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Course Objective
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The main goal of this course is to teach you to write completely 
correct code that you can clearly explain and easily understand



Course Objective

4

The main goal of this course is to teach you to write completely 
correct code that you can clearly explain and easily understand

We do this through five coding projects

And assess written skills through exam questions



Logistics
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This is a flipped-classroom. You watch about ~80min video per 
week (1-2 per lecture). There is a participation quiz for each class

We expect you have watched the videos before lecture; lectures 
will involve problem-solving guided by examples

We expect you to be checking Slack often

https://kmicinski.com/cis352-s22



Instructors

6

Asst. Prof Kristopher Micinski is lead instructor

Davis Silverman (PhD) and Chang Liu (MS) are TAs

We are currently coordinating times for office hours; they will be 
posted on the syllabus in the first week



Syllabus
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Most up-to-date syllabus always available at:

https://kmicinski.com/cis352-s22/syllabus

https://kmicinski.com/cis352-s22/syllabus


Grade-Calculator

8

We encourage you to use the grade calculator



Projects
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This course has projects (with deadlines) that are assigned and 
graded via an autograder

https://autograder.org

You are expected to use the Git interface to the autograder; 
Autograder credentials will be sent out by the first week

https://autograder.org
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We try to make projects sync up with the material presented at 
the corresponding time in the course


We hope you will reach out to us on Slack / office hours


Obviously: start early. The students who struggle most are those 
who put projects off them get cumulatively behind



Project Grading
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 Each project is graded on a percent scale; your grade is the % 
of tests that pass (18/20 tests passing = 90%)

 Projects always due at 11:59PM Syracuse time

 Projects up to 72 hours after deadline—15% penalty (max 85%)

 Projects up to end of course—25% penalty

 I.e., you can always get a 75%



Exams

12

 There are four quizzes and one final

 There are only 12 questions total

 Question 1, 2, … will always be the same topic

 Question 1 on each quiz will be about Racket forms/callsites


 You always get your max score of any question

 I.e., you can raise your grade (you will have 5 attempts at Q1)

 There are only as many questions as topics introduced so far

 I.e., fewer attempts at Q12


 All questions are graded out of 10

 Your final exam grade is average of all 12 questions



Participation

13

 There are lots of “participation points” available

 Last semester, highest-participating student got 43


 <20 participation points = “minus” to your grade (A to A-) 

 [20,30) participation points = no change to grade

 >= 30 participation points = “plus” to your grade (A- to A)

 No A+ available—but I will track it for recommendations / refs



Course FAQs
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Q: Why teach Racket and not C++ / Java / JS / Rust / …

A: We have chosen to teach a language that you can fully-
understand so you can explain precisely how your code works


We do see value in C++/… and we will specifically comment on 
idioms in those languages when possible—but languages such 
as C++ are so complex (spec is 1000s of pages) we would need 
multiple classes to properly cover it



Course FAQs
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Q: Why not start with type theory?

A: Our intro course, CIS252, covers Haskell—a strongly-typed 
language built on algebraic datatypes. Here, we focus on 
building interpreters that give ground truth behavior; we build 
up to types—as a means to rule out dynamic errors—at the end



Course FAQs
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Q: Why emphasize functional programming / disallow set!

A: Functional programming is simpler (i.e., more restrictive), 
and thus easier to reason about. We will discuss how to 
implement state later on in the course, but we start by forcing 
students to program in a restricted purely-functional model 
because there are fewer opportunities for mistakes
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Thanks! I’m excited for an enriching semester and look forward 
to helping you hack on projects



Racket Basics
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Racket

• Dynamically-Typed: variables are untyped, values typed


• Functional: Racket emphasizes functional style


• Compositional—emphasizes black-box components


• Immutability—requires automatic memory management


• Imperative: allows data to be modified, in carefully-
considered cases, but doesn’t emphasize “impure” code
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Racket
• Object-oriented: racket has a powerful object system


• Language-oriented: Racket is really a language toolkit


• Homoiconic: the same structure used to represent data (lists) 
is also used to represent code
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Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

  (/ (- y1 y0) (- x1 x0)))

21

Calculating the slope of a line in Racket



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

  (/ (- y1 y0) (- x1 x0)))

22

Prefix notation



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

  (/ (- y1 y0) (- x1 x0)))

23

Functions defined via prefix notation, too



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

  (/ (- y1 y0) (- x1 x0)))

// C - calculate-slope(0,0,3,2);

(calculate-slope 0 0 3 2)
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Calls to user-defined functions also in prefix notation



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)

  (/ (- y1 y0) (- x1 x0)))


(calculate-slope 0 0 3 2)
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Note: preferred style puts closing parens at end of blocks



• Numeric tower. Numeric types gracefully degrade


• E.g., (* (/ 8 3) 2+1i) is 16/3+8/3i


• Note that 2+1i is a literal value, as is 2.3


• Strings and characters (“foo” and #\a)


• Booleans (#t and #f) including logical operator (e.g., or)


• Note that operators “short circuit”

Basic Types

26



Basic Types contd.
• Symbols are interned strings ‘foo


• Implicitly only one copy of each, unlike (say) strings


• Impact on space / memory usage


• The #<void> value (produced by (void))
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Exercise

Compute the sum of the following:

• 2/3 and 1.5

• 3+8i and 3i

• 0 and positive infinity (+inf.0)

28



Exercise

Compute the sum of the following:

• (+ 2/3 1.5) 
2.1666666666666665 (N.B., result is inexact)

• (+ 3+8i 0+3i) 
3+11i

• (+ 0 +inf.0) 
+inf.0

29



Racket Forms 
and Callsites
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Forms
• A form is a recognized syntax in the language


• (if …), (and …) are forms


• But +, list refer to functions


• Core forms defined by the language (if/and/define/…)


• You can define new forms too! More on this later…


• Scheme prefers to give a small number of general forms.
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Forms
• The tag just after the open-paren determines the form:


• (define foo value) — Define a variable


• (define (foo a0 a1 …) body) — Define a function


• (if guard e-true e-false), (or e0 e1 …), etc


• By default, otherwise, (e0 e1 …) is a function call
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Value and Expressions
• Every language has a set of values


• Primitive objects representable at runtime


• Expressions evaluate to values


• Numbers, strings, but also functions (closures)


• An expression is any syntax that evaluates to a value


• Very important term to know!

33



Exercise

Which of the following are expressions:

• (define x 23)

• x

• (+ x 3)

• (define (foo x) (+ x 1))

• (if x (foo x) (bar x))

34



Exercise

Which of the following are expressions:

• (define x 23) — Doesn’t evaluate to a value

• x

• (+ x 3)

• (define (foo x) (+ x 1)) — Doesn’t eval to value

• (if x (foo x) (bar x))
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Exercise

36

Define a function that takes an argument, x, and 
returns:

• x times 2, if x is greater than 0

• x times -2, otherwise 
 



Exercise

37

(define (f x)

  (if (< x 0)

      (* 2 x)

      (* -2 x)))



Exercise

38

Define a function that takes an argument, x, and 
returns:

• x divided by 2, if x is even

• x times 3 plus 1, if x is odd 
 
Hint: use = and modulo to check if x is even/odd



Exercise

39

(define (collatz x)

  (if (= 0 (modulo x 2))

      (/ x 2)

      (+ 1 (* 3 x))))



Definitions and 

the Environment

CIS352 — Spring 2021

Kris Micinski
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Definitions
• The form define is used to define variables


• Define comes in two forms


• (define id expr)  — Define variable id as expr


• (define (f a0 …) body …+)


• Define a function f with arguments a0, …


• At least one body (typically only one)

41



Exercise

42

• Define a variable named x to be 42

• Define a function foo, which behaves as the 
identity function 
 



The Environment
• The environment at some point in the program includes the 

set of variables in scope (accessible) at that point


• Every syntactic point has a (potentially) unique environment

43

(define x 23)

(+ x 1) ;; x is 23

(define y 24)

(+ x y) ;; x & y defined



Environments Nest
• Note that environments are hierarchical


• Definitions inside a function do not escape the function


• This relates to lexical scope which we will define soon

44

(define y 5)

(define (foo)

   (displayln y) ;; 5

   (define y 4)

   y)            ;; 4

(foo)            ;; 4

y                ;; 5



Exercise

What does the following function return:


(define (foo)

  (define + 1)

  (define / (* 2 +))

  (- + /))

45



Exercise

What does the following function return:

  -1 

Upshot: “built-in” functions are not special


(define (foo)

  (define + 1)

  (define / (* 2 +))

  (- + /))

46



Let
• Definitions with define are not expressions


• (let ([var e]) e-body)


• Expression: evaluates e-body with var defined as e


• Can have more than one var

47

(let ([x 2])

  (+ x 3))    ;; 5


(let ([x 2]

      [y 3])

  (+ x y))    ;; 5



Let
• Let does not allow simultaneous bindings to see each other


• I think of it as “parallel let”
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(let ([x 2]

      [y x])  ;; bad

  (+ x y))    ;; 5



Let*
• Let* lets you define a sequence of variables


• I think of it as “sequential let”

49

(let* ([x 2]

       [y x])  ;; good

  (+ x y))     ;; 5



Textual Reduction
CIS352 — Spring 2021

Kris Micinski
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This lecture takes place on the whiteboard.



Case Splitting and 

Lists Intro
CIS352 — Spring 2021

Kris Micinski
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Cond
• Cond allows multiple guards to be checked


• (cond [guard0 body0] 
      [guard1 body1]  
       …  
      [else bodyelse]) ;; optional


• Checks each guard sequentially, evaluates first body

53

(define (foo x)

  (cond [(= x 42) 1]

        [(> x 0)  2]

        [else     3]))



Exercise

The absolute value of a number x is:

• x is x is greater than 0

• 0 if x = 0

• -x if x is less than 0


Translate this definition into a function using cond

54



Exercise

The absolute value of a number x is:

• x is x is greater than 0

• 0 if x = 0

• -x if x is less than 0


Translate this definition into a function using cond

(define (abs x)

  (cond [(> x 0) x]

        [(= x 0) 0]

        [(< x 0) (- x)]))

55



Exercise

56

Say we have the following:

(cond [g0 b0] 
      [g1 b1]  
       …  
      [else belse])


How can we rewrite the above to use only if?



Exercise
Say we have the following:

(cond [g0 b0] 
      [g1 b1]  
       …  
      [else belse])


How can we rewrite the above to use only if?
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(if g0 b0

  (if g1 b1 
     … 
     (if gn-1 bn-1 belse) …))



Example
((λ(x) (x x))

(λ(x) (x x)))

58

(cons 0 1)

0

1

The function cons builds a cons cell / pair



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 0 1)

0

1

The function car gets the left element

(car ) is 0



Example
((λ(x) (x x))

(λ(x) (x x)))

60

(cons 0 1)

0

1

The function cdr gets the right element

(cdr ) is 1



Example
((λ(x) (x x))

(λ(x) (x x)))

61

(cons 0 1)

0

1

(cdr ) is 1

The names car and cdr come from the 
original implementation of LISP on the 
IBM 704



Lists
• Racket has lists—sequences of cons cells ending w/ ‘()


• The empty list (or “null")  is special, ‘()


• Many ways to build them


• (list 1 2 3) ;; Variadic function


• ‘(1 2 3)     ;; Datum representation


• There are three operations on lists


• empty? / null?


• first / car


• rest / cdr

62



Lists continued…
• Using empty?, car, and cdr, we can write many utilities


• All definable ourselves, also in Racket by default


• (length l) — Length of l


• (list-ref l i) — Get ith element of list (0-indexed)


• (append l0 l1) — Append l1 to the end of l0


• (reverse l) — Reverse the list


• (member l x) — Check if x is in l

63



Exercise

Using cond, write a function that takes a list l and an 
index x and returns…


• The first element if x = 0

• The second element if x = 1

• The third element if x = 2

• Otherwise return ‘unknown

64



Case Splitting and 

Lists Intro
CIS352 — Spring 2021

Kris Micinski
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Lambdas
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• In Racket, functions are first-class values


• Can be bound to vars, returned from fns, etc..


