 l))

 (loop rst l))]))

 (loop graph '()))

266

Representing PageRanks
• PageRanks are represented using Racket hashes

• Key/value maps (similar to hash tables)

• Immutable w/ O(1) runtime for lookup/insert

• Based on Hash Array-Mapped Tries (HAMT)

267

• (hash ‘a 0 1 2 “hello” ‘c) — creates hashes,
note keys can be heterogeneous type

• (hash-ref x ‘a) — Looks up value for key ‘a

• (hash-set x ‘a 2) — Returns a new hash with
updated key for ‘a

• (hash-keys x) and (hash-values x)— Return list
of keys / values (useful for iterating)

268

PageRank algorithm
• Begins by constructing initial PageRank

• Each page has rank 1/N (for N nodes)

• Then, performs an iteration step some number
of times

• You decide how long you want to do this

• Usually until change is smaller than some
delta

n₀

n₁
n₂

(hash ‘n0 1/4

 ‘n1 1/4

 ‘n2 1/4

 ‘N3 1/4)

PageRank Iteration Step
PageRank is like a vote. Each page has a certain share of
votes (its PR), each step it votes for each page to which it
links, but it divides its vote equally across links.

 
Intuitively the next PageRank for page i is the sum of:

•A random chance that a surfer will jump to i

•(1-d)/N applies random chance to all pages

•The PageRanks of the pages that link to it, weighted by
the number of links those pages have

• At each step, the next PR for page i is calculated as:

• Where:

• M(pᵢ): set of pages that link to i

• PR(pⱼ) and PR(pᵢ): PageRanks of i and j

• L(pⱼ) is the number of links from j to any other page

• d is a “dampening factor” (typically .85)

• At each step, the next PR for page i is calculated as:

• Where:

• M(pᵢ): set of pages that link to i

• PR(pⱼ) and PR(pᵢ): PageRanks of i and j

• L(pⱼ) is the number of links from j to any other page

• d is a “dampening factor” (typically .85)

n₀

n₁
n₂

1/3

1/3

1/3

Let’s calculate the next values of n₀,
n₁, and n₂ (assume d=85/100)

For n₀. Sum of…

• (1-85/100)/3, since 3 nodes

•For n₂…

•85/100 * 1/3 / 2

•For n₁…

•85/100 * 1/3 / 1

•= 19/40

n₀

n₁
n₂

19/40

1/20

19/40

So next PR should be…

(hash ‘n0 19/40

 ‘n1 19/40

 ‘n2 1/20)

PageRank Assumptions
• Several simplifying assumptions for input graphs

• No “self-links:” remove links from a page to itself

• All nodes link to at least one other node

• Can fix this manually: link to every other node

• These steps necessary to make math work out (i.e., so that
iteration forms a probability distribution)

• All test input graphs have this form

Hints
• Read Racket docs for lists, sets, and hashes

• Start sooner rather than later

• Will require much more time than a0

• num-pages, num-links, and num-backlinks are all easier

• Should be able to mostly do now

• mk-initial-pagerank, step-pagerank and iterate-pagerank-
until are a little harder

Lambda Calculus
Introduction
CIS352 — Spring 2021

Kris Micinski

• Variables

• Function application

• Lambda abstraction

The Lambda Calculus (1930s)

Just these three elements form a
complete computational system

e ::= x Variables
∣ λx . e Lambdas
∣ e0 e1 Applications

Original Syntax

e ::= x Variables
∣ (λ (x) e) Lambdas
∣ (e0 e1) Applications

Scheme Syntax

(define (expr? e)

 (match e

 [(? symbol? x) #t]

 [`(lambda (,(? symbol? x)) ,(? expr? e-body)) #t]

 [`(,(? expr? e0) ,(? expr? e1)) #t]

 [_ #f]))

Lambda Calculus equivalent (in expressivity) to Turing

machines.

The Church-Turing Thesis states that turing machines
/ lambda calculus can encode any computable
function.

Lambda Calculus vs. Turing machines

In fact, it is possible to encode (most of) any Scheme
program as a lambda calculus expression via a
Church/Boehm encoding.

Now let’s look at the three lambda calculus forms in
detail…

(λ (x) e)

Formal parameter Function body

An expression, abstracted over all possible values

for a formal parameter, in this case, x.

(λ (x) e)

Formal parameter Function body

An expression, abstracted over all possible values

for a formal parameter, in this case, x.

In fact, you can read lambdas mathematically as “for all.” This
observation forms the basis for universal quantification in higher-
order logics implemented using typed lambda calculus variants!

(e e)

Expression in

function position

Expression in

argument position

Next we have applications

x

Variable reference

Variables are only defined/assigned when a function
is applied and its parameter bound to an argument.

How do we compute with the lambda calculus..?

Answer: via reductions, which define equivalent /
transformed terms.

