
Types

Types are broken down into many categories

Dynamic types

Static types

Types are broken down into many categories

Dynamic types

Static types

Duck typing

“Strong” types

Classes and subclasses

Subtypes

Types are broken down into many categories

Duck typing
Dynamic types

Gradual types

“Strong” types

Static types

Dependent

Linear

Classes and subclasses

Subtypes

A “type” is a classification that says
how some data may be used

Essentially all programming languages have
the concept of a “dynamic” type

Some languages also have “static” types

In those languages, the types have to be
checked before running the program

A “dynamic” type is a piece of data’s type
at runtime

If I ask “what is x’s dynamic type” I am
asking “what is x’s type right now”

In the next few slides, I am only going to be talking
about runtime types

>>> x = 12
>>> type(x)
<type 'int'>
>>> x = "Hello"
>>> type(x)
<type 'str'>

Python has dynamic types

2.4.1 :005 > x = 12
 => 12
2.4.1 :006 > x.class
 => Integer
2.4.1 :007 > x = "Hello"
 => "Hello"
2.4.1 :008 > x.class
 => String

So does Ruby….

Everything in C++ also has a dynamic type at runtime

At compile time, C++ assigns static types

Here’s a really key thing

Dynamic types and static types are not
necessarily the same!!!

Basically everything in Ruby revolves around classes

Classes are one kind of type

But classes are just one kind of type

We’ll learn more about classes in a few
lectures…

Even assembly languages have types

They’re just really degenerate types

For example, everything in HERA is a word

This is still a type, but since there’s only one
dynamic type in HERA it’s not that useful

Why do we have dynamic types?

To prevent us from doing something we
shouldn’t at runtime

The dynamic types throw errors when the language
doesn’t know how to do something

The dynamic types throw errors when the language
doesn’t know how to do something

2.4.1 :009 > 1 + "hello"
TypeError: String can't be coerced into Integer

from (irb):9:in `+'
from (irb):9
from /Users/kmicinski/.rvm/rubies/ruby-2.4.1/bin/irb:11:in `<main>'

The dynamic types throw errors when the language
doesn’t know how to do something

2.4.1 :009 > 1 + "hello"
TypeError: String can't be coerced into Integer

from (irb):9:in `+'
from (irb):9
from /Users/kmicinski/.rvm/rubies/ruby-2.4.1/bin/irb:11:in `<main>'

>>> 1 + "hello"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

> (+ 1 "hello")
; +: contract violation
; expected: number?
; given: "hello"
; argument position: 2nd
; [,bt for context]

So a dynamic type system is a set of rules that
apply to program data at runtime

A static type system is a set of rules that assigns
types to data before running it

Every language has dynamic types

Some languages also have static types

A lot of people act like it’s dynamic types on one end and
static types on the other. But that is false

Dynamic Types

Static Types

Dynamic Types

Static Types

So when you go out into the world, just remember, a
dynamic type is just a type at runtime

Now, what are static types?

Question: who here has had a
dynamic type error in Racket?

Static types are all about helping you prevent those errors

Static types help you ensure at compile time that I
won’t run into a type error at runtime

But type errors aren’t all the bugs in my program

C++ has static types

string get_ith(list<string> l, i) {
 string s;
 for(; i > 0; i--) {
 l = rest(l);
 }
}

string get_ith(list<string> l, i) {
 string s;
 for(; i > 0; i--) {
 l = rest(l);
 }
}

If I call get_ith(ez_list(“1”,”2”),2)) the program will fail at runtime

It turns out that you can actually beef up the types

Certain languages allow you to specify constraints on the list
size at compile time

list(string,n)

These are called dependent types because the type
“depends” on the integer value n

These types are potentially very useful. Right now they’re too
hard to use. Few people use dependent types in production

Richard Eisenberg (BMC) and Stephanie Weirich (Penn) both
work on efforts toward practical dependent types

In this class we will stick to more conventional types

Which are still very useful for most purposes

Two popular kinds of type systems

Two popular kinds of static type systems

Nominal

Structural

(Many real type systems mix the two)

Nominal Types

Types are assigned based on name

class C {
 int mX;
 int mY;
}

class D {
 int mX;
 int mY;
}

Nominal Types
In C++ these are different types, because

they have different names

class C {
 int mX;
 int mY;
}

class D {
 int mX;
 int mY;
}

Structural type systems reason about the
structure of the types

We’re going to learn about static types by learning some
typed Racket

(Typed Racket won’t be on exam, but concepts from type systems
may be, I’ll tell you which)

(struct pt (x y))

(define (distance p1 p2)
 (sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
 (sqr (- (pt-y p2) (pt-y p1)))))

Racket

(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))
(define (distance p1 p2)
 (sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
 (sqr (- (pt-y p2) (pt-y p1))))))