• Languages w/ functions as values are functional

First-Class Functions

67



• (lambda (x0 x1 …) body)


• Anonymous function: bind x0, … in body


• Can appear at any callsite (just like an identifier)

Lambdas (in Racket)

68

(define f (lambda (x) x))

(define (double g) 
  (lambda (x) (g (g x))))



Exercise

(define f (lambda (x) x))

(define (double g) 
  (lambda (x) (g (g x))))


Evaluate the following expressions:

• (f 1)

• ((double f) 42)

• ((double (lambda (x) (* x 2))) 2)


69



Exercise

Write a function, (foo f), that:

• Accepts a function f, maps ints to ints

• ((foo f) x) = (f |x|), |x| is abs. value of x


70



(define (f x) x)

;; equiv

(define f (lambda (x) x))

• Previously, we assumed environment of definitions


• Instead, can think of lambdas as primitive


• Environment maps identifiers to lambdas

Textual Reduction of Lambdas



Textual Reduction of Lambdas

• After reducing all args to values, substitute (into the body) 
the actual arguments in place of the formal arguments.
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((lambda (x y) x) (+ 1 1) 3)

=> ((lambda (x y) x) 2 3)

=> 2



Exercise

Use textual reduction to reduce the following:


((((lambda (x) x) (lambda (x) x)) 

  ((lambda (x) x) (lambda (x) x)))

 (+ 1 2))
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Hint: remember, in applicative order we 
always evaluate the leftmost, innermost 
application. In other words, we process (e0 
e1 …) by reducing e0 … to values in order, 
then applying.



Exercise

Use textual reduction to reduce the following:


((((lambda (x) x) (lambda (x) x)) 

  ((lambda (x) x) (lambda (x) x)))

 (+ 1 2))


74

If this sounds complicated, you would be 
right to just think about it as “left to right”



Languages w/o First-Class Functions
• In modern times, somewhat hard to imagine


• C is a good example: procedural but not functional


• C callsites: quasi-functional behavior via fn pointers


• But not really: C doesn’t have closures 
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// The C library QuickSort function

void qsort(void *base, // array to sort

           int items,  // really size_t

           int elem_size,

           // pointer to compare fn

           int (*compare)(void*, void*))



Cons Diagrams 
and Boxes
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Derived Types
• S-expressions (symbolic expression)


• Untyped lists that generalize neatly to trees:


• Computer represents these as linked structures


• Cons cells of head & tail (cons 1 2)

(this (is an) s expression)
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Derived Types
• Racket also has structural types


• Defined via struct; aids robustness


• We will usually prefer agility of “tagged” S-expressions


• Also an elaborate object-orientation system (we won’t cover)
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(cons 0 1)

0

1

The function cons builds a cons cell
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(cons 0 1)

0

1

The function car gets the left element

(car ) is 0
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(cons 0 1)

0

1

The function cdr gets the left element

(cdr ) is 1
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(cons 0 1)

0

1

(cdr ) is 1
At runtime, each cons cell sits at an address in memory

0x700000032acd1200
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0

1
0x700000032acd1200

0

In fact, numbers are also stored in memory locations.

They are thus said to be a “boxed” type

0x700000012ace1564
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(define x 23)

(displayln x)

(set! x 24)

(displayln x)

Actually, every Racket variable stores a value 
in some “box” (i.e., memory location)

23x
0x700000033dea2280
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(define x 23)

(displayln x)

(set! x 24)

(displayln x)

Actually, every Racket variable stores a value 
in some “box” (i.e., memory location)

23x
0x700000033dea2280

Console output… 
> 23
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(define x 23)

(displayln x)

(set! x 24)

(displayln x)

Actually, every Racket variable stores a value 
in some “box” (i.e., memory location)

24x
0x700000033dea2280

x’s value changes to 24
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(define x (vector 1 2 3))

(vector-set! x 1 0)

x

;; ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and 
give O(1) indexing and updating
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Unless we say otherwise, you should avoid 
using set!, any use will be at your own risk

Similarly, avoid vector-set!, hash-set!, …

Using set! will, in CIS352, lead to hard-to-
debug code that will make it much harder 
for instructors to understand your code
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(cons 1 (cons 0 ‘()))

‘()

1 0
Empty list

This is how Racket represents lists in memory

Pairs enable us to build linked lists of data
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(cons 2 (cons 1 (cons 0 ‘())))

Note that in Racket, the following are equivalent

‘(2 1 0)
But the following is called an improper list

(cons 2 (cons 1 0))
‘(2 1 . 0)

Dot indicates a cons cell of a left and right element
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‘(this (is an) s expression)

Also can build compound expressions
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‘(this (is an) s expression)

Also can build compound expressions

‘()

‘this ‘expression‘s

‘is ‘an

‘()
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‘()

‘this ‘expression‘s

‘is ‘an

‘()
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Draw the cons diagram for…

• (cons 0 (cons 3 4))

• Is this a list? If not, what is it?

• (cons 0 (cons 3 (cons 4 ‘())))

• Is this a list? If not, what is it?
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 (cons 0 (cons 3 4))


0 3

4

This is not a list (an improper list)
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 (cons 0 (cons 3 (cons 4 ‘()))


0 3 4

‘()



Mapping over 
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Project 0:

Tic-Tac-Toe
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Quasiquoting and 
Pattern Matching
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• Racket quasi-quotes build S-expressions nicely


• `(,x y 3) is equivalent to (list x ‘y 3)


• I.e., Racket splices in values that are unquoted via ,


• (quasiquote …), or `…, substitutes any sub-expr ,e with 
the return value of e within the quoted s-expression

100



• Works multiple list “levels” deep:


• `(square (point ,x0 ,y0) (point ,x1 ,y1))


• Can unquote arbitrary expressions, not just references:


• `(point ,(+ 1 x0) ,(- 1 y0))

101



Exercise

102

Define mk-point and mk-square using 
Quasi-quotation:

(define (mk-point x y)

  (list ‘point x y))
(define (mk-square pt0 pt1) 

  (list ‘square pt0 pt1))



Exercise

103

Define mk-point and mk-square using 
Quasi-quotation:

(define (mk-point x y)

  (list ‘point x y))
(define (mk-square pt0 pt1) 

  (list ‘square pt0 pt1))

(define (mk-point x y)

  `(point ,x ,y))
(define (mk-square pt0 pt1) 

  `(square ,pt0 ,pt1))



• Racket also has pattern matching


• (match e [pat0 body0] [pat1 body1]…)


• Evaluates e and then checks each pattern, in order


• Pattern can bind variables, body can use pattern 
variables

104



• Many patterns (check docs to learn various useful forms)


• Patterns checked in order, first matching body is executed


• Later bodies won’t be executed, even if they also match!


• Students make frequent mistakes on this!


• E.g., (match ‘(1 2 3) 
           [`(,a ,b) b] 
           [`(,a . ,b) b])  ; returns ‘(2 3)

105
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(match e

  [‘hello ‘goodbye]

  [(? number? n) (+ n 1)]

  [(? nonnegative-integer? n)

    (+ n 2)]

  [(cons x y) x]

  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matching a literal
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(match e

  [‘hello ‘goodbye]

  [(? number? n) (+ n 1)]

  [(? nonnegative-integer? n)

    (+ n 2)]

  [(cons x y) x]

  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches when e evaluates 
to some number?

(binds n)



108

(match e

  [‘hello ‘goodbye]

  [(? number? n) (+ n 1)]

  [(? nonnegative-integer? n)

    (+ n 2)]

  [(cons x y) x]

  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Never matches! 

Subsumed by previous case!
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(match e

  [‘hello ‘goodbye]

  [(? number? n) (+ n 1)]

  [(? nonnegative-integer? n)

    (+ n 2)]

  [(cons x y) x]

  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a cons cell, binds x and y
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(match e

  [‘hello ‘goodbye]

  [(? number? n) (+ n 1)]

  [(? nonnegative-integer? n)

    (+ n 2)]

  [(cons x y) x]

  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a list of length three

Binds first element as a0, second as a1, etc…


Called a “quasi-pattern”

Can also test predicates on bound vars:

`(,(? nonnegative-integer? x) ,(? positive? y))
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(match e

  [‘hello ‘goodbye]

  [(? number? n) (+ n 1)]

  [(? nonnegative-integer? n)

    (+ n 2)]

  [(cons x y) x]

  [`(,a0 ,a1 ,a2) (+ a1 a2)]

  [_ 23])

Can also have a default case written via wildcard _



Exercise

112

Define a function foo that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a 
list of length three, as a list


-the string “error” if it is anything else

(define (foo x)

  (match x

    [(? …) …]

    …))



Exercise

113

Define a function foo that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a 
list of length three, as a list


-the string “error” if it is anything else

(define (foo x)

  (match x

    [(? number? n) (* n 2)]

    [`(,a ,b ,_) `(,a ,b)]

    [_ "error"]))

Answer (one of many) Observe how quasipatterns and 
quasiquotes interact



• Using pattern matching, we can build type predicates 


• Predicates that specify data formats


• We will frequently use these in-lieu of static typing
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(define (tree? t)

  (match t

    ['empty #t]

    [`(leaf ,v) #t]

    [`(binary ,(? tree?) ,(? tree?)) #t]

    ;; don’t forget this!

    [_ #f]))



• We can use define/contract to specify dynamically-
checked contracts on functions

115

(define/contract (tree-min t0)

  (-> tree? any/c)

  (match t

    ['empty (error "no min of empty tree")]

    [`(leaf ,v) v]

    [`(binary ,t0 ,t1) (tree-min t0)]))


> (tree-min '(binary (leaf 2) empty))

2
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> (tree-min '(binary 2 empty))

. . tree-min: contract violation

  expected: tree?

  given: '(binary 2 empty)

  in: the 1st argument of

      (-> tree? any/c)

  contract from: (function tree-min)

  blaming: anonymous-module

   (assuming the contract is correct)
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(define (square-list-values lst)

  (if (null? lst)

      ‘()

      (cons (* (car lst) (car lst))

            (square-list-values (cdr lst)))))

Squaring every element of a list



(define (square-list-values lst)

  (if (null? lst)

      ‘()

      (cons (* (car lst) (car lst))

            (square-list-values (cdr lst)))))

Defines base case

118

Squaring every element of a list



(define (square-list-values lst)

  (if (null? lst)

      ‘()

      (cons (* (car lst) (car lst))

            (square-list-values (cdr lst)))))

Recursive case first computes the square of (car lst)
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Squaring every element of a list



(define (square-list-values lst)

  (if (null? lst)

      ‘()

      (cons (* (car lst) (car lst))

            (square-list-values (cdr lst)))))

Recursive case next recurs on the list’s tail (cdr lst)

120

Squaring every element of a list



(define (square-list-values lst)

  (if (null? lst)

      ‘()

      (cons (* (car lst) (car lst))

            (square-list-values (cdr lst)))))

Recursive case finally extends the new tail list
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Squaring every element of a list
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(define (square-list-values lst)

  (map (lambda (x) (* x x)) lst))

Squaring every element of a list
(define (map f lst)

  (if (null? lst)

      ‘()

      (cons (f (car lst))

            (map f (cdr lst)))))
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(define (square-list-values lst)

  (map (lambda (x) (* x x)) lst))

Squaring every element of a list
(define (map f lst)

  (if (null? lst)

      ‘()

      (cons (f (car lst))

            (map f (cdr lst)))))

map takes a 

(unary) function 


and list



(define (map f lst)