The most important reduction is β, which applies
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))

The most important reduction is β, which applies
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

β

((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

((λ (x) x) (λ (x) x))

β

β

The most important reduction is β, which applies
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

((λ (x) x) (λ (x) x))

(λ (x) x)

β

β

β

The most important reduction is β, which applies
a function by substituting arguments

→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

Textual substitution. This says:

replace every x in E0 with E1.

Next lecture: carefully defining substitution!

((λ (x) x) (λ (x) x))

x[x ← (λ (x) x)]

β

((λ (x) x) (λ (x) x))

β

((λ (x) x) (λ (x) x))

(λ (x) x)

β

Can you beta-reduce the following term
more than once…?

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β

β

β

β

(λ (x) x x) (λ (x) x x)

β reduction may continue

indefinitely (i.e., in non-
terminating programs)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β

((λ (x) (x x)) (λ (x) (x x)))

β

β

β

β

(λ (x) x x) (λ (x) x x)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β

This specific program is
known as Ω (Omega)

((λ (x) (x x)) (λ (x) (x x)))

β

((λ (x) (x x)) (λ (x) (x x)))

Ω is the smallest non-
terminating program!

Note how it reduces to itself in a single step!

Lambda Calculus:
Reduction / Substitution
CIS352 — Spring 2021

Kris Micinski

Last lecture: β−reduction, informally

→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

replace every x in E0 with E1.

If you watch the history of the lambda calculus
discussion by Dana Scott, I will award two
participation points (min 5-30):

https://www.youtube.com/watch?v=uS9InrmPIoc

How can we define beta reduction as a
Racket function…?

(define (beta-reduce e)

 (match e

 [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]

 [_ (error "beta-reduction cannot apply...")]))

Today: how do we define the subst function?

Variables are challenging

Typical presentations of the lambda calculus define a

textual-reduction semantics.

You can envision a “machine” where the machine’s state
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

Typical presentations of the lambda calculus define a

textual-reduction semantics.

You can envision a “machine” where the machine’s state
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

β

Typical presentations of the lambda calculus define a

textual-reduction semantics.

You can envision a “machine” where the machine’s state
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β

Observe! Β-Reduction is
nondeterministic

In general, a term may have multiple β
redexes, and thus multiple β reductions

This term has two beta redexes!

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

The outer one in red

The inner one in blue

The two challenges for this lecture:

- How do we implement substitution

- How do we deal with nondeterminism in the semantics

Substitution seems conceptually simple, but it is
surprisingly tricky. But consider this: substitution
is fundamentally where computation happens!

(define (beta-reduce e)

 (match e

 [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]

 [_ (error "beta-reduction cannot apply...")]))

If we have subst, we can easily define beta-reduce.

FV : Exp → 𝒫(Var)

FV(x) Δ= {x}

FV((λ (x) eb))
Δ= FV(eb) \ {x}

FV(ef ea))
Δ= FV(ef) ∪ FV(ea)

We define the free variables of a lambda expression
via the function FV:

Free Variables

FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}

FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}

((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

What are the free variables of each of the
following terms?

((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

{y}

{}

{x, y, z}

What are the free variables of each of the
following terms?

A term is closed when it has no free variables:

- ((lambda (x) x) (lambda (y) y))

- (lambda (z) (lambda (x) (z (lambda (z) z)))

Sometimes we call these (closed terms) combinators

Some open terms…

- (lambda (x) ((lambda (z) z) z))

- ((lambda (x) x) (lambda (z) x))

Closed Terms

α-renaming allows us to rename variables:

Alpha-Renaming

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Still need to define substitution…

Important consequence: terms are
unique up to α equivalence

Every term has infinitely-many terms to
which it is α equivalent

e0 e1 e2 e3 e4 e5
α α α α α

(lambda (x) x)(lambda (😋) 😋)

https://getemoji.com/
https://getemoji.com/

What breaks if the antecedent isn’t enforced..?

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Meaning of term changes! Someone might have an
intention to use that free variable y

(lambda (x) y) very different from (lambda (x) x)

Can we define lambda calculi without explicit variables? (Yes!)

• De-Bruin Indices (variables are numbers indicating to which
binder they belong)

• Combinatory logic uses bases of fully-closed terms. Always
possible to rewrite any LC term to use only several closed
combinators

We won’t study either of these

We define capture-avoiding substitution, in which we are
careful to avoid places where variables would become
captured by a substitution.

The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) a)[a ← (λ (b) b)]

The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) (λ (b) b))

Capture-avoiding substitution

E0[x ← E1]

x[x ← E] = E
y[x ← E] = y where y ≠ x

x[x ← E] = E
y[x ← E] = y where y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])

x[x ← E] = E
y[x ← E] = y where y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)

x[x ← E] = E
y[x ← E] = y where y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)
(λ (y) E0)[x ← E] = (λ (y) E0[x ← E])

where y ≠ x and y ∉ FV(E)

β-reduction cannot occur when y ∈ FV(E)

((λ (y)

 ((λ (z) (λ (y) (z y))) y))

 (λ (x) x))

How can you beta-reduce the following
expression using capture-avoiding

substitution?

