
Parserpalloza

Today, we’ll implement a few recursive-descent
parsers in groups

You’ll have to figure this out yourself in Lab 5

I’ll post this code online after we’re done

Take 2 minutes to find 1-2 group mates (you can
work by yourself, too, but if you do you have to

commit to programming, not sitting there)

Everyone must touch the keyboard once today

If you get stuck, ask the group to your left / right
first, not me

If two groups stuck, I will help

Key rule: At each step of the way, if I see some
token next, what rule production must I choose

FIRST(A)
FIRST(A) is the set of terminals that
could occur first when I recognize A

NULLABLE
Is the set productions which could generate ε

FOLLOW(A)
FOLLOW(A) is the set of terminals that
appear immediately to the right of A in

some form

What is FIRST for each nonterminal

What is NULLABLE for the grammar

What is FOLLOW for each nonterminal

S -> A | B
A -> aAa
B -> bb

E ! TE'
E' ! +TE'
E' ! ε
T ! FT'
T' ! *FT'
T' ! ε
F ! (E)
F ! id

What is FIRST for each nonterminal

What is NULLABLE for the grammar

What is FOLLOW for each nonterminal

More practice…

Let’s say I want to parse the following grammar

A -> aAa | bb

To parse A, I check for either

A -> aAa | B
B -> bb

FIRST(aAa)
FIRST(B)

A -> aAa | B
B -> bb

(define (parse-A)
 (match curtok
 [#\a
 (begin
 (accept #\a)
 (parse-A)
 (accept #\a))]
 [#\b (parse-B)]))

A -> aAa | B
B -> bb

(define (parse-A)
 (match curtok
 [#\a
 (begin
 (accept #\a)
 (parse-A)
 (accept #\a))]
 [#\b (parse-B)]))

A -> aAa | B
B -> bb

(define (parse-A)
 (match curtok
 [#\a
 (begin
 (accept #\a)
 (parse-A)
 (accept #\a))]
 [#\b (parse-B)]))

A -> aAa | B
B -> bb

(define (parse-A)
 (match curtok
 [#\a
 (begin
 (accept #\a)
 (parse-A)
 (accept #\a))]
 [#\b (parse-B)]))

A -> aAa | B
B -> bb

(define (parse-A)
 (match curtok
 [#\a
 (begin
 (accept #\a)
 (parse-A)
 (accept #\a))]
 [#\b (parse-B)]))

A -> aAa | B
B -> bb

(define (parse-B)
 (begin
 (accept #\b)
 (accept #\b)))

A general comment

You can often “follow your nose” for writing recursive
descent parsers

In this class we want you to follow this cookbook method.
Make sure your parser follows the grammar

(If you implement a parser for a different grammar that still
works you will still lose points in lab)

Comment each production (I didn’t do in slides for space)

Challenge 1: Produce 2 strings in the language
and one string out of the language

Demonstrate how to parse them (or show
parsing error)

There are also bottom-up parsers,
which produce the rightmost derivation

Won’t talk about them, in general they’re
impossibly-hard to write / understand, easier to use

Basically everyone uses lex and yacc to write real parsers

Recursive-descent is easy to implement, but
requires messing around with grammar

More practice with parsers

Plus -> num MoreNums
MoreNums -> + num MoreNums | ε

How would you do it?
(Hint: Think about NULLABLE)

Let’s think through this one on the board
in pseudo-code

Plus -> num MoreNums
MoreNums -> + num MoreNums | ε

(define (parse-Plus)
 (begin
 (parse-num)
 (parse-MorePlus)))

(define (parse-MorePlus)
 (match curtok
 ['plus
 (begin
 (accept 'plus)
 (parse-num)
 (parse-MorePlus))]
 ['eof (void)]))

Yet another (this one in the C++ files)

START -> E ε
E -> number
E -> identifier
E -> (E_IN_PARENS)
E_IN_PARENS -> OP E E
OP -> +|-|*

Now yet another….

