
Pointers in C++

(Basically) everything in C++ resides
somewhere in memory

int main() {
 int a = 23;
 cout << "a's value is " << a;
}

int main() {
 int a = 23;
 cout << "a's value is " << a;
}

“a” has an address

But what is it?

&a
Give me the address of a

Please

Please

Please

Don’t get this confused with a reference

They are totally different things!

Please

Please

Please

Don’t get this confused with a reference

They are totally different things!

(Forget about references for now..)

Everything in C++ also has a size

sizeof(a)

This whole thing is a

0x7fff5388990c

1st 2nd 3rd 4th

Local variables are stored on the stack

Variables next to each other, are placed
next to each other on the stack

So now, what will this do?

int main() {
 int a = 23;
 int b = 24;
 cout << "a's value is " << a << endl;
 cout << "a's address is " << &a << endl;
 cout << "the size of a is " << sizeof(a) << endl;
 cout << "b's value is " << b << endl;
 cout << "b's address is " << &b << endl;
 cout << "the size of b is " << sizeof(b) << endl;
}

Assuming a is 0x7fff5388990c

Lesson: the stack grows down

When C++ calls a function, it creates space
for its local variables on the stack

When C++ returns from a function, it
destroys those by moving the stack up

Let’s call another…

If I know someone’s address, I can go
get the data at that address…

*(&a) is the same as a

I can use the * operator to get the data at
some address

I can even store addresses

int *pointerToA = &a;

void storingPtr() {
 int a = 23;
 int *pointerToA = &a;
 cout << "a's value is " << *pointerToA << endl;
 cout << "&a is " << &a << endl;
 cout << "pointerToA is " << pointerToA << endl;
 cout << "&pointerToA is " << &pointerToA << endl;
 cout << "sizeof(pointerToA) is " << sizeof(pointerToA)
 << endl;
 return;
}

Note: all pointers take up the same
number of bytes

And that number depends on your
machine (32/64-bit)

What happens if I want to use a pointer after
the function returns?

int *returnsABadPointer() {
 int a = 23;
 int *ptr = &a;
 cout << "the value of *ptr is " << *ptr << endl;
 return &a;
}

void doSomethingBad() {
 int *ptr = returnsABadPointer();
 cout << "the value of *ptr is " << *ptr << endl;
 return;
}

Lesson: once the function returns, that pointer is
meaningless

Lesson: once the function returns, that pointer is
meaningless

Even worse, if I continue to use it, it could cause
security problems

Lesson: once the function returns, that pointer is
meaningless

Even worse, if I continue to use it, it could cause
security problems

An attacker could figure out how to load their data
into *ptr and control my code

So how can I hold onto things after returns!?

I use the heap

Unlike the stack, when I put things on the heap,
they stay there until I tell them to go away

int *newPointer() {
 int *a = new int;
 *a = 23;
 return a;
}

void doSomethingFine() {
 int *ptr = newPointer();
 cout << "the value of *ptr is " << *ptr;
 *ptr++
 cout << "the value of *ptr is " << *ptr;
 delete ptr;
}

int *newPointer() {
 int *a = new int;
 *a = 23;
 return a;
}

void doSomethingFine() {
 int *ptr = newPointer();
 cout << "the value of *ptr is " << *ptr;
 *ptr++
 cout << "the value of *ptr is " << *ptr;
 delete ptr;
}

Note: I used delete

If I don’t remember to call delete, the
memory will never go away

It will live on forever, like a zombie

Gradually, the world will be taken over…

void useAllMyMemory() {
 for (long long i = 0; i < 12346789000; i++) {
 int *ptr = new int;
 }
 return;
}

void dontUseAllMyMemory() {
 for (long long i = 0; i < 12346789000; i++) {
 int *ptr = new int;
 delete ptr;
 }
 return;
}