((λ (y)

 ((λ (z) (λ (y) (z y))) y))

 (λ (x) x))

How can you beta-reduce the following
expression using capture-avoiding

substitution?

((λ (z) (λ (y) (z y))) (λ (x) x))

β

(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

How can you beta-reduce the following
expression using capture-avoiding

substitution?

How can you beta-reduce the following
expression using capture-avoiding

substitution?

(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

You cannot! This redex would require:

(λ (y) z)[z ← (λ (x) y)]
(y is free here, so it would be captured)

 (λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

(λ (y) ((λ (z) (λ (w) z)) (λ (x) y)))→α

(λ (y) (λ (w) (λ (x) y)))→β

Instead we alpha-convert first.

How can you beta-reduce the following
expression using capture-avoiding

substitution?

To formally define the semantics of the lambda calculus via
reduction, we also need rules that will let us apply reductions
inside of rules:

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′￼

(e0 e1) → (e0 e′￼)
β0

e0
βα
→ e′￼

(e0 e1) → (e′￼ e1)

β
e′￼= eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′￼

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Recall: a term may have
multiple redexes!

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′￼

(e0 e1) → (e0 e′￼)
β0

e0
βα
→ e′￼

(e0 e1) → (e′￼ e1)

β
e′￼= eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′￼

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Because β and α reduction are inherently nondeterministic, we
use a reduction strategy, which is system that tells us which
reduction to apply:

- Normal Order — Leftmost (outermost) application

- Applicative Order — Innermost application

We’ll talk more about these next time. They relate to
the computational notions of call-by-name (normal)
and call-by-value (applicative)

(λ (x) (E0 x)) E0 where x ∉ FV(E0) →η

η-reduction / expansion capture a property akin
to extensionality

E0 (λ (x) (E0 x)) where x ∉ FV(E0) →η

We do not use η-reduction/expansion in
computation (unlike β), but it helps us establish

certain equalities in lambda theories

When unambiguous, we refer to reduction in the lambda
calculus as the application of a beta, alpha, or eta reduction:

(→) = (→β) ∪ (→α) ∪ (→η)

(→*)
(When necessary for exams, we will clarify…)

E0

*

E8

*

?

It is often helpful to think of applying a sequence of reductions
to arrive at some final “result.”

In the lambda calculus, we call these results / values “normal
forms.”

A normal form is a form that has
no more possible applications of
some kind of reduction…

E0

*

(λ (x) … (λ (z) ((a …) …)))

In beta normal form, no function position can be a lambda;

this is to say: there are no unreduced redexes left!

We covered a lot of material!

• Free variables

• Alpha renaming

• Beta reduction

• Eta reduction / expansion

• Capture-avoiding substitution

• Applicative / normal order

Next time: reduction strategies and more normal
forms…

Lambda Calculus
Reduction Strategies
CIS352 — Spring 2021

Kris Micinski

Last lecture: reduction rules for the lambda calculus

This lecture: reduction strategies

As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.

As a computer scientist, we can view
nondeterminism in the rules as a challenge—it is
easier to implement deterministic machines.

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down

We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down

- We will never reduce under a lambda

We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down

- We will never reduce under a lambda

(lambda (x) ((lambda (y) (y y)) (lambda (y) (y y))))

We say that lambda expressions are in Weak Head
Normal Form (WHNF)

Even though a potential redex exists under the
lambda, we will not evaluate it (until application)

Two popular strategies:

- Call by value, reduce arguments early as possible

- Call by name, reduce arguments late as possible

Two popular strategies:

- Call by value, reduce arguments early as possible

- Applicative order (innermost), but not under lambdas

- Call by name, reduce arguments late as possible

- Normal order, but not under lambdas

Whenever you get to an application of a lambda,
you have a choice:

- Attempt to evaluate argument?

- Perform application immediately

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Church-Rosser Theorem

For any expression e,

If e →* e₀ and e →* e₁

Then, both e₀ and e₁ step to

some common term e’

e

e₀ e₁

e’

Church-Rosser Theorem

For any expression e,

If e →* e₀ and e →* e₁

Then, both e₀ and e₁ step to

some common term e’

e

e₀ e₁

e’
Corollary: all terminating
paths result in same normal
form!