  (if (null? lst)

      ‘()

      (cons (f (car lst))

            (map f (cdr lst)))))
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(define (square-list-values lst)

  (map (lambda (x) (* x x)) lst))

(define (square-list-values lst)

  (if (null? lst)

      ‘()

      (cons (* (car lst) (car lst))

            (square-list-values (cdr lst)))))



(define (map f lst)

  (if (null? lst)

      ‘()

      (cons (f (car lst))

            (map f (cdr lst)))))
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(define (square-list-values lst)

  (map (lambda (x) (* x x)) lst))

We can write the def of map in just one line!
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Write an implementation of andmap, such that:

> (andmap list? ‘((1 2) () (3)))

#t

> (andmap list? ‘((1 . 2) ()))

#f

> (andmap list? ‘(1 2 3))

#f

Exercise
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Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())


Exercise
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Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())


Exercise

(define andmap

  (lambda (p? lst)

    (if (null? lst)

        #t

        (and (p? (car lst))

             (andmap p? (cdr lst))))))
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((lambda (x) x) ((lambda (y) y) 5))

((lambda (x) x) 5)

5
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Calculating factorial in Racket

(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (sub1 n)))))
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Calculating factorial in Racket

(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (sub1 n)))))

Defines base case



(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (sub1 n)))))
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Calculating factorial in Racket

and inductive / recursive case



(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (sub1 n)))))
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Calculating factorial in Racket

We can think of recursion as “substitution”

> (factorial 2)




> (factorial 2)

= (if (= 2 0)

      1

      (* 2 (factorial (sub1 2))))


(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (sub1 n)))))

136

We can think of recursion as “substitution”

Copy defn, substitute for argument n



(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (sub1 n)))))

> (factorial 2)

= (if (= 2 0)

      1

      (* 2 (factorial (sub1 2))))

= (if #f 1 (* 2 (factorial (sub1 2))))

= (* 2 (factorial (sub1 2)))

= (* 2 (factorial 1))

= (* 2 (if …))
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We can think of recursion as “substitution”
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…

= (* 2 (if (= 2 0)

        1

        (* n (factorial (sub1 2))))

= (* 2 (factorial 1))

= …

= (* 2 (* 1 1))

= (* 2 1)

= 2

Notice we’re building a big stack of calls to *



139

Tail Calls
• Unlike calls in general, tail calls do not affect the stack:


• Tail calls do not grow (or shrink) the stack.


• They are more like a goto/jump than a normal call.
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Tail Position

• A subexpression is in tail position if it’s:


• The last subexpression to run, whose return value is also the 
value for its parent expression


• In (let ([x rhs]) body); body is in tail position…


• In (if grd thn els); thn & els are in tail position…
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Tail Recursion

• A function is tail recursive if all recursive calls in tail 
position


• Tail-recursive functions are analogous to loops in 
imperative langs



Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:


• Tail calls do not grow (or shrink) the stack.


• They are more like a goto/jump than a normal call.


• A function is tail recursive if all recursive calls in tail position


• Tail-recursive functions are analogous to loops in imperative 
langs

142
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Instead, use dynamic programming: 
design a recursive solution top-down, but implement 

as a bottom-up algorithm!

0 1

0 1 2 43

Start with first two, then build up
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0 1 1 2 3

0 1 2 43

…

…

Instead, use dynamic programming: 
design a recursive solution top-down, but implement as a 

bottom-up algorithm!
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Key idea: only need to look at two most recent numbers

0 1 1 2 3 5

0 1 2 43 5
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Accumulate via arguments

(define (fib-h i n0 n1)

  (if (= i 0)

      n0

      (fib-h (- i 1) n1 (+ n0 n1))))


(define (fib n) (fib-h n 0 1))



Exercise
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(define (fib-h i n0 n1)

  (if (= i 0)

      n0

      (fib-h (- i 1) n1 (+ n0 n1))))


(define (fib n) (fib-h n 0 1))

Question: what is the runtime complexity of fib?



Exercise
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(define (fib-h i n0 n1)

  (if (= i 0)

      n0

      (fib-h (- i 1) n1 (+ n0 n1))))


(define (fib n) (fib-h n 0 1))

Answer: O(n), fib-helper runs from n to 0



149

(define (fib-h i n0 n1)

  (if (= i 0)

      n0

      (fib-h (- i 1) n1 (+ n0 n1))))


(define (fib n) (fib-h n 0 1))

Consider how fib-h executes
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(fib-helper 3 0 1)

= (if (= 3 0) 0 (fib-h (- 3 1) 1 (+ 0 1)))

= …

= (fib-h 2 1 1)

= (if (= 2 0) 1 (fib-h (- 2 1) 1 (+ 1 1)))

= …

= (fib-h 1 1 2)

Notice that we don’t get the “stacking” behavior:

recursive calls don’t grow the stack
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(define (fib-h i n0 n1)

  (if (= i 0)

      n0

      (fib-h (- i 1) n1 (+ n0 n1))))


(define (fib n) (fib-h n 0 1))

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the 
last thing a function will do before exiting

(We call these tail calls)



(define (fib-h i n0 n1)

  (if (= i 0)

      n0

      (fib-h (- i 1) n1 (+ n0 n1))))


(define (fib n) (fib-h n 0 1))
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This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the 
last thing a function will do before exiting

Both of these are tail calls

(We call these tail calls)



Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:


• Tail calls do not grow (or shrink) the stack.


• They are more like a goto/jump than a normal call.


• A subexpression is in tail position if it’s the last subexpression to 
run, whose return value is also the value for its parent expression:


• In (let ([x rhs]) body); body is in tail position…


• In (if grd thn els); thn & els are in tail position…


• A function is tail recursive if all recursive calls in tail position


• Tail-recursive functions are analogous to loops in imperative langs
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Exercise

Which of the following is tail recursive?

154

(define (length-0 l)

  (if (null? l)

      0

      (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)

  (if (null? l)

      n

      (length-1 (cdr l) (+ n 1))))



Exercise
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(define (length-0 l)

  (if (null? l)

      0

      (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)

  (if (null? l)

      n

      (length-1 (cdr l) (+ n 1))))

Answer

Not  tail recursive
Adds (+ 1 _) operation to stack

Is tail recursive!

Call to length-1 in tail position
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Iterating over a list to accumulate a result is one of the 
most typical programming patterns
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Iterating over a list to accumulate a result is one of the 
most typical programming patterns

(define (sum-list l)

  (match l

    ['() 0]

    [`(,hd . ,tl) (+ hd (sum-list tl))]))
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Iterating over a list to accumulate a result is one of the 
most typical programming patterns

(define (list-product l)

  (match l

    ['() 1]

    [`(,hd . ,tl) (* hd (list-product tl))]))
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Iterating over a list to accumulate a result is one of the 
most typical programming patterns

(define (filter f l)

  (match l

    ['() '()]

    [`(,hd . ,tl)

     (if (f hd)

         (cons hd (filter f tl))

         (filter f tl))]))
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What do all these functions have in common?

(define (filter f l)

  (match l

    ['() '()]

    [`(,hd . ,tl)

     (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

  (match l

    ['() 1]

    [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

  (match l

    ['() 0]

    [`(,hd . ,tl) (+ hd (sum-list tl))]))
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Each matches on the list

(define (filter f l)

  (match l

    ['() '()]

    [`(,hd . ,tl)

     (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

  (match l

    ['() 1]

    [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

  (match l

    ['() 0]

    [`(,hd . ,tl) (+ hd (sum-list tl))]))
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Each returns an initial value

(define (filter f l)

  (match l

    ['() '()]

    [`(,hd . ,tl)

     (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

  (match l

    ['() 1]

    [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

  (match l

    ['() 0]

    [`(,hd . ,tl) (+ hd (sum-list tl))]))
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Each of them makes a recursive call and then combines 
the result with hd

(define (filter f l)

  (match l

    ['() '()]

    [`(,hd . ,tl)

     (if (f hd) (cons hd (filter f tl)) (filter f tl))]))

(define (list-product l)

  (match l

    ['() 1]

    [`(,hd . ,tl) (* hd (list-product tl))]))

(define (sum-list l)

  (match l

    ['() 0]

    [`(,hd . ,tl) (+ hd (sum-list tl))]))
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Let’s think about how sum-list operates over lists…

(define (sum-list l)

  (match l

    ['() 0]

    [`(,hd . ,tl) (+ hd (sum-list tl))]))

(sum-list (cons 1 (cons 2 ‘())))

     … => (+    1 (+    2 0))

You can think of this as replacing cons with + and ‘() with 0
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Now let’s look at list-product

(define (list-product l)

  (match l

    ['() 1]

    [`(,hd . ,tl) (* hd (list-product tl))]))

(list-product (cons 1 (cons 2 ‘())))

         … => (*    1 (*    2 1))

You can think of this as replacing cons with * and ‘() with 1



168

(fold f i     (cons 1 (cons 2 ‘())))

         … => (f    1 (f    2 i))
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Folds abstract this common pattern:

• Iterating over list to accumulate some result

• Some default or initial value to handle empty list

• Some two-argument reducer function


• Combines first element w/ processed tail

(define (fold reducer init lst)

  (match lst

    ['() init]

    [`(,hd . ,tl)

     (reducer hd (fold reducer init tl))]))
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Use fold to write sum-list

(define (fold reducer init lst)

  (match lst

    ['() init]

    [`(,hd . ,tl)

     (reducer hd (fold reducer init tl))]))

Exercise
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Use fold to write list-product

(define (fold reducer init lst)

  (match lst

    ['() init]

    [`(,hd . ,tl)

     (reducer hd (fold reducer init tl))]))

Exercise
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Use fold to write filter-list

(define (fold reducer init lst)

  (match lst

    ['() init]

    [`(,hd . ,tl)

     (reducer hd (fold reducer init tl))]))

Exercise
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This version of fold is direct-style, meaning it will push 
stack frames

(define (foldr reducer init lst)

  (match lst

    ['() init]

    [`(,hd . ,tl)

     (reducer hd (fold reducer init tl))]))
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This version of fold is direct-style, meaning it will push 
stack frames

(define (foldr reducer init lst)

  (match lst

    ['() init]

    [`(,hd . ,tl)

     (reducer hd (fold reducer init tl))]))

Traditionally this is called a “right” fold because it bottoms 
out at the end (right side) of the list, and reconstructs back 
up.