Typed Racket

(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))
(define (distance p1 p2)
 (sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
 (sqr (- (pt-y p2) (pt-y p1))))))

Structure type signature

The type checker prevents me from creating data that
violates the type invariant

(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))
(define (distance p1 p2)
 (sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
 (sqr (- (pt-y p2) (pt-y p1))))))

Function type signature

(: distance (-> pt pt Real))

This is a type signature

Read this as…

pt pt -> Real

Function types have the form

i1 i2 i3 … in -> output

Evocative of math
Sometimes called “arrow types”

-> Int Int Int

How would we write this in C++

(define-type Tree (U leaf node))
(struct leaf ([val : Number]))
(struct node ([left : Tree] [right : Tree]))

(define-type Tree (U leaf node))
(struct leaf ([val : Number]))
(struct node ([left : Tree] [right : Tree]))

This is a union type

A union type is a type that includes
elements of two different types

(define-type Tree (U leaf node))
(struct leaf ([val : Number]))
(struct node ([left : Tree] [right : Tree]))

“Every element of type leaf is an element of type Tree”

“Every element of type node is an element of type Tree”

The union type allows you to combine two different types

Exercise: write a union type that allows strings or reals

(define-type Tree (U leaf node))
(struct leaf ([val : Number]))
(struct node ([left : Tree] [right : Tree]))

Call it string-or-real

I can also force Racket to check the types for me

(ann (+ 1 2) Number)

“ann” means “annotate”

Exercise: produce a type error with this

> (lambda (x) x)
- : (-> Any Any)
#<procedure>
> (lambda ([x : Number]) x)
- : (-> Number Number)
#<procedure>

> (lambda (x) x)
- : (-> Any Any)
#<procedure>
> (lambda ([x : Number]) x)
- : (-> Number Number)
#<procedure>

Any means “can be any type”

Typing rules and judgements
(This won’t be on exam)

PL uses a fairly standard notation to write out
what are called typing judgements

This is a standard mechanism for
mathematically defining type systems

Assumption 1 Assumption 2 Assumption 3

Conclusion

The way to read this is “If everything above the line is
true, then Conclusion is true”

Conclusion

If nothing above the line, it means I don’t have to make
any assumptions

I.e., conclusion is vacuously true (don’t need to do any
work to prove it)

1 : Number

2 : Number

n : Number

Generally…

Typing judgements

x : Number, y : Number |- (+ 1 x) : Number

A typing judgement

Assumptions that certain variables have certain types

x : Number, y : Number |- (+ 1 x) : Number

A typing judgement

Assumptions that certain variables have certain types

Conclusion I have drawn about expression
(involving variables on left)

x : Number, y : Number |- (+ 1 x) : Number

A typing judgement

The thing to the left of the |- is typically called an “environment”

x : Number, y : Number |- (+ 1 x) : Number

A typing judgement

“If I assume x has type Number, and I assume y has
type Number, I can show (+ 1 x) has type Number”

x : Number |- e : t

“Under the environment where x has type
Number, I have concluded e has type t”

x : Number |- e : t

(lambda (x) e) : -> Number t

x : Number |- e : t

(lambda (x) e) : -> Number t

“If assuming x has type number allows me to conclude e has type t”

x : Number |- e : t

(lambda (x) e) : -> Number t

“If assuming x has type number allows me to conclude e has type t”

“Then I am allowed to conclude that…

(lambda (x) e)
Has type…

-> Number t

We won’t do this for Typed Racket, and doing so is
nontrivial because it involves some elaborate types

Type Inference

> (lambda ([x : Number]) (+ 1 x))
- : (-> Number Number)

Typed Racket will do this

Why is this the return type?

Why not (-> Number Any)?

The process by which a programming language ascertains
types of expressions by starting with a set of annotations

Type Inference

(Begin fair-game exam stuff again..)

Most type systems require at least some programmer annotation

Does Java have type inference?

Does the C++ we’ve learned have
type inference?

C++17 actually adds (some) type inference

template<class T, class U>
auto add(T t, U u) { return t + u; }
// the return type is the type of operator+(T, U)

template<auto n> // C++17 auto parameter declaration
auto f() -> std::pair<decltype(n), decltype(n)>
 // auto can't deduce from brace-init-list
{
 return {n, n};
}

 auto a = 1 + 2; // type of a is int
 auto b = add(1, 1.2); // type of b is double
 static_assert(std::is_same_v<decltype(a), int>);
 static_assert(std::is_same_v<decltype(b), double>);

http://en.cppreference.com/w/cpp/types/is_same
http://en.cppreference.com/w/cpp/types/is_same

http://en.cppreference.com/w/cpp/language/auto

More at…