((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using…

- Call-by-Name

- Call-by-Value

((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using…

- Call-by-Name

- Call-by-Value

((lambda (y) y) (lambda (y) y))

(lambda (y) y)

((lambda (x) x) (lambda (y) y))

(lambda (y) y)

CBN CBV

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name

- Call-by-Value

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name

- Call-by-Value

(lambda (y) y)

CBN

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name

- Call-by-Value

(lambda (y) y) ((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

CBN

CBV

Standardization theorem
If an expression can be evaluated to
WHNF (i.e., it doesn’t loop), then it
has a normal-order reduction
sequence.

In other words: the lazy semantics is
most permissive, in terms of
termination.

Church Numerals
CIS352 — Spring 2021

Kris Micinski

This week in class we’re going to talk about Church
Encoding, a technique to express arbitrary Racket code
using only the lambda calculus.

We will (by hand) compile Racket forms to just LC

Why do this? Answer: illustrate theoretical expressivity of LC

Our goal this lecture: translate simple arithmetic operations
over constants to the lambda calculus

2 + 1 * 2 = 4

We want to express this with the lambda calculus

I think this is one of the trickiest things to understand in the
course. I first learned this by working out the beta-
reductions on paper, and I recommend that approach.

One key problem: how do we represent numbers as
lambdas?

Observation 1

On simplifying assumption: focus only on the naturals

Can write any natural number n as:

1 + . . . + 0
n times

0 = 0
1 = 1 + 0
2 = 1 + 1 + 0
3 = 1 + 1 + 1 + 0

Observation 2: represent the number n as a function
that accepts another function g and returns a function
that performs g n times.

0 = (λ (f) (λ (x) x))
1 = (λ (f) (λ (x) (f x)))
2 = (λ (f) (λ (x) (f (f x))))

…

This is where it starts getting confusing, if you are
lost here, stop to think this through for a few
minutes…

Observation 2: represent the number n as a function
that accepts another function g and returns a function
that performs g n times.

(define zero (lambda (f) (lambda (x) x)))

(define one (lambda (f) (lambda (x) (f x))))

(define two (lambda (f) (lambda (x) (f (f x)))))

By the way, how do we translate a Church-encoded
number to a Racket number?

;; do add1 n times, starting from 0

;; (add1 (add1 … (add1 0) …))

(define (church->nat n)

 ((n add1) 0)

Observation 3: when we use this encoding, any two
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

Observation 3: when we use this encoding, any two
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

(((lambda (x) x) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

Observation 3: when we use this encoding, any two
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

(((lambda (x) x) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

((lambda (x) x)

 (lambda (z) (lambda (x) (z (z x)))))

Observation 3: when we use this encoding, any two
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

(((lambda (x) x) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

((lambda (x) x)

 (lambda (z) (lambda (x) (z (z x)))))

(lambda (z) (lambda (x) (z (z x)))) ;; 2

Question:

Say I give you a number n. You know its normal-form (when it is
fully-reduced) must be something like

n = (lambda (f) (lambda (x) (f (f (f … (f x) …))))

How can you generate n + 1?

Question:

Say I give you a number n. You know its normal-form
(when it is fully-reduced) must be something like

n = (lambda (f) (f (f … (f x) …)))

How can you generate n + 1?

n+1 = (lambda (f) (f (f (f … (f x) …))))

Question:

Say I give you a number n. You know its normal-form
(when it is fully-reduced) must be something like

n = (lambda (f) (f (f … (f x) …)))

Now, how could I wrote a function, succ, which
computes n+1 using only the lambda calculus?

Question:

Say I give you a number n. You know its normal-form
(when it is fully-reduced) must be something like

n = (lambda (f) (f (f … (f x) …)))

Now, how could I wrote a function, succ, which
computes n+1 using only the lambda calculus?

 ;; the *argument*

 (lambda (n)

 ;; the thing we're *returning* should do f "n+1 times"

 ;; ((n f) x) "applies f n times" and returns a result

 ;;

 (lambda (f) (lambda (x) (f ((n f) x)))))

(define succ

 (lambda (n) (lambda (f) (lambda (x) (f ((n f) x))))))

;; (succ 1) should equal 2

((lambda (n)

 (lambda (f) (lambda (x) (f ((n f) x))))))

 (lambda (f) (lambda (x) (f x))))

;; (succ 1) should equal 2

(lambda (f)

 (lambda (x) (f (((lambda (f) (lambda (x) (f x))) f) x))))))))

;; note here: we’re reducing under lambda!

(lambda (f)

 (lambda (x) (f ((lambda (x) (f x)) x))))))))

(lambda (f)

 (lambda (x) (f (f x)))))))) ;; this is 2!

