
Syntax and Parsing
Part 1

At this point in the course, we’re going to start to
learn how PLs work under the hood

Programming languages take us from raw text on
the screen to bits flipping on the processor

Languages are implemented in phases

The raw text on the screen is gradually converted to a language
the computer speaks

http://durofy.com/phases-of-compiler-design/

http://durofy.com/phases-of-compiler-design/

Typically called the front end

The job of the compiler / interpreter’s front end is to break
down the raw text into a structure that is easier to work

with programmatically

This results in an intermediate representation

The job of the compiler / interpreter’s front end is to break
down the raw text into a structure that is easier to work

with programmatically

This results in an intermediate representation

Why?

The job of the compiler / interpreter’s front end is to break
down the raw text into a structure that is easier to work

with programmatically

This results in an intermediate representation

Why?

Working on raw text way too kludgey!

Don’t get too hung up on specifics right now, we’ll be implementing
one programming language (Forth) soon!

Today we’re going to focus on lexical analysis

I.e., how do we break up raw text into a stream of tokens?

Or, how do I define a token?

Next lecture we’ll talk about combining these raw
tokens to build up a grammar

This will help us define the syntax of a PL
compositionally

Lexical Analysis

Lexical analysis breaks apart a (potentially huge)
file into sequence of tokens

Token: atomic piece of syntax of a language

(define (hello-world)
 (display “Hello, world!\n”))

LPAREN ID(“define”) LPAREN Identifier(“hello-world”)
RPAREN LPAREN ID(“display”) STRING(“Hello,
world\n”) RPAREN RPAREN

One example of a token stream

(define (hello-world)
 (display “Hello, world!\n”))

LPAREN ID(“define”) LPAREN Identifier(“hello-world”)
RPAREN LPAREN ID(“display”) STRING(“Hello,
world\n”) RPAREN RPAREN

Lexical analysis

Enter: Regular Expressions

Regular expressions are basically string matchers

A regular expression classifies strings into two categories

Accept or reject

Regular expressions are a general device in computing, but there
are many implementations

They each vary a bit, so read the docs on whatever language you’re using

(Kris now talks about basic building blocks of regexes: constants,
concat, Kleene star, union, using () for grouping)

Talk about derived forms: [a-z], {a,b,c}, a+

The “language” of a regex is the set of strings it accepts

(0|1)*

What is this language?

1(0)*

What about this one?

((0|1)(0|1)(0|1))*

How about this one

Write “the set of odd binary strings” as a regex

Write “an odd number of bs followed by an
even number of as”

“Any number of 1s, followed by an even
number of 0s, followed by a single 1”

Regular expressions classify the so called regular languages