* Diagram from the Haskell wiki



175

We can also write a tail-recursive version of fold by 
swapping the argument order to reducer

(define (foldl reducer acc lst)

  (match lst

    ['() acc]

    [`(,hd . ,tl)

     (fold reducer (reducer hd acc) tl)]))

This is called a left fold because it “starts” from the left 
(reducer will be called on first element w/ the “zero”)

* Diagram from the Haskell wiki
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Use foldl to write reverse

(define (foldl reducer acc lst)

  (match lst

    ['() acc]

    [`(,hd . ,tl)

     (fold reducer (reducer hd acc) tl)]))

Exercise
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Biggest takeaways for you:

• Consider using fold when possible

• Use Racket’s foldl or foldr


• Mostly the same, but process list differently

• You need a two argument reducer function

• You need an initial value
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Today, we’re going to start building our own languages

We’re going to do this by writing interpreters
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To build a programming language, we need two things:

A syntax for the language (and the ability to parse it)

A semantics for the language. Typically either an 
interpreter or a compiler
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For this class, all of our programs are going to be 
written as Racket datums

This means we can just write programs in our 
language just by building data in Racket

We specify syntax via a predicate that uses pattern 
matching
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(define (expr? e)

  (match e

    [(? integer? n) #t]

    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

    [`(div ,(? expr? e0) ,(? expr? e1)) #t]

    [`(not ,(? expr? e-guard)) #t]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

    [_ #f]))

Here is the first language we will define:
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(define (expr? e)

  (match e

    [(? integer? n) #t]

    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

    [`(div ,(? expr? e0) ,(? expr? e1)) #t]

    [`(not ,(? expr? e-guard)) #t]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

    [_ #f]))

“Any integer is a program in our language.”
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(define (expr? e)

  (match e

    [(? integer? n) #t]

    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

    [`(div ,(? expr? e0) ,(? expr? e1)) #t]

    [`(not ,(? expr? e-guard)) #t]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

    [_ #f]))

“If e0 is an expression in our language, and e1 is an 

expression in our language, `(plus ,e0 ,e1) is, too.”
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(define (expr? e)

  (match e

    [(? integer? n) #t]

    [`(plus ,(? expr? e0) ,(? expr? e1)) #t]

    [`(div ,(? expr? e0) ,(? expr? e1)) #t]

    [`(not ,(? expr? e-guard)) #t]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2)) #t]

    [_ #f]))

Here are some example expressions:

‘(plus 1 (div 2 3))

'(if 0 (plus 1 2) (div 2 2))

'(if 0 (plus 1 (div 2 3)) (if 1 (plus 2 3) 0))



186

IMPORTANT NOTE

We are defining a new language by using Racket. But 
our language is not Racket. In Racket, booleans are #t 
and #f. In our language, we will use 0 to represent false 
and non-0 to represent true (as in C).
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Again, because this is confusing

When writing interpreters, always be careful to mentally 
separate the language you are defining and the 
language you are using to build the interpreter (Racket).


This can become confusing as the languages we build 
will “look like” Racket. Try to be mindful.
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Key idea: write an interp function that takes in 
expressions as an argument, and returns Racket values
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Key idea: write an interp function that takes in 
expressions as an argument, and returns Racket values

(define value? integer?)


The “result” of programs will be a Racket integer:
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Key idea: write an interp function that takes in 
expressions as an argument, and returns Racket values

(define value? integer?)


(define/contract (evaluate e)

 (-> expr? value?)

 ‘todo)

The “result” of programs will be a Racket integer:
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What should the following return…?

Remember, this is our own new language we are 
defining, not necessarily Racket

(evaluate '(plus 1 2))

=> 3

(evaluate '(if 0 (plus 1 2) (div 2 2)))

=> ‘todo

(evaluate '(if 1 (div 4 3) (plus 1 -1)))

=> ‘todo
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What should the following return…?

Remember, this is our own new language we are 
defining, not necessarily Racket

(evaluate '(plus 1 2))

=> 3

(evaluate '(if 0 (plus 1 2) (div 2 2)))

=> 1

(evaluate '(if 1 (div 4 3) (plus 1 -1)))

=> 4/3
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Now, let’s build evaluate ourselves
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In this lecture, we built a metacircular interpreter

Important Definition

A metacircular interpreter is an interpreter which uses 
features of a “host” language to define the semantics of 
a “target” language

Which features of Racket did we use to define our 
language…?
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(define (evaluate e)

  (match e

    [(? integer? n) n]

    [`(plus ,(? expr? e0) ,(? expr? e1))

     (+ (evaluate e0) (evaluate e1))]

    …

Important Definition

A metacircular interpreter is an interpreter which uses 
features of a “host” language to define the semantics of 
a “target” language

Notice how we inherit the definition of + from Racket
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John Reynolds introduced metacircular interpreters in 
1978. One key idea: metacircular interpreters inherit 
properties of their host language!
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Note: our interpreter is direct-style, it is not tail recursive

(define (evaluate e)

  (match e

    [(? integer? n) n]

    [`(plus ,(? expr? e0) ,(? expr? e1))

     (+ (evaluate e0) (evaluate e1))]

    …

This means we are relying on Racket’s stack as well

We will later see how to eliminate the need for this
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In this lecture, we’ll introduce natural deduction

Natural deduction is a mathematical formalism that helps 
ground the ideas in metacircular interpreters
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Natural deduction first used in mathematical logic, to 
specify proofs using inductive data


We will use natural deduction as a framework for 
specifying semantics of various languages throughout the 
course
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When we specify the semantics of a language using 
natural deduction, we give its semantics via a set of 
inference rules
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Rules read: if the thing on the top is true, then the thing 
on the bottom is also true.

Const :
c ∈ ℚ
c ⇓ c

This rule says: “if c is an integer 
(mathematically: c ∈ ℚ), then c evaluates to c.”

Note: the notation e ⇓ v is read “e evaluates to v.”
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Some rules will have more than one antecedent (thing on 
the top). 


You read these: “if the first thing, and second thing, and … 
are all true, then the thing on the bottom is true.”

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼
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Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

“If e₀ ⇓ n₀, and e₁ ⇓ n₁, and n' = n₀ + n1, then I can say 

(plus e₀ e₁) ⇓ n’.”
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Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

The natural deduction rule for div is similar 
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Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

We have two rules for not
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Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

Natural Deduction Rules for IfArith

IfT :
e0 ⇓ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼
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Question: Now that we have the rules, what 
can we do with them?


Answer: Use them to formally prove that 
some program calculates some result
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Let’s say I want to prove that the following 
program evaluates to 4:


(if (plus 1 -1) 3 4) 
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???

(if (plus 1 − 1) 3 4) ⇓ 4

What rule could go here..?
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???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼
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???

(if (plus 1 − 1) 3 4) ⇓ 4

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

To apply a natural-deduction rule, 
we must perform unification

There can be no variables in the 
resulting unification!

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼
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IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

We perform unification:

e₀: (plus 1 -1), e₁: 3

e₂: 4, n’: 4

(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4
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(plus 1 − 1) ⇓ 0 4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Not done yet, now we have to prove 
these things
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(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Why can we say 4 ⇓ 4? Because of 
the Const rule
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(plus 1 − 1) ⇓ 0 4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

We’re not done yet, because plus 
requires an antecedent: 

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼
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1 ⇓ 1 − 1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

But we’re still not done, because we 
need to finish these three
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1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

Things that are simply true from 
algebra require no antecedents, we 
take them as “axioms.”
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1 ∈ ℚ
1 ⇓ 1

−1 ∈ ℚ
−1 ⇓ − 1 1 + −1 = 0

(plus 1 − 1) ⇓ 0

4 ∈ ℚ
4 ⇓ 4

(if (plus 1 − 1) 3 4) ⇓ 4

This is a complete proof that the 
program computes 4
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Question: could you write this 
proof..? What would happen if you 
tried…?

???

(if (plus 1 − 1) 3 4 ⇓ 3)
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: (

(if (plus 1 − 1) 3 4) ⇓ 3

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

Answer: you can’t write this proof, 
because IfT will only let you evaluate 
e1 when e0 is non-0!
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???

(plus (plus 0 1) 2) ⇓ 3
???

(if 1 (div 1 1) 2) ⇓ 1

Const :
c ∈ ℚ
c ⇓ c

Plus :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0 + n1

(plus e0 e1) ⇓ n′￼

Div :
e0 ⇓ n0 e1 ⇓ n1 n′￼ = n0/n1

(div e0 e1) ⇓ n′￼

Not0 :
e ⇓ 0

(not e) ⇓ 1
Not1 :

e ⇓ n n ≠ 0
(not e) ⇓ 0

IfT :
e0 ⇓ n n ≠ 0 e1 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼

IfF :
e0 ⇓ n n = 0 e2 ⇓ n′￼

(if e0 e1 e2) ⇓ n′￼
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Code in the description!
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Last Week: Defined Big-Step semantics for IfArith
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Last Week: Defined Big-Step semantics for IfArith

Two different, but similar, formulations:

• Metacircular Interpreter in Racket

• Natural Deduction

The metacircular interpreter is our 
“implementation” of natural deduction
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(define (evaluate e)

  (match e

    [(? integer? n) n]

    [`(plus ,(? expr? e0) ,(? expr? e1))

     (+ (evaluate e0) (evaluate e1))]

    [`(div ,(? expr? e0) ,(? expr? e1))

     (/ (evaluate e0) (evaluate e1))]

    [`(not ,(? expr? e-guard))

    (if (= (evaluate e-guard) 0) 1 0)]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2))

     (if (equal? 0 (evaluate e0)) (evaluate e2) (evaluate e1))]

    [_ "unexpected input"]))
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(define (evaluate e)

  (match e

    [(? integer? n) n]

    [`(plus ,(? expr? e0) ,(? expr? e1))

     (+ (evaluate e0) (evaluate e1))]

    [`(div ,(? expr? e0) ,(? expr? e1))

     (/ (evaluate e0) (evaluate e1))]

    [`(not ,(? expr? e-guard))

    (if (= (evaluate e-guard) 0) 1 0)]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2))

     (if (equal? 0 (evaluate e0)) (evaluate e2) (evaluate e1))]

    [_ "unexpected input"]))
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(define (evaluate e)

  (match e

    [(? integer? n) n]

    [`(plus ,(? expr? e0) ,(? expr? e1))

     (+ (evaluate e0) (evaluate e1))]

    [`(div ,(? expr? e0) ,(? expr? e1))

     (/ (evaluate e0) (evaluate e1))]

    [`(not ,(? expr? e-guard))

    (if (= (evaluate e-guard) 0) 1 0)]

    [`(if ,(? expr? e0) ,(? expr? e1) ,(? expr? e2))

     (if (equal? 0 (evaluate e0)) (evaluate e2) (evaluate e1))]

    [_ "unexpected input"]))
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This week we’ll be looking at small-step interpreters

Implement and formalize textual reduction
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Small-step interpreters specify execution as a 
sequence of steps, where each step makes only a 
small, local computation

  (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

We will define the rules precisely in a few slides…
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This allows us to reason about, and implement, 
control over execution in a fine-grained way at each 
step.

  (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

Allows us to reason about traces of the program more 
easily. Useful for things like…

- Reasoning about finite prefix of infinitely-looping 

programs (servers)

- Temporal properties of the program (data-race 

freedom, etc…)
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  (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

Our job is to define this step function / operator, 
written mathematically as e₀ → e₁



  (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

234

First observation: can only take a step when 
both arguments to plus / div are values
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  (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

We can immediately evaluate (plus 2 2) to 4, 
and then to step the whole expression, we 
substitute 4 in place of (plus 2 2)

We first identify a redex (“reducible 
expression”)
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  (div (plus 2 2) (plus 3 -1))

! (div 4 (plus 3 -1))

! (div 4 2)

! 2

Now two rules (so far)

- Immediately reduce plus/div when args are values

- When e₀ or e₁ is not a value, reduce one of them 

and replace it
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- Immediately reduce plus/div when args are values


Let’s translate this into the natural deduction style..

By the way, in this lecture we are defining a new set 
of rules for the small-step semantics, which I will call 
SmallIfArith


These rules are separate from the rules for IfArith
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“Immediately reduce plus/div when args are values”
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“Immediately reduce plus/div when args are values”


StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0 + n1

(plus n0 n1) → n′￼
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“When e₀ or e₁ is not a value, reduce one of them 
and replace it”


PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
e1 → e′￼

(plus n e1) → (plus n e′￼)

The n here is a bit crucial: it adds determinism 
to our semantics!



241

“When e₀ or e₁ is not a value, reduce one of them 
and replace it”


PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

“To process (plus e₀ e₁), first check if is a value. 
If it is, then check if e₁ is a value. If both are, 

perform the addition.”

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0 + n1

(plus n0 n1) → n′￼
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“When e₀ or e₁ is not a value, reduce one of them 
and replace it”


PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

These are the three cases you need to 
consider for +

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0 + n1

(plus n0 n1) → n′￼



243

Very similar operation for division…

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼
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PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
e1 → e′￼

(plus e0 e1) → (plus e0 e′￼)

What would happen if we did this instead…?