Question:

Now how do you do addition…? Observation: need
two arguments. We will use a trick named currying.

plus = (lambda (n) (lambda (k) …))

one = (lambda (f) (lambda (x) (f x))

We can call this like:

((plus one) one) ;; compute 2

Question:

Now how do you do addition…? Observation: need
two arguments. We will use a trick named currying.

plus = (lambda (n) (lambda (k) …))

one = (lambda (f) (lambda (x) (f x))

We can call this like:

((plus one) one)

Observe the key idea: plus returns a function that
takes another function (the second one) to complete
the work!

plus =

(lambda (n) (lambda (k)

 (lambda (f) (lambda (x) ((k f) ((n f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

plus =

(lambda (n) (lambda (k)

 (lambda (f) (lambda (x) ((k f) ((n f) x))))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Homework:

Reduce (to beta-normal-form, i.e., doing all possible reductions)
the following (encoding plus, 0, 1, and 2 correctly):

 (plus 0 1) ;; (lambda (f) (lambda (x) (f x))

 (plus 1 1) ;; (lambda (f) (lambda (x) (f (f x)))

 (plus 2 0) ;; (lambda (f) (lambda (x) (f (f x)))

(lambda (n)

 (lambda (k)

 (lambda (f) (lambda (x) (((n k) f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Alright, now how do you do multiplication..?

Well, do “n k times!”

(lambda (n)

 (lambda (k)

 (lambda (f) (lambda (x) (((n k) f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Homework:

Reduce (to beta-normal-form, i.e., doing all possible reductions)
the following (encoding plus, 0, 1, and 2 correctly):

 (mult 1 1) ;; (lambda (f) (lambda (x) (f x))

 (mult 2 1) ;; (lambda (f) (lambda (x) (f (f x)))

 (mult 2 0) ;; (lambda (f) (lambda (x) x))

P2: Church Encoding
CIS352 — Spring 2021

Kris Micinski

Last lecture: Church numerals and operations over
arithmetic.

After last lecture, you should be able to use Church
encoding to express things like this:

 2 + 3 * (4 + 1)

In this project, we’ll translate Scheme programs to the
lambda calculus.

This project: how do we translate the rest of Scheme?

e ::= (letrec ([x (lambda (x …) e)])) 
 | (let ([x e] …) e)

 | (lambda (x …) e)

 | (e e …)

 | x

 | (if e e e)

 | (prim e e) | (prim e)

 | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

(Language used in project p2)

Output language

e ::= (lambda (x) e)

 | (e e)

 | x

x ::= <vars>

Let’s go through the forms one by one and eliminate
them :-)

(λ (x y z) e)

(λ (x) e)

(λ () e)

(λ (x) e)

(λ (_) e)

(λ (x)

 (λ (y)

 (λ (z) e)))

Currying is a trick where you translate multi-arg
lambdas into sequences of lambdas

Of course, you also need to fix up callsites

(f a b c d) ((((f a) b) c) d)

(f a) (f a)

(f) (f (λ (x) x))

Alright, so we started with this…

e ::= (letrec ([x (lambda (x …) e)])) 
 | (let ([x e] …) e)

 | (lambda (x …) e)

 | (e e …)

 | x

 | (if e e e)

 | (prim e e) | (prim e)

 | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

Now we have…

e ::= (letrec ([x (lambda (x …) e)])) 
 ;; let is encoded…

 | (lambda (x) e) ;; single x

 | (e e) ;; single arg

 | x

 | (if e e e)

 | ((prim e) e) | (prim e)

 | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

Now let’s encode if

(if #t eT eF)

eT

(if #f eT eF)

eF

We need an encoding that does this…

Let’s say we encode true as (λ (t f) t)

(if #t eT eF) (if #f eT eF)

((λ (t f) t) vT vF) ((λ (t f) f) vT vF)

vT vF

This is critically broken!

((λ (t f) t) 0 Ω)

.........

Because if we did that, then the encoding of

 (if #t 0 Ω) ;; Ω = ((lambda (x) (x x)) (lambda (x) (x x)))

Not right! We want it to be just 0!

((λ () eT))

eT

((λ (t f) (t)) (λ () eT) (λ () Ω))

vT

Note: already explained how to encode 0-arg lambda…

((λ () eT))

eT

((λ (t f) (t)) (λ () eT) (λ () Ω))

vT

Note: already explained how to encode 0-arg lambda…

So our true encoding for if/true/false is…

Now we’re just down to…

e ::= (letrec ([x (lambda (x) e)]))

 | (lambda (x) e)

 | (e e)

 | x

 | ((+ e) e) | ((* e) e)

 | ((cons e) e) | (car e)

 | (cdr e) | (null? e)

 | d

d ::= ℕ | ‘()

x ::= <vars>

We taught you how to do these in the last video!

e ::= (letrec ([x (lambda (x) e)]))

 | (lambda (x) e)

 | (e e)

 | x

 | ((+ e) e) | ((* e) e)

 | ((cons e) e) | (car e)

 | (cdr e)

 | d

d ::= ℕ | ‘()

x ::= <vars>

So now all we need to do is this…

e ::= (letrec ([x (lambda (x) e)]))

 | (lambda (x) e)

 | (e e)

 | x

 | ((+ e) e) | ((* e) e)

 | ((cons e) e) | (car e)

 | (cdr e) | (null? e)

 | d

d ::= ℕ | ‘()

x ::= <vars>

‘() = (λ (when-cons) (λ (when-null)