This will use the intuition from
FOLLOW

Add -> Term MoreTerms
MoreTerms -> + Term MoreTerms
MoreTerms -> ε
Term -> num MoreNums
MoreNums -> * num MoreNums | ε

Add -> Term MoreTerms
MoreTerms -> + Term MoreTerms
MoreTerms -> ε
Term -> num MoreNums
MoreNums -> * num MoreNums | ε

Consider how we would implement MoreTerms

Add -> Term MoreTerms
MoreTerms -> + Term MoreTerms
MoreTerms -> ε
Term -> num MoreNums
MoreNums -> * num MoreNums | ε

If you’re at the beginning of MoreTerms you have to see a +

Add -> Term MoreTerms
MoreTerms -> + Term MoreTerms
MoreTerms -> ε
Term -> num MoreNums
MoreNums -> * num MoreNums | ε

If you’ve just seen a + you have to see FIRST(Term)

Add -> Term MoreTerms
MoreTerms -> + Term MoreTerms
MoreTerms -> ε
Term -> num MoreNums
MoreNums -> * num MoreNums | ε

After Term you recognize something in FOLLOW(Term)

Add -> Term MoreTerms
MoreTerms -> + Term MoreTerms
MoreTerms -> ε
Term -> num MoreNums
MoreNums -> * num MoreNums | ε

Because MoreTerms is NULLABLE, have to account for null

Code up
collectively….

Let’s say I want to generate an AST

(struct add (left right) #:transparent)
(struct times (left right) #:transparent)

Model my AST…

(struct add (left right) #:transparent)
(struct times (left right) #:transparent)

Model my AST…

Now, modify your parser to generate this AST

More Recursive-descent practice…

(We’ll skip this for now and you can do it by yourself)

Write recursive-descent parsers for the following….

A grammar for S-Expressions

datum ::= number
 | string
 | identifier
 | ‘SExpr
SExpr ::= (SExprs)
 | datum
SExprs ::= SExpr SExprs
 | ε

Parsing mini-Racket / Scheme

S -> a C H | b H C
H -> b H | d
C -> e C | f C

E -> A
E -> L
A -> n
A -> i
L -> (S)
S -> E S’
S’ -> , S
S’ -> ε

So far, I’ve given you grammars that are
amenable to LL(1) parsers…

(Many grammars are not)

(But you can manipulate them to be!)

What about this grammar?

E -> E - T | T
T -> number

This grammar is left recursive

E -> E - T | T
T -> number

What happens if we try to write recursive-descent parser?

This grammar is left recursive

E -> E - T | T
T -> number

We really want this grammar, because it
corresponds to the correct notion of associativity

5 - 3 - 1

E -> E - T | T
T -> number

Infinite loop!

5 - 3 - 1

E -> E - T | T
T -> number

A recursive descent parser will first call parse-E
And then crash

5 - 3 - 1
Draw the rightmost derivation for this string

E -> E - T | T
T -> number

If we could only have the rightmost
derivation, our problem would be solved

The problem is, a recursive-descent parser needs to
look at the next input immediately

Recursive descent parsers work by looking at the next
token and making a decision / prediction

Rightmost derivations require us to delay making
choices about the input until later

As humans, we naturally guess which derivation to use
(for small examples)

Thus, LL(k) parsers cannot generate rightmost derivations :(

We can remove left recursion

E -> E - T | T
T -> number

E -> T E’
E’ -> - T E’
E’ -> ε

Factor!

In general, if we have

A -> Aa | bB

Rewrite to…
A -> bB A’
A’ -> a A’ | ε

Generalizes even further
https://en.wikipedia.org/wiki/LL_parser#Left_Factoring

But this still doesn’t give us what we want!!!

E -> T E’
E’ -> - T E’
E’ -> ε

E -> T E’
 -> T - T E’
 -> T - T - T E’
 -> T - T - T

So how do we get left associativity?

Answer: Basically, hack in implementation

Sub -> num Sub’
Sub’ -> + num Sub’ | epsilon

Sub -> num Sub’ (+ num)*

Is basically…

Intuition: treat this as while loop, then when
building parse tree, put in left-associative order

Sub -> num Sub’ (+ num)*

Sub -> num Sub’
Sub’ -> + num Sub’ | epsilon

If you want to get rightmost derivation, you need to
use an LR parser

input: /* empty */
 | input line
;

line: '\n'
 | exp '\n' { printf ("\t%.10g\n", $1); }
;

exp: NUM { $$ = $1; }
 | exp exp '+' { $$ = $1 + $2; }
 | exp exp '-' { $$ = $1 - $2; }
 | exp exp '*' { $$ = $1 * $2; }
 | exp exp '/' { $$ = $1 / $2; }
 /* Exponentiation */
 | exp exp '^' { $$ = pow ($1, $2); }
 /* Unary minus */
 | exp 'n' { $$ = -$1; }
;

Parsing is lame, it’s 2017

If you can, just use something like JSON /
protobufs / etc…

Inventing your own format is probably wrong

For small / prototypical things, recursive-descent

For real things, use yacc / bison / ANTLR