Semantics would be nondeterministic

((plus 1 2) (plus 2 2)) -> (plus (plus 1 2) 4)

((plus 1 2) (plus 2 2)) -> (plus 3 (plus 2 2))
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PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
e1 → e′￼

(plus e0 e1) → (plus e0 e′￼)

This will manifest by complicating our definition of step

(define/contract (step e)

  (expr? -> expr?)

  …)

(define/contract (step e)

  (expr? -> (listof expr?))

  …)

We would need instead…
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What about not..?

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)
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IfT
n ≠ 0

(if n e1 e2) → e1

IfF
n = 0

(if n e1 e2) → e2

Finally, if…

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)
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So many rules! Rules are overly complicated: next 
lecture we will refactor them to be more attractive…

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼= n0 + n1

(plus n0 n1) → n′￼

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

IfT
n ≠ 0

(if n e1 e2) → e1
IfF

n = 0
(if n e1 e2) → e2

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)
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One very important omission: there is no defined 
step for values!


These rules only tell us how to step expressions. We 
need to keep doing that (in a loop) until we reach a 
value.
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Now that we have the rules, let’s code them up as a 
small-step interpreter

(define/contract (step e)

  (-> (lambda (x) (and (expr? x) (not (value? x))) expr?)

  ‘todo)
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Last lecture: so many rules! How could you ever 
remember all of these!?

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼= n0 + n1

(plus n0 n1) → n′￼

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

IfT
n ≠ 0

(if n e1 e2) → e1
IfF

n = 0
(if n e1 e2) → e2

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)



In this case, it was much easier to write the 
interpreter!

PlusLeft
e0 → e′￼

(plus e0 e1) → (plus e′￼ e1)

PlusRight
n ∈ ℚ e1 → e′￼

(plus n e1) → (plus n e′￼)

StepPlus
n0 ∈ ℚ n1 ∈ ℚ n′￼= n0 + n1

(plus n0 n1) → n′￼

DivLeft
e0 → e′￼

(div e0 e1) → (div e′￼ e1)

DivRight
n ∈ ℚ e1 → e′￼

(div n e1) → (div n e′￼)

StepDiv
n0 ∈ ℚ n1 ∈ ℚ n′￼ = n0/n1

(div n0 n1) → n′￼

StepNot0
n ≠ 0

(not n) → 0

StepNot1
n = 0

(not n) → 1

StepNot
e → e′￼

(not e) → (not e′￼)

IfT
n ≠ 0

(if n e1 e2) → e1
IfF

n = 0
(if n e1 e2) → e2

If
e0 → e′￼

(if e0 e1 e2) → (if e′￼ e1 e2)
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Also, our small-step rules violate a basic principle:

We might prefer that each step of the semantics to 
have a maximum (bounded) runtime.


Our small-step semantics needs to “dig down” 
arbitrarily far into the term before it makes progress.

1 ∈ ℚ
(not 1) → 0

(not (not 1)) → 1

⋮

(not (…(not (not 1))…) → 0
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In our last interpreter, the step function is not tail-
recursive, instead step is direct-style recursive and 
then called in a tail-recursive loop by evaluate!

(define (step e)

  (match e

   …

    [`(not 0) 1]

    [`(not ,n) #:when (not (equal? n 0)) 0]

    …))
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This is not necessarily a problem, but it is often 
desirable for our step function to be finite. For 
example, assembly languages must operate in finite 
time because instructions are executed 

MOV      r0, #10   

MOV      r1, #3

ADD      r0, r0, r1
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Also: our semantics is very wasteful with respect to 
work. Again: for large terms it “digs down” to find 
the correct redex (reducible expression)…

(plus (plus (plus 1 1) 2) 3)

Then “rebuilds” the term, only to then “dig down” 
again during the next step…


Lots of wasted effort digging, rebuilding, and 
digging again…
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In this lecture, we’re going to talk about context 
and redex semantics, which is anoptimization of the 
small-step semantics we saw last lecture.

(define (step e)

  (match e

   …

    [`(not 0) 1]

    [`(not ,n) #:when (not (equal? n 0)) 0]

    …))
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In this lecture, we’re going to talk about context 
and redex semantics, which is anoptimization of the 
small-step semantics we saw last lecture.

(define (step e)

  (match e

   …

    [`(not 0) 1]

    [`(not ,n) #:when (not (equal? n 0)) 0]

    …))
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Graphs
• A graph is a pair〈N,E〉of


• A set of nodes, N


• A set of edges, E, of the form


• (n₀,n₁) ∣ n₀,n₁ ∈ N


• Can equivalent represent in several ways:


• Adjacency list (list of edges)


• Graphs can be be composed of either undirected 
or directed edges

n₀

n₁
n₂

1/3

1/3
1/3
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• Algorithm that originally powered Google


• Calculates a probability distribution on a graph


• I.e., assigns a number in [0,1] to each node


• This number is the page’s “rank.”


• Forms a probability distribution


• Page ranks sum to 1 across all pages


• f ∈ N → [0,1]


• ∑ᵢ f(i) = 1 over i ∈ dom(f)

PageRank

n₀

n₁
n₂

1/3

1/3
1/3
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• For this assignment we will use list of edges


• Can use this to calculate:


• Neighbors


• Num of nodes in graph (total)


• As input to PageRank n₀

n₁
n₂

(define x '((n0 n1)

            (n1 n0)

            (n2 n0)

            (n2 n1)))
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(define x '((n0 n1)

            (n1 n0)

            (n2 n0)

            (n2 n1)))

Write a function that calculates the pages to which 
a given page links
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Write a function that calculates the pages to which 
a given page links

(define (links-of graph node)

  (define (loop graph l)

    (match graph

      [`() l]

      [`((,p0 ,p1) . ,rst)

       (if (equal? p0 node)

           (loop rst (cons p1 l))

           (loop rst l))]))

  (loop graph '()))
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Representing PageRanks
• PageRanks are represented using Racket hashes


• Key/value maps (similar to hash tables)


• Immutable w/ O(1) runtime for lookup/insert


• Based on Hash Array-Mapped Tries (HAMT)
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• (hash ‘a 0 1 2 “hello” ‘c) — creates hashes, 
note keys can be heterogeneous type


• (hash-ref x ‘a) — Looks up value for key ‘a


• (hash-set x ‘a 2) — Returns a new hash with 
updated key for ‘a


• (hash-keys x) and (hash-values x)— Return list 
of keys / values (useful for iterating)
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PageRank algorithm
• Begins by constructing initial PageRank


• Each page has rank 1/N (for N nodes)


• Then, performs an iteration step some number 
of times


• You decide how long you want to do this


• Usually until change is smaller than some 
delta

n₀

n₁
n₂

(hash ‘n0 1/4

      ‘n1 1/4

      ‘n2 1/4

      ‘N3 1/4)



PageRank Iteration Step
PageRank is like a vote. Each page has a certain share of 
votes (its PR), each step it votes for each page to which it 
links, but it divides its vote equally across links.

 
Intuitively the next PageRank for page i is the sum of:

•A random chance that a surfer will jump to i

•(1-d)/N applies random chance to all pages


•The PageRanks of the pages that link to it, weighted by 
the number of links those pages have



• At each step, the next PR for page i is calculated as:


• Where:


• M(pᵢ): set of pages that link to i


• PR(pⱼ) and PR(pᵢ): PageRanks of i and j


• L(pⱼ) is the number of links from j to any other page


• d is a “dampening factor” (typically .85)



• At each step, the next PR for page i is calculated as:


• Where:


• M(pᵢ): set of pages that link to i


• PR(pⱼ) and PR(pᵢ): PageRanks of i and j


• L(pⱼ) is the number of links from j to any other page


• d is a “dampening factor” (typically .85)



n₀

n₁
n₂

1/3

1/3

1/3

Let’s calculate the next values of n₀, 
n₁, and n₂ (assume d=85/100)

For n₀. Sum of…

• (1-85/100)/3, since 3 nodes

•For n₂…

•85/100 * 1/3 / 2


•For n₁…

•85/100 * 1/3 / 1


•= 19/40



n₀

n₁
n₂

19/40

1/20

19/40

So next PR should be…

(hash ‘n0 19/40

      ‘n1 19/40

      ‘n2 1/20)



PageRank Assumptions
• Several simplifying assumptions for input graphs


• No “self-links:” remove links from a page to itself


• All nodes link to at least one other node


• Can fix this manually: link to every other node


• These steps necessary to make math work out (i.e., so that 
iteration forms a probability distribution)


• All test input graphs have this form



Hints
• Read Racket docs for lists, sets, and hashes


• Start sooner rather than later


• Will require much more time than a0


• num-pages, num-links, and num-backlinks are all easier


• Should be able to mostly do now


• mk-initial-pagerank, step-pagerank and iterate-pagerank-
until are a little harder
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• Variables


• Function application


• Lambda abstraction

The Lambda Calculus (1930s)

Just these three elements form a 
complete computational system



e ::= x Variables
∣ λx . e Lambdas
∣ e0 e1 Applications

Original Syntax



e ::= x Variables
∣ (λ (x) e) Lambdas
∣ (e0 e1) Applications

Scheme Syntax



(define (expr? e)

  (match e

    [(? symbol? x) #t]

    [`(lambda (,(? symbol? x)) ,(? expr? e-body)) #t]

    [`(,(? expr? e0) ,(? expr? e1)) #t]

    [_ #f]))



Lambda Calculus equivalent (in expressivity) to Turing


machines. 


The Church-Turing Thesis states that turing machines 
/ lambda calculus can encode any computable 
function.

Lambda Calculus vs. Turing machines



In fact, it is possible to encode (most of) any Scheme 
program as a lambda calculus expression via a 
Church/Boehm encoding.



Now let’s look at the three lambda calculus forms in 
detail…



(λ (x) e)

Formal parameter Function body

An expression, abstracted over all possible values

for a formal parameter, in this case, x.



(λ (x) e)

Formal parameter Function body

An expression, abstracted over all possible values

for a formal parameter, in this case, x.

In fact, you can read lambdas mathematically as “for all.” This 
observation forms the basis for universal quantification in higher-
order logics implemented using typed lambda calculus variants!



(e e)

Expression in 

function position

Expression in

argument position

Next we have applications



x

Variable reference

Variables are only defined/assigned when a function 
is applied and its parameter bound to an argument.



How do we compute with the lambda calculus..?

Answer: via reductions, which define equivalent / 
transformed terms.



The most important reduction is β, which applies 
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))



The most important reduction is β, which applies 
a function by substituting arguments

((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

β



((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

((λ (x) x) (λ (x) x))

β

β

The most important reduction is β, which applies 
a function by substituting arguments



((λ (f) (f (f (λ (x) x)))) (λ (x) x))

((λ (x) x) ((λ (x) x) (λ (x) x)))

((λ (x) x) (λ (x) x))

(λ (x) x)

β

β

β

The most important reduction is β, which applies 
a function by substituting arguments



→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

Textual substitution. This says:

replace every x in E0 with E1.

Next lecture: carefully defining substitution!



((λ (x) x) (λ (x) x))

x[x ← (λ (x) x)]

β



((λ (x) x) (λ (x) x))

β

((λ (x) x) (λ (x) x))

(λ (x) x)

β



Can you beta-reduce the following term 
more than once…?


((λ (x) (x x)) (λ (x) (x x)))



((λ (x) (x x)) (λ (x) (x x)))

β

β

β

β

(λ (x) x x) (λ (x) x x)

β reduction may continue

indefinitely (i.e., in non-
terminating programs)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β



((λ (x) (x x)) (λ (x) (x x)))

β

β

β

β

(λ (x) x x) (λ (x) x x)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (x x)) (λ (x) (x x)))

β

This specific program is 
known as Ω (Omega)



((λ (x) (x x)) (λ (x) (x x)))

β

((λ (x) (x x)) (λ (x) (x x)))

Ω is the smallest non-
terminating program!