 (when-null)))

(cons a b) = (λ (when-cons) (λ (when-null)

 (when-cons a b)))

Using this definition, can you define car, cdr, and null?

church:null? = (λ (lst)  
 (lst (λ (a b) #f) ;; when cons

 (λ () #t))) ;; when null

Now all we have is…

e ::= (letrec ([x (lambda (x) e)]))

 | (lambda (x) e)

 | (e e)

 | x

x ::= <vars>

To implement letrec, we use a fixed-point combinator
(such as the Y combinator…). This is a bit tricky, so we’ll
explain it next week in class.

Fixed Points
CIS352 — Spring 2021

Kris Micinski

Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([x (lambda (x …) e)])) 
 | (let ([x e] …) e)

 | (lambda (x …) e)

 | (e e …)

 | x

 | (if e e e)

 | (prim e e) | (prim e)

 | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

Right now: clone the corresponding autograder exercise for
this lecture so you can get participation points…

Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([x (lambda (x …) e)])) 
 | (let ([x e] …) e)

 | (lambda (x …) e)

 | (e e …)

 | x

 | (if e e e)

 | (prim e e) | (prim e)

 | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

But didn’t do letrec

letrec lets us define recursive loops

(letrec ([f (lambda (x)

 (if (= x 0)

 1

 (* x (f (sub1 x))))])

 (f 20))

(letrec ([f (lambda (x)

 (if (= x 0)

 1

 (* x (f (sub1 x))))])

 (f 20))

letrec lets us define recursive loops

Unlike let, letrec allows referring to f within its definition

(define (fib-using-letrec x)

 (letrec ([fib (lambda (x)

 ;; Your answer:

 'todo)])

 (fib x)))

Unlike let, letrec allows referring to f within its definition

(letrec ([f (lambda (x)

 (if (= x 0)

 1

 (* x (f (sub1 x)))))])

 (f 20))

Today, we will discuss a magic term, Y, that allows us to
write…

(let ([f

 (Y (lambda (f)

 (lambda (x)

 (if (= x 0)

 1

 (* x (f (- x 1)))))))])

 (f 20))

(define Y (λ (g) ((λ (f) (g (λ (x) ((f f) x))))

 (λ (f) (g (λ (x) ((f f) x)))))))

This magic term, named Y, allows us to construct recursive
functions.

(define U (lambda (x) (x x)))

First, the U combinator

The U combinator lets us do something very crucial: pass a
copy of a function to itself.

Let’s say I didn’t have letrec, what could I do…?

(let ([f (lambda (mk-f)

 (lambda (x)

 (if (= x 0)

 1

 (* x ((mk-f mk-f) x)))))])

 ((f f) 20))

First observation: pass f to itself

mk-f is pronounced “make f”

Let’s see why this works!

(let ([f (lambda (mk-f)

 (lambda (x)

 (if (= x 0)

 1

 (* x ((mk-f mk-f) (sub1 x))))))])

 ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

This initial call “makes the next copy”

(let ([f (lambda (mk-f)

 (lambda (x)

 (if (= x 0)

 1

 (* x ((mk-f mk-f) (sub1 x))))))])

 ((f f) 20))

(let ([f (lambda (mk-f)

 (lambda (x) ;; x = 20

 (if (= x 0)

 1

 (* x ((mk-f mk-f) (sub1 x))))))])

 ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

2: Second, apply that (lambda (x) …) to 20, take false branch

(let ([f (lambda (mk-f)

 (lambda (x)

 (if (= x 0)

 1

 (* x ((mk-f mk-f) (sub1 x))))))])

 ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy
of (lambda (x) …)

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy
of (lambda (x) …)

4: Apply that same function again (until base case)!

(let ([f (lambda (mk-f)

 (lambda (x)

 (if (= x 0)

 1

 (* x ((mk-f mk-f) (sub1 x))))))])

 ((f f) 20))

(letrec ([f (lambda (x) e-body)])

 letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by:

Wrapping (lambda (x) e-body) in (lambda (f) …)

Changing occurrences of f (in e-body) to (f f)

Apply U combinator / apply function to itself
Changing letrec to let

Think carefully why this works..!

