Pointers in C++

(Basically) everything in C++ resides
somewhere in memory

1nt main() {
int a = 23;
cout << "a's value 1s " << a;

¥

“a” has an address

: : But what is it?
1nt main() { o what B

int a = 23;
cout << "a's value 1s " << a;

&a

Give me the address of a

Please
Please

Please

Don’t get this confused with a reference

They are totally different things!

Please
Please

Please

Don’t get this confused with a reference
They are totally different things!

(Forget about references for now..)

Everything in C++ also has a size

sizeof(a)

This whole thing is a

| st 2nd 3rd 4th

Ox/7fff5388990c

Local variables are stored on the stack

Variables next to each other, are placed
next to each other on the stack

So now, what will this do?

int main() {
int a = 23;
int b = 24;
cout << "a's value 1s
cout << "a's address 1s " << &a << endl;
cout << "the size of a 1s " << sizeof(a) << endl;
cout << "b's value 1s " << b << endl;
cout << "b's address 1s " << &b << endl;

cout << "the size of b 1s " << sizeof(b) << endl;

<< a << endl;

Assuming a is 0x/fff5388990c

Lesson: the stack grows down

When C++ calls a function, it creates space
for its local variables on the stack

When C++ returns from a function, it
destroys those by moving the stack up

Let’s call another...

If | know someone’s address, | can go
get the data at that address...

*(&a) is the same as a

| can use the * operator to get the data at
some address

| can even store addresses

1nt *pointerToA = &a;

void storingPtr() {

int a = 23;

int *pointerToA = &a;
cout << "a's value 1s
cout << "&a 1s "
cout << "pointerToA 1s
cout << "&pointerToA 1is
cout << "sizeof(pointerToA) 1s

<< endl;
return;

<< *pointerToA << endl;

<< &a << endl;

" << pointerToA << endl;

<< &pointerToA << endl;

" << sizeof(pointerToA)

Note: all pointers take up the same
number of bytes

And that number depends on your
machine (32/64-bit)

What happens if | want to use a pointer after
the function returns!?

1nt *returnsABadPointer() {
int a = 23;
int *ptr = &a;
cout << "the value of *ptr 1s
return &a;

¥

void doSomethingBad() {
1nt *ptr = returnsABadPointer();
cout << "the value of *ptr 1s "
return;

¥

<< *ptr << endl;

<< *ptr << endl;

Lesson: once the function returns, that pointer is
meaningless

Lesson: once the function returns, that pointer is
meaningless

Even worse, if | continue to use it, it could cause
security problems

Lesson: once the function returns, that pointer is
meaningless

Even worse, if | continue to use it, it could cause
security problems

An attacker could figure out how to load their data
into *ptr and control my code

So how can | hold onto things after returns!?

| use the heap

Unlike the stack, when | put things on the heap,
they stay there until | tell them to go away

1nt *newPointer() {
int *a = new 1nt;
*a = 23;
return a,

¥

void doSomethingFine() {
int *ptr = newPointer();

cout << "the value of *ptr 1s " << *ptr;
*ntr++

cout << "the value of *ptr 1s " << *ptr;
delete ptr;

1nt *newPointer() {
int *a = new 1nt;
*a = 23;
return a,

¥

void doSomethingFine() {
int *ptr = newPointer();

cout << "the value of *ptr 1s " << *ptr;
*ptr++
cout << "the value of *ptr 1s " << *ptr;
delete ptr;

¥

Note: | used delete

If | don’t remember to call delete, the
memory will never go away

It will live on forever, like a zombie

Gradually, the world will be taken over...

void useAllMyMemory() {
for (long long i = @; i < 12346789000; i++) {
1nt *ptr = new 1int;
¥

return;

¥

void dontUseAllMyMemory() {
for (long long 1 = 0; 1 < 12346789000; 1++) {
int *ptr = new 1int;
delete ptr;
3

return;

h

§

RTED

memegenerator.net

£ .