Note how it reduces to itself in a single step!



Lambda Calculus: 
Reduction / Substitution
CIS352 — Spring 2021

Kris Micinski



Last lecture: β−reduction, informally

→β((λ (x) E0) E1) E0[x ← E1]{
redex

(reducible expression)

replace every x in E0 with E1.



If you watch the history of the lambda calculus 
discussion by Dana Scott, I will award two 
participation points (min 5-30): 


https://www.youtube.com/watch?v=uS9InrmPIoc



How can we define beta reduction as a 
Racket function…?

(define (beta-reduce e)

  (match e

    [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]

    [_ (error "beta-reduction cannot apply...")]))

Today: how do we define the subst function?

Variables are challenging



Typical presentations of the lambda calculus define a 

textual-reduction semantics.


You can envision a “machine” where the machine’s state 
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))



Typical presentations of the lambda calculus define a 

textual-reduction semantics.


You can envision a “machine” where the machine’s state 
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

β



Typical presentations of the lambda calculus define a 

textual-reduction semantics.


You can envision a “machine” where the machine’s state 
is the text of the program as it evolves

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β



Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y)

y

β

β

Observe! Β-Reduction is 
nondeterministic


In general, a term may have multiple β 
redexes, and thus multiple β reductions



This term has two beta redexes!

Semantics of the Lambda Calculus

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

The outer one in red

The inner one in blue



The two challenges for this lecture:

- How do we implement substitution

- How do we deal with nondeterminism in the semantics



Substitution seems conceptually simple, but it is 
surprisingly tricky. But consider this: substitution 
is fundamentally where computation happens!



(define (beta-reduce e)

  (match e

    [`((lambda (,x) ,e-body) ,e-arg) (subst x e-arg e-body)]

    [_ (error "beta-reduction cannot apply...")]))

If we have subst, we can easily define beta-reduce.



FV : Exp → 𝒫(Var)

FV(x) Δ= {x}

FV((λ (x) eb))
Δ= FV(eb) \ {x}

FV(ef ea))
Δ= FV(ef) ∪ FV(ea)

We define the free variables of a lambda expression 
via the function FV:

Free Variables



FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}



FV((x y)) = {x, y}

FV(((λ (y) ((λ (x) (z x)) x))) = {z, x}

FV(((λ (x) x) y)) = {y}
FV(((λ (x) x) x)) = {x}



((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

What are the free variables of each of the 
following terms?



((λ (x) x) y)

((λ (x) (x x)) (λ (x) (x x)))

((λ (x) (z y)) x)

{y}

{}

{x, y, z}

What are the free variables of each of the 
following terms?



A term is closed when it has no free variables:

- ((lambda (x) x) (lambda (y) y))

- (lambda (z) (lambda (x) (z (lambda (z) z)))

Sometimes we call these (closed terms) combinators

Some open terms…

- (lambda (x) ((lambda (z) z) z))

- ((lambda (x) x) (lambda (z) x))

Closed Terms



α-renaming allows us to rename variables:

Alpha-Renaming

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Still need to define substitution…



Important consequence: terms are 
unique up to α equivalence

Every term has infinitely-many terms to 
which it is α equivalent

e0 e1 e2 e3 e4 e5
α α α α α

(lambda (x) x)(lambda (😋) 😋)

https://getemoji.com/
https://getemoji.com/


What breaks if the antecedent isn’t enforced..?

y ∉ FV(e)
(λ (x) e) α→ (λ (y) e[x ↦ y])

Meaning of term changes! Someone might have an 
intention to use that free variable y


(lambda (x) y) very different from (lambda (x) x)



Can we define lambda calculi without explicit variables? (Yes!)


• De-Bruin Indices (variables are numbers indicating to which 
binder they belong)


• Combinatory logic uses bases of fully-closed terms. Always 
possible to rewrite any LC term to use only several closed 
combinators


We won’t study either of these



We define capture-avoiding substitution, in which we are 
careful to avoid places where variables would become 
captured by a substitution.



The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) a)[a ← (λ (b) b)]



The problem with (naive) textual substitution

((λ (a) (λ (a) a)) (λ (b) b))

β

(λ (a) (λ (b) b))



Capture-avoiding substitution

E0[x ← E1]



x[x ← E] = E
y[x ← E] = y  where  y ≠ x



x[x ← E] = E
y[x ← E] = y  where  y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])



x[x ← E] = E
y[x ← E] = y  where  y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)



x[x ← E] = E
y[x ← E] = y  where  y ≠ x

(E0 E1)[x ← E] = (E0[x ← E] E1[x ← E])
(λ (x) E0)[x ← E] = (λ (x) E0)
(λ (y) E0)[x ← E] = (λ (y) E0[x ← E])

where  y ≠ x  and  y ∉ FV(E)

β-reduction cannot occur when y ∈ FV(E)



((λ (y) 

    ((λ (z) (λ (y) (z y))) y)) 

 (λ (x) x))

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?



((λ (y) 

    ((λ (z) (λ (y) (z y))) y)) 

 (λ (x) x))

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?

((λ (z) (λ (y) (z y))) (λ (x) x))

β



(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?



How can you beta-reduce the following 
expression using capture-avoiding 

substitution?

(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

You cannot! This redex would require:

(λ (y) z)[z ← (λ (x) y)]
(y is free here, so it would be captured)



          (λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))

(λ (y) ((λ (z) (λ (w) z)) (λ (x) y)))→α

(λ (y) (λ (w) (λ (x) y)))→β

Instead we alpha-convert first.

How can you beta-reduce the following 
expression using capture-avoiding 

substitution?



To formally define the semantics of the lambda calculus via 
reduction, we also need rules that will let us apply reductions 
inside of rules:

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′￼

(e0 e1) → (e0 e′￼)
β0

e0
βα
→ e′￼

(e0 e1) → (e′￼ e1)

β
e′￼= eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′￼



((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Recall: a term may have 
multiple redexes!

α
y ∉ FV(e)

(λ (x) e) α→ (λ (y) e[x ↦ y])

β1
e1

βα
→ e′￼

(e0 e1) → (e0 e′￼)
β0

e0
βα
→ e′￼

(e0 e1) → (e′￼ e1)

β
e′￼= eb [x ↦ e1]

((λ (x) eb) e1) β
→ e′￼



((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ

Because β and α reduction are inherently nondeterministic, we 
use a reduction strategy, which is system that tells us which 
reduction to apply:

- Normal Order — Leftmost (outermost) application

- Applicative Order — Innermost application



We’ll talk more about these next time. They relate to 
the computational notions of call-by-name (normal) 
and call-by-value (applicative) 



(λ (x) (E0 x)) E0 where  x ∉ FV(E0) →η

η-reduction / expansion capture a property akin 
to extensionality

E0 (λ (x) (E0 x)) where  x ∉ FV(E0) →η

We do not use η-reduction/expansion in 
computation (unlike β), but it helps us establish 

certain equalities in lambda theories



When unambiguous, we refer to reduction in the lambda 
calculus as the application of a beta, alpha, or eta reduction:

(→)  =  (→β) ∪ (→α) ∪ (→η) 

(→*)
(When necessary for exams, we will clarify…)



E0

*

E8

*

?

It is often helpful to think of applying a sequence of reductions 
to arrive at some final “result.”


In the lambda calculus, we call these results / values “normal 
forms.”

A normal form is a form that has 
no more possible applications of 
some kind of reduction…



E0

*

(λ (x) … (λ (z) ((a …) …)))

In beta normal form, no function position can be a lambda;

this is to say: there are no unreduced redexes left!



We covered a lot of material!

• Free variables

• Alpha renaming

• Beta reduction

• Eta reduction / expansion

• Capture-avoiding substitution

• Applicative / normal order

Next time: reduction strategies and more normal 
forms…



Lambda Calculus 
Reduction Strategies
CIS352 — Spring 2021

Kris Micinski



Last lecture: reduction rules for the lambda calculus



This lecture: reduction strategies



As a computer scientist, we can view 
nondeterminism in the rules as a challenge—it is 
easier to implement deterministic machines.



As a computer scientist, we can view 
nondeterminism in the rules as a challenge—it is 
easier to implement deterministic machines.

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ



We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down




We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down

- We will never reduce under a lambda



We will assume a few basic, but important, choices:

- Evaluation of a term will occur top-down

- We will never reduce under a lambda

(lambda (x) ((lambda (y) (y y)) (lambda (y) (y y))))

We say that lambda expressions are in Weak Head 
Normal Form (WHNF)

Even though a potential redex exists under the 
lambda, we will not evaluate it (until application)



Two popular strategies:

- Call by value, reduce arguments early as possible

- Call by name, reduce arguments late as possible



Two popular strategies:

- Call by value, reduce arguments early as possible


- Applicative order (innermost), but not under lambdas

- Call by name, reduce arguments late as possible


- Normal order, but not under lambdas



Whenever you get to an application of a lambda, 
you have a choice:

- Attempt to evaluate argument?

- Perform application immediately

((lambda (x) x) ((lambda (z) z) y))

((lambda (x) x) y) ((lambda (z) z) y)

y

ββ

ββ



Church-Rosser Theorem

For any expression e,

If e →* e₀ and e →* e₁

Then, both e₀ and e₁ step to 

some common term e’


e

e₀ e₁


e’



Church-Rosser Theorem

For any expression e,

If e →* e₀ and e →* e₁

Then, both e₀ and e₁ step to 

some common term e’


e

e₀ e₁


e’
Corollary: all terminating 
paths result in same normal 
form!



((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using…

- Call-by-Name

- Call-by-Value



((lambda (x) x) ((lambda (y) y) (lambda (y) y)))

Give the reduction sequences using…

- Call-by-Name

- Call-by-Value

((lambda (y) y) (lambda (y) y))

(lambda (y) y)

((lambda (x) x) (lambda (y) y))

(lambda (y) y)

CBN CBV



((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name

- Call-by-Value



((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name

- Call-by-Value

(lambda (y) y)

CBN



((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

Up to alpha equivalence, evaluate this term using:

- Call-by-Name

- Call-by-Value

(lambda (y) y) ((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

((lambda (x) (lambda (y) y))

 ((lambda (x) (x x)) (lambda (x) (x x)))

CBN

CBV



Standardization theorem
If an expression can be evaluated to 
WHNF (i.e., it doesn’t loop), then it 
has a normal-order reduction 
sequence.


In other words: the lazy semantics is 
most permissive, in terms of 
termination.



Church Numerals
CIS352 — Spring 2021

Kris Micinski



This week in class we’re going to talk about Church 
Encoding, a technique to express arbitrary Racket code 
using only the lambda calculus.


We will (by hand) compile Racket forms to just LC


Why do this? Answer: illustrate theoretical expressivity of LC



Our goal this lecture: translate simple arithmetic operations 
over constants to the lambda calculus


2 + 1 * 2 = 4

We want to express this with the lambda calculus



I think this is one of the trickiest things to understand in the 
course. I first learned this by working out the beta-
reductions on paper, and I recommend that approach.



One key problem: how do we represent numbers as 
lambdas?



Observation 1

On simplifying assumption: focus only on the naturals

Can write any natural number n as:

1 + . . . + 0
n times

0 = 0
1 = 1 + 0
2 = 1 + 1 + 0
3 = 1 + 1 + 1 + 0



Observation 2: represent the number n as a function 
that accepts another function g and returns a function 
that performs g n times.

0 = (λ ( f ) (λ (x) x))
1 = (λ ( f ) (λ (x) ( f x)))
2 = (λ ( f ) (λ (x) ( f ( f x))))

…

This is where it starts getting confusing, if you are 
lost here, stop to think this through for a few 
minutes…



Observation 2: represent the number n as a function 
that accepts another function g and returns a function 
that performs g n times.