(letrec ([f (lambda (x) e-body)])

 letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by:

Wrapping (lambda (x) e-body) in (lambda (f) …)

Changing occurrences of f (in e-body) to (f f)

Apply U combinator / apply function to itself
Changing letrec to let

(let ([f (U (lambda (f)

 ;; replace f w/ (f f)  
 (lambda (x) e-body))])

 letrec-body)

(define (length-using-u lst)

 (let ([len (U (lambda (f)

 (lambda (x)

 'todo)))])

 (len lst)))

(define (length-using-letrec lst)

 (letrec ([len (lambda (x)

 (if (null? x)

 0

 (add1 (len (rest x)))))])

 (len lst)))

Let’s do an example…

Your job…

(define (fib-using-U n)

 (letrec ([fib (U 'todo)])

 (fib n)))

(define (fib-using-letrec n)

 (letrec ([fib

 (lambda (x)

 (cond [(= x 0) 1]

 [(= x 1) 1]

 [else (+ (fib (- x 1))

 (fib (- x 2)))]))])

 (fib n)))

Now another example…

Translate this one to use U

(let ([f (lambda (mk-f)

 (lambda (x)

 (if (= x 0)

 1

 (* x ((mk-f mk-f) (sub1 x))))))])

 ((U f) 20))

One pesky thing: need to rewrite function so that calls to
mk-f need to first “get another copy” by doing (mk-f mk-f)

By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)

 (lambda (x)

 (if (= x 0)

 1

 (* x (f (sub1 x))))))])

 ((Y f) 20))

Let’s ask ourselves: what does f need to be when Y plugs it
in…?

(let ([f (Y (lambda (f)

 ;; no change to e-body  
 (lambda (x) e-body))])

 letrec-body)

(Y f) = f (Y f)

(Y f) = (f (Y f))

Deriving Y

1. Treat as definitionY = (λ (f) (f (Y f)))

2. Lift to mY, 
use self-application

mY = (λ (mY) 
 (λ (f)

 (f ((mY mY) f))))

mY = (λ (mY) 
 (λ (f)

 (f (λ (x) (((mY mY) f) x)))))

3. Eta-expand

mY = (λ (mY) 
 (λ (f)

 (f (λ (x) (((mY mY) f) x)))))

Y = (U (λ (y) (λ (f)

 (f (λ (x) (((y y) f) x)))))

U-combinator: (U U) is Omega

By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)

 (lambda (x)

 (if (= x 0)

 1

 (* x (f (sub1 x))))))])

 ((Y f) 20))

(Y f) = f (Y f)

Closing words of advice:

- Understand how to write recursive functions w/ U / Y

- Do not need to remember precisely why Y works

- But do need to remember how to use it!

- If you want to understand: just think carefully about what

U / Y are doing (with examples)

Continuations
CIS352 — Spring 2021

Kris Micinski

Often speak of evaluating programs in a sequence of steps:

(+ (* 2 1) 3) -> (+ 2 3) -> 5

E.g., textual reduction. We defined textual reduction for
IfArith and for lambda calculus (beta, …)

((lambda (x) ((lambda (y) x) z))

 (lambda (z) (lambda (…) …))

Key idea: at each step, we just decided which expression to
reduce (using reduction strategy)

In a real implementation, this would be slow (would have to
traverse term at each step)

Textual Reduction Review

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

-> (* 2 1) stack = (+ ☐ 3)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

-> (* 2 1) stack = (+ ☐ 3)

-> 2 stack = (+ ☐ 3)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

-> (* 2 1) stack = (+ ☐ 3)

-> 2 stack = (+ ☐ 3)

-> 3 stack = (+ 2 ☐)

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

-> (* 2 1) stack = (+ ☐ 3)

-> 2 stack = (+ ☐ 3)

-> 3 stack = (+ 2 ☐)

-> (+ 2 3) stack = ☐

Another way to conceptualize this would be to think of an
explicit stack

The rule here is: once we “finish” the current expression, we
“fill in” the stack

 (+ (* 2 1) 3) stack = ☐ (empty stack)

-> (* 2 1) stack = (+ ☐ 3)

-> 2 stack = (+ ☐ 3)

-> 3 stack = (+ 2 ☐)

-> (+ 2 3) stack = ☐
-> 5 stack = ☐ (done!)

These stacks have another appeal: the fact that they
make only local changes makes them fast (compared
to identifying redex each time).

However, we won’t focus a lot on the efficiencies of
this style. If you want to see that, consider taking the
compilers course here at SU.

Instead, we will observe that this style offers an
additional flexibility: we can always conceptualize the
return point as a function!

We call this function the “continuation,” since it lets
us “continue” the computation.

 (+ (* 2 1) 3) ;; (lambda (rtn) rtn)

-> (* 2 1) ;; (lambda (x) (+ x 3))

-> 2 ;; (lambda (x) (+ x 3))

-> 3 ;; (lambda (x) (+ 2 x))

-> (+ 2 3) ;; (lambda (x) x)

-> 5 ;; (lambda (x) x)

If you’re used to programming in Java/C++, you can
think of a continuation as a “callback we invoke to
return from a function.”

 (+ (* 2 1) 3) ;; (lambda (x) x)

-> (* 2 1) ;; (lambda (x) (+ x 3))

-> 2 ;; (lambda (x) (+ x 3))

-> 3 ;; (lambda (x) (+ 2 x))

-> (+ 2 3) ;; (lambda (x) x)

-> 5 ;; (lambda (x) x)

The call/cc form allows us to bind this continuation to
a function

(+ 4 (call/cc (lambda (k) (k 3))))

When control reaches call/cc, the program binds the
current continuation to k

(+ 4 (call/cc (lambda (k) (k 3))))

;; (lambda (x) (+ 4 x))

In this case, the current continuation is…

(let* ([x (+ (* 2 3) 4)]

 [y (add1 x)])

 y)

(lambda (z)

 (let* ([x (+ z 4)] [y (add1 x])) y))

How could we write the continuation at the
underlined point?

(lambda (result)

 (let* ([x (+ result 4)]

 [y (add1 x)])

 y)

How could we write the continuation at the
underlined point?

(let* ([x (+ (* 2 3) 4)]

 [y (add1 x)])

 y)

DANGER
Continuations are normal functions in most ways. One
crucial difference: when you invoke a continuation, it
abandons the current stack and reinstates the continuation!

Again: invoking a continuation is different than invoking a
normal (non-continuation) function.

Students frequently find this confusing!

 (+ 4 (call/cc (lambda (k) (k 3))))

When execution reaches this point, k is bound as the continuation

 (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the
current continuation and reinstate the saved continuation

 (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the
current continuation and reinstate the saved continuation

But in this example, the saved continuation is equivalent to
the current continuation, so we observe no difference!

The program never returns from call (k 3) because  
undelimited continuations run until the program exits. 

 
call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 3) (print 0)))) 
;; => 3 (print 0) is never reached

The program never returns from call (k 2) because  
undelimited continuations run until the program exits. 

 
call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 2) (print 0)))) 
;; => 3 (print 0) is never reached

Pause the video and type this one into Dr. Racket!

Do you understand why (print 0) is never reached?

((lambda (k) (k 2))  
 (lambda (n) (exit (print (+ 1 n))))) 
;; => 3

This call/cc’s behavior is roughly the same as the application:

(+ 1 (call/cc (lambda (k) (k 2)))) 
;; => 3

Where the high-lit continuation (lambda (n) …) takes a

return value for the (call/cc …) expression and finishes the program.

(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When execution reaches this point, k is bound as the continuation

k = <continuation> (lambda (x) (+ 4 x))

(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When control reaches this point, the current continuation is…

(lambda (x) (+ 4 (+ 5 x)))

(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

And, by invoking k, then we abandon it to reinstate k

(lambda (x) (+ 4 x))

(call/cc (lambda (k0)

 (+ 1 (call/cc (lambda (k1)

 (+ 1 (k0 3)))))))

(call/cc (lambda (k0)

 (+ 1 (call/cc (lambda (k1)

 (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0)

 (+ 1

 (call/cc (lambda (k1)

 (+ 1 (k1 3))))

 (k0 1))))

Try an example. What do each of these 3 examples return? 
(Hint: Racket evaluates argument expressions left to right.)

(call/cc (lambda (k0)

 (+ 1 (call/cc (lambda (k1)

 (+ 1 (k0 3)))))))

(call/cc (lambda (k0)

 (+ 1 (call/cc (lambda (k1)

 (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0)

 (+ 1

 (call/cc (lambda (k1)

 (+ 1 (k1 3))))

 (k0 1))))

Try an example. What do each of these 3 examples return? 
(Hint: Racket evaluates argument expressions left to right.)

3

4

1

463

Lecture Summary

Continuations allow us to capture the stack in a first-class way

call/cc (call-with-current-continuation)

Let’s us bind special continuation functions

When invoked, continuations reset the stack

As we will soon see, this enables building non-local control
constructs (loops, exceptions, etc…)

Closures
CIS352 — Spring 2021

Kris Micinski

A common idiom for call/cc is to

let-bind the current continuation.

(let ([cc (call/cc (lambda (k) k))])

 ...)

Note that applying call/cc on the identity function is exactly 
the same as applying it on the u-combinator!

(let ([cc (call/cc (lambda (k) k))])

 ...)

(let ([cc (call/cc (lambda (k) (k k)))])

 ...)

Why is this the case?

(let ([cc (call/cc (lambda (k) k))])

 ...)

(let ([cc (call/cc (lambda (k) (k k)))])

 ...)

(let ([cc (call/cc (lambda (k) (k k)))])

 ...)

…and calling k on itself, returns k to itself!

(let ([cc (call/cc (lambda (k) k))])

 ...)

 This return point …is the same as this one…

Returning value v is the same as calling that saved return point on v.