(define zero (lambda (f) (lambda (x) x)))

(define one  (lambda (f) (lambda (x) (f x))))

(define two  (lambda (f) (lambda (x) (f (f x)))))



By the way, how do we translate a Church-encoded 
number to a Racket number?

;; do add1 n times, starting from 0

;; (add1 (add1 … (add1 0) …))

(define (church->nat n)

  ((n add1) 0)



Observation 3: when we use this encoding, any two 
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))



Observation 3: when we use this encoding, any two 
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

(((lambda (x) x) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))



Observation 3: when we use this encoding, any two 
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

(((lambda (x) x) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

((lambda (x) x)

 (lambda (z) (lambda (x) (z (z x)))))



Observation 3: when we use this encoding, any two 
expressions that are alpha-equivalent to n is n

(((lambda (y) (y y)) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

(((lambda (x) x) (lambda (x) x))

 (lambda (z) (lambda (x) (z (z x)))))

((lambda (x) x)

 (lambda (z) (lambda (x) (z (z x)))))

(lambda (z) (lambda (x) (z (z x)))) ;; 2



Question:

Say I give you a number n. You know its normal-form (when it is 
fully-reduced) must be something like


n = (lambda (f) (lambda (x) (f (f (f … (f x) …))))

How can you generate n + 1?



Question:

Say I give you a number n. You know its normal-form 
(when it is fully-reduced) must be something like


n = (lambda (f) (f (f … (f x) …)))

How can you generate n + 1?

n+1 = (lambda (f) (f (f (f … (f x) …))))



Question:

Say I give you a number n. You know its normal-form 
(when it is fully-reduced) must be something like


n = (lambda (f) (f (f … (f x) …)))

Now, how could I wrote a function, succ, which 
computes n+1 using only the lambda calculus?



Question:

Say I give you a number n. You know its normal-form 
(when it is fully-reduced) must be something like


n = (lambda (f) (f (f … (f x) …)))

Now, how could I wrote a function, succ, which 
computes n+1 using only the lambda calculus?

  ;; the *argument*

  (lambda (n)

    ;; the thing we're *returning* should do f "n+1 times"

    ;; ((n f) x) "applies f n times" and returns a result

    ;; 

    (lambda (f) (lambda (x) (f ((n f) x)))))



(define succ

 (lambda (n) (lambda (f) (lambda (x) (f ((n f) x))))))

;; (succ 1) should equal 2

((lambda (n)

   (lambda (f) (lambda (x) (f ((n f) x))))))

 (lambda (f) (lambda (x) (f x))))

;; (succ 1) should equal 2

(lambda (f) 

  (lambda (x) (f (((lambda (f) (lambda (x) (f x))) f) x))))))))

;; note here: we’re reducing under lambda!

(lambda (f) 

  (lambda (x) (f ((lambda (x) (f x)) x))))))))

(lambda (f) 

  (lambda (x) (f (f x)))))))) ;; this is 2!



Question:

Now how do you do addition…? Observation: need 
two arguments. We will use a trick named currying.


plus = (lambda (n) (lambda (k) …))

one =  (lambda (f) (lambda (x) (f x))


We can call this like:

((plus one) one) ;; compute 2



Question:

Now how do you do addition…? Observation: need 
two arguments. We will use a trick named currying.


plus = (lambda (n) (lambda (k) …))

one =  (lambda (f) (lambda (x) (f x))


We can call this like:

((plus one) one)

Observe the key idea: plus returns a function that 
takes another function (the second one) to complete 
the work!



plus = 

(lambda (n) (lambda (k) 

  (lambda (f) (lambda (x) ((k f) ((n f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times



plus = 

(lambda (n) (lambda (k) 

  (lambda (f) (lambda (x) ((k f) ((n f) x))))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Homework: 

Reduce (to beta-normal-form, i.e., doing all possible reductions) 
the following (encoding plus, 0, 1, and 2 correctly):

 (plus 0 1) ;; (lambda (f) (lambda (x) (f x))

 (plus 1 1) ;; (lambda (f) (lambda (x) (f (f x)))

 (plus 2 0) ;; (lambda (f) (lambda (x) (f (f x)))



(lambda (n)

    (lambda (k)

      (lambda (f) (lambda (x) (((n k) f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Alright, now how do you do multiplication..?

Well, do “n k times!”



(lambda (n)

    (lambda (k)

      (lambda (f) (lambda (x) (((n k) f) x)))))

((n f) x) ;; applies f to x n times

((k f) x) ;; applies f to x k times

Homework: 

Reduce (to beta-normal-form, i.e., doing all possible reductions) 
the following (encoding plus, 0, 1, and 2 correctly):

 (mult 1 1) ;; (lambda (f) (lambda (x) (f x))

 (mult 2 1) ;; (lambda (f) (lambda (x) (f (f x)))

 (mult 2 0) ;; (lambda (f) (lambda (x) x))



P2: Church Encoding
CIS352 — Spring 2021

Kris Micinski



Last lecture: Church numerals and operations over 
arithmetic.


After last lecture, you should be able to use Church 
encoding to express things like this:


                                  2 + 3 * (4 + 1)



In this project, we’ll translate Scheme programs to the 
lambda calculus.



This project: how do we translate the rest of Scheme?

e ::= (letrec ([x (lambda (x …) e)])) 
    | (let ([x e] …) e)

    | (lambda (x …) e)

    | (e e …)

    | x

    | (if e e e)

    | (prim e e) | (prim e)

    | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

(Language used in project p2)



Output language

e ::= (lambda (x) e)

    | (e e)

    | x


x ::= <vars>



Let’s go through the forms one by one and eliminate 
them :-)



(λ (x y z) e)

(λ (x) e)

(λ () e)

(λ (x) e)

(λ (_) e)

(λ (x) 

  (λ (y) 

    (λ (z) e)))

Currying is a trick where you translate multi-arg 
lambdas into sequences of lambdas



Of course, you also need to fix up callsites

(f a b c d) ((((f a) b) c) d)

(f a) (f a)

(f) (f (λ (x) x))



Alright, so we started with this…

e ::= (letrec ([x (lambda (x …) e)])) 
    | (let ([x e] …) e)

    | (lambda (x …) e)

    | (e e …)

    | x

    | (if e e e)

    | (prim e e) | (prim e)

    | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …



Now we have…

e ::= (letrec ([x (lambda (x …) e)])) 
    ;; let is encoded…

    | (lambda (x) e) ;; single x

    | (e e)          ;; single arg

    | x

    | (if e e e)

    | ((prim e) e) | (prim e)

    | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …



Now let’s encode if

(if #t eT eF)

eT

(if #f eT eF)

eF

We need an encoding that does this…



Let’s say we encode true as (λ (t f) t)

(if #t eT eF) (if #f eT eF)

((λ (t f) t) vT vF) ((λ (t f) f) vT vF)

vT vF

This is critically broken!



((λ (t f) t) 0 Ω)

.........

Because if we did that, then the encoding of

  (if #t 0 Ω) ;; Ω = ((lambda (x) (x x)) (lambda (x) (x x)))

Not right! We want it to be just 0!



((λ () eT))

eT

((λ (t f) (t)) (λ () eT) (λ () Ω))

vT

Note: already explained how to encode 0-arg lambda…



((λ () eT))

eT

((λ (t f) (t)) (λ () eT) (λ () Ω))

vT

Note: already explained how to encode 0-arg lambda…

So our true encoding for if/true/false is…



Now we’re just down to…

e ::= (letrec ([x (lambda (x) e)]))

    | (lambda (x) e)

    | (e e)

    | x

    | ((+ e) e) | ((* e) e)

    | ((cons e) e) | (car e) 

    | (cdr e) | (null? e)

    | d

d ::= ℕ | ‘()

x ::= <vars>



We taught you how to do these in the last video!

e ::= (letrec ([x (lambda (x) e)]))

    | (lambda (x) e)

    | (e e)

    | x

    | ((+ e) e) | ((* e) e)

    | ((cons e) e) | (car e) 

    | (cdr e)

    | d

d ::= ℕ | ‘()

x ::= <vars>



So now all we need to do is this…

e ::= (letrec ([x (lambda (x) e)]))

    | (lambda (x) e)

    | (e e)

    | x

    | ((+ e) e) | ((* e) e)

    | ((cons e) e) | (car e) 

    | (cdr e) | (null? e)

    | d

d ::= ℕ | ‘()

x ::= <vars>



‘() = (λ (when-cons) (λ (when-null)

        (when-null)))

(cons a b) = (λ (when-cons) (λ (when-null)

               (when-cons a b)))

Using this definition, can you define car, cdr, and null?



church:null? = (λ (lst)  
                 (lst (λ (a b) #f) ;; when cons

                    (λ () #t)))    ;; when null



Now all we have is…

e ::= (letrec ([x (lambda (x) e)]))

    | (lambda (x) e)

    | (e e)

    | x

x ::= <vars>

To implement letrec, we use a fixed-point combinator 
(such as the Y combinator…). This is a bit tricky, so we’ll 
explain it next week in class.
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Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([x (lambda (x …) e)])) 
    | (let ([x e] …) e)

    | (lambda (x …) e)

    | (e e …)

    | x

    | (if e e e)

    | (prim e e) | (prim e)

    | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …



Right now: clone the corresponding autograder exercise for 
this lecture so you can get participation points…



Last lecture: encoding Scheme in the lambda calculus

e ::= (letrec ([x (lambda (x …) e)])) 
    | (let ([x e] …) e)

    | (lambda (x …) e)

    | (e e …)

    | x

    | (if e e e)

    | (prim e e) | (prim e)

    | d

d ::= ℕ | #t | #f | ‘()

x ::= <vars>

prim ::= + | - | * | not | cons | …

But didn’t do letrec



letrec lets us define recursive loops

(letrec ([f (lambda (x)

              (if (= x 0)

                  1

                  (* x (f (sub1 x))))])

  (f 20))



(letrec ([f (lambda (x)

              (if (= x 0)

                  1

                  (* x (f (sub1 x))))])

  (f 20))

letrec lets us define recursive loops

Unlike let, letrec allows referring to f within its definition



(define (fib-using-letrec x)

  (letrec ([fib (lambda (x)

                  ;; Your answer:

                  'todo)])

    (fib x)))

Unlike let, letrec allows referring to f within its definition



(letrec ([f (lambda (x)

              (if (= x 0)

                  1

                  (* x (f (sub1 x)))))])

  (f 20))

Today, we will discuss a magic term, Y, that allows us to 
write…

(let ([f

       (Y (lambda (f)

            (lambda (x)

              (if (= x 0)

                  1

                  (* x (f (- x 1)))))))])

  (f 20))



(define Y (λ (g) ((λ (f) (g (λ (x) ((f f) x))))

                  (λ (f) (g (λ (x) ((f f) x)))))))

This magic term, named Y, allows us to construct recursive 
functions.



(define U (lambda (x) (x x)))

First, the U combinator

The U combinator lets us do something very crucial: pass a 
copy of a function to itself.




Let’s say I didn’t have letrec, what could I do…?

(let ([f (lambda (mk-f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) x)))))])

  ((f f) 20))

First observation: pass f to itself

mk-f is pronounced “make f”



Let’s see why this works!

(let ([f (lambda (mk-f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) (sub1 x))))))])

  ((f f) 20))



Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

This initial call “makes the next copy”

(let ([f (lambda (mk-f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) (sub1 x))))))])

  ((f f) 20))



(let ([f (lambda (mk-f)

           (lambda (x) ;; x = 20

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) (sub1 x))))))])

  ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

2: Second, apply that (lambda (x) …) to 20, take false branch



(let ([f (lambda (mk-f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) (sub1 x))))))])

  ((f f) 20))

Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy 
of (lambda (x) …)



Let’s see why this works!

1: First, apply f to itself. First lambda goes away, returns 
(lambda (x) …) with mk-f bound to mk-f

2: Next, apply that (lambda (x) …) to 20, take false branch

3: Next, compute (mk-f mk-f), which gives us another copy 
of (lambda (x) …)

4: Apply that same function again (until base case)!

(let ([f (lambda (mk-f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) (sub1 x))))))])

  ((f f) 20))



(letrec ([f (lambda (x) e-body)])

  letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by:

Wrapping (lambda (x) e-body) in (lambda (f) …)

Changing occurrences of f (in e-body) to (f f)

Apply U combinator / apply function to itself
Changing letrec to let

Think carefully why this works..!



(letrec ([f (lambda (x) e-body)])

  letrec-body)

The U combinator recipe for recursion…

Systematically translate any letrec by:

Wrapping (lambda (x) e-body) in (lambda (f) …)

Changing occurrences of f (in e-body) to (f f)

Apply U combinator / apply function to itself
Changing letrec to let

(let ([f (U (lambda (f)

              ;; replace f w/ (f f)  
              (lambda (x) e-body))])

  letrec-body)



(define (length-using-u lst)

  (let ([len (U (lambda (f)

                  (lambda (x)

                    'todo)))])

    (len lst)))

(define (length-using-letrec lst)

  (letrec ([len (lambda (x)

                  (if (null? x)

                      0

                      (add1 (len (rest x)))))])

    (len lst)))

Let’s do an example…

Your job…



(define (fib-using-U n)

  (letrec ([fib (U 'todo)])

    (fib n)))

(define (fib-using-letrec n)

  (letrec ([fib

            (lambda (x)

              (cond [(= x 0) 1]

                    [(= x 1) 1]

                    [else (+ (fib (- x 1))

                             (fib (- x 2)))]))])

    (fib n)))

Now another example…

Translate this one to use U



(let ([f (lambda (mk-f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x ((mk-f mk-f) (sub1 x))))))])

  ((U f) 20))

One pesky thing: need to rewrite function so that calls to 
mk-f need to first “get another copy” by doing (mk-f mk-f)

By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x (f (sub1 x))))))])

  ((Y f) 20))



Let’s ask ourselves: what does f need to be when Y plugs it 
in…?

(let ([f (Y (lambda (f)

              ;; no change to e-body  
              (lambda (x) e-body))])

  letrec-body)

(Y f ) = f (Y f )



(Y f) = (f (Y f))

Deriving Y

1. Treat as definitionY = (λ (f) (f (Y f)))

2. Lift to mY, 
use self-application

mY = (λ (mY) 
       (λ (f) 

         (f ((mY mY) f))))

mY = (λ (mY) 
       (λ (f) 

         (f (λ (x) (((mY mY) f) x)))))

3. Eta-expand



mY = (λ (mY) 
       (λ (f) 

         (f (λ (x) (((mY mY) f) x)))))

Y  =  (U (λ (y) (λ (f) 

           (f (λ (x) (((y y) f) x))))) 

U-combinator: (U U) is Omega



By contrast, the Y combinator will allow us to write this

(let ([f (lambda (f)

           (lambda (x)

             (if (= x 0)

                 1

                 (* x (f (sub1 x))))))])

  ((Y f) 20))

(Y f ) = f (Y f )



Closing words of advice:

- Understand how to write recursive functions w/ U / Y

- Do not need to remember precisely why Y works


- But do need to remember how to use it!

- If you want to understand: just think carefully about what 

U / Y are doing (with examples)
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Often speak of evaluating programs in a sequence of steps:


(+ (* 2 1) 3) -> (+ 2 3) -> 5

E.g., textual reduction. We defined textual reduction for 
IfArith and for lambda calculus (beta, …)



((lambda (x) ((lambda (y) x) z)) 

 (lambda (z) (lambda (…) …))

Key idea: at each step, we just decided which expression to 
reduce (using reduction strategy)


In a real implementation, this would be slow (would have to 
traverse term at each step)

Textual Reduction Review



Another way to conceptualize this would be to think of an 
explicit stack


The rule here is: once we “finish” the current expression, we 
“fill in” the stack


   (+ (* 2 1) 3)    stack = ☐ (empty stack)




Another way to conceptualize this would be to think of an 
explicit stack


The rule here is: once we “finish” the current expression, we 
“fill in” the stack


   (+ (* 2 1) 3)    stack = ☐ (empty stack)

-> (* 2 1)          stack = (+ ☐ 3)




Another way to conceptualize this would be to think of an 
explicit stack


The rule here is: once we “finish” the current expression, we 
“fill in” the stack


   (+ (* 2 1) 3)    stack = ☐ (empty stack)

-> (* 2 1)          stack = (+ ☐ 3)

-> 2                stack = (+ ☐ 3)




Another way to conceptualize this would be to think of an 
explicit stack


The rule here is: once we “finish” the current expression, we 
“fill in” the stack


   (+ (* 2 1) 3)    stack = ☐ (empty stack)

-> (* 2 1)          stack = (+ ☐ 3)

-> 2                stack = (+ ☐ 3)

-> 3                stack = (+ 2 ☐)




Another way to conceptualize this would be to think of an 
explicit stack


The rule here is: once we “finish” the current expression, we 
“fill in” the stack


   (+ (* 2 1) 3)    stack = ☐ (empty stack)

-> (* 2 1)          stack = (+ ☐ 3)

-> 2                stack = (+ ☐ 3)

-> 3                stack = (+ 2 ☐)

-> (+ 2 3)          stack = ☐



Another way to conceptualize this would be to think of an 
explicit stack


The rule here is: once we “finish” the current expression, we 
“fill in” the stack


   (+ (* 2 1) 3)    stack = ☐ (empty stack)

-> (* 2 1)          stack = (+ ☐ 3)

-> 2                stack = (+ ☐ 3)

-> 3                stack = (+ 2 ☐)

-> (+ 2 3)          stack = ☐
-> 5                stack = ☐ (done!)



These stacks have another appeal: the fact that they 
make only local changes makes them fast (compared 
to identifying redex each time).



However, we won’t focus a lot on the efficiencies of 
this style. If you want to see that, consider taking the 
compilers course here at SU.



Instead, we will observe that this style offers an 
additional flexibility: we can always conceptualize the 
return point as a function!


We call this function the “continuation,” since it lets 
us “continue” the computation.                                     


                                     

   (+ (* 2 1) 3) ;; (lambda (rtn) rtn)

-> (* 2 1)       ;; (lambda (x) (+ x 3))

-> 2             ;; (lambda (x) (+ x 3))

-> 3             ;; (lambda (x) (+ 2 x))

-> (+ 2 3)       ;; (lambda (x) x)

-> 5             ;; (lambda (x) x)



If you’re used to programming in Java/C++, you can 
think of a continuation as a “callback we invoke to 
return from a function.”

                                     

                                     

   (+ (* 2 1) 3) ;; (lambda (x) x)

-> (* 2 1)       ;; (lambda (x) (+ x 3))

-> 2             ;; (lambda (x) (+ x 3))

-> 3             ;; (lambda (x) (+ 2 x))

-> (+ 2 3)       ;; (lambda (x) x)

-> 5             ;; (lambda (x) x)



The call/cc form allows us to bind this continuation to 
a function

(+ 4 (call/cc (lambda (k) (k 3))))

When control reaches call/cc, the program binds the 
current continuation to k



(+ 4 (call/cc (lambda (k) (k 3))))

;; (lambda (x) (+ 4 x))

In this case, the current continuation is…



(let* ([x (+ (* 2 3) 4)]

       [y (add1 x)])

  y)


(lambda (z)

 (let* ([x (+ z 4)] [y (add1 x])) y))

How could we write the continuation at the 
underlined point?



(lambda (result)

  (let* ([x (+ result 4)]

         [y (add1 x)])

  y)

How could we write the continuation at the 
underlined point?

(let* ([x (+ (* 2 3) 4)]

       [y (add1 x)])

  y)



DANGER
Continuations are normal functions in most ways. One 
crucial difference: when you invoke a continuation, it 
abandons the current stack and reinstates the continuation!


Again: invoking a continuation is different than invoking a 
normal (non-continuation) function.


Students frequently find this confusing!



   (+ 4 (call/cc (lambda (k) (k 3))))

When execution reaches this point, k is bound as the continuation



   (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the 
current continuation and reinstate the saved continuation



   (+ 4 (call/cc (lambda (k) (k 3))))

Then, when we invoke the continuation, we abandon the 
current continuation and reinstate the saved continuation

But in this example, the saved continuation is equivalent to 
the current continuation, so we observe no difference!



The program never returns from call (k 3) because  
undelimited continuations run until the program exits. 

 
call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 3) (print 0)))) 
;; =>  3      (print 0) is never reached



The program never returns from call (k 2) because  
undelimited continuations run until the program exits. 

 
call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 2) (print 0)))) 
;; =>  3      (print 0) is never reached

Pause the video and type this one into Dr. Racket! 

Do you understand why (print 0) is never reached?



((lambda (k) (k 2))  
 (lambda (n) (exit (print (+ 1 n))))) 
;; =>  3

This call/cc’s behavior is roughly the same as the application:

(+ 1 (call/cc (lambda (k) (k 2)))) 
;; =>  3

Where the high-lit continuation (lambda (n) …) takes a

return value for the (call/cc …) expression and finishes the program.



(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When execution reaches this point, k is bound as the continuation

k = <continuation> (lambda (x) (+ 4 x))



(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

When control reaches this point, the current continuation is…

(lambda (x) (+ 4 (+ 5 x)))



(+ 4 (call/cc (lambda (k) (+ 5 (k 3)))))

And, by invoking k, then we abandon it to reinstate k

(lambda (x) (+ 4 x))



(call/cc (lambda (k0)

           (+ 1 (call/cc (lambda (k1)

                           (+ 1 (k0 3)))))))

(call/cc (lambda (k0)

           (+ 1 (call/cc (lambda (k1)

                           (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0)

           (+ 1 

              (call/cc (lambda (k1)

                         (+ 1 (k1 3))))

              (k0 1))))

Try an example. What do each of these 3 examples return? 
(Hint: Racket evaluates argument expressions left to right.)



(call/cc (lambda (k0)

           (+ 1 (call/cc (lambda (k1)

                           (+ 1 (k0 3)))))))

(call/cc (lambda (k0)

           (+ 1 (call/cc (lambda (k1)

                           (+ 1 (k0 (k1 3))))))))

(call/cc (lambda (k0)

           (+ 1 

              (call/cc (lambda (k1)

                         (+ 1 (k1 3))))

              (k0 1))))

Try an example. What do each of these 3 examples return? 
(Hint: Racket evaluates argument expressions left to right.)

3

4

1



463

Lecture Summary

Continuations allow us to capture the stack in a first-class way

call/cc (call-with-current-continuation)


Let’s us bind special continuation functions

When invoked, continuations reset the stack

As we will soon see, this enables building non-local control 
constructs (loops, exceptions, etc…)
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A common idiom for call/cc is to 

let-bind the current continuation.

(let ([cc (call/cc (lambda (k) k))])


   ...)



Note that applying call/cc on the identity function is exactly 
the same as applying it on the u-combinator!

(let ([cc (call/cc (lambda (k) k))])


   ...)

(let ([cc (call/cc (lambda (k) (k k)))])


   ...)

Why is this the case?



(let ([cc (call/cc (lambda (k) k))])


   ...)

(let ([cc (call/cc (lambda (k) (k k)))])


   ...)

(let ([cc (call/cc (lambda (k) (k k)))])


   ...)

…and calling k on itself, returns k to itself!

(let ([cc (call/cc (lambda (k) k))])


   ...)

 This return point           …is the same as this one…

Returning value v is the same as calling that saved return point on v. 


