
JavaScript Concepts

JavaScript is pretty hard to escape if you
want to do anything for the web

C of the Internet

– Nikhil Swamy, MS Research

“Take JavaScript for instance. It's widely criticized in
the POPL community for getting many things wrong.
But it must have gotten a ton of things right too,
otherwise it wouldn’t be so popular. ”

Javascript is:
Dynamically Typed
Object-Oriented-ish
Functional-ish

Basically everything in
JavaScript is an Object

Why do people dislike JavaScript?
Implicit Conversions, it’s hard to make JS crash

Easily leads to strange behavior, unpredictible
So you have to test your code a lot

Weird behavior of builtins, == vs ===, etc…
Javascript uses prototypical inheritance

If you think about it like C++/Java, you will be terribly wrong

Numbers, Strings, Booleans, null, and undefined

Everything else is an object!

The hardest thing to get your head around in JS is that
objects don’t belong to a class per-se. Classes still exist,

but they’re more like recipes for objects

{a: 23}

{foo: 12, bar: (x) => x}

{a: “hello”}

These are all objects in JS

Observations: JS “objects” are mostly dictionaries

{
 speed: 12,
 distance: 13
}

x.speed

x[“speed”]

Write functions using the function keyword

function dist(x0, x1) {
 return Math.sqrt(
 (x1[0]-x0[0])**2
 + (x1[1]-x0[1])**2);
 }

> dist
[Function: dist]

Like Racket, JavaScript has a fairly functional flavor to it…

var x = function(x) { return x**2; }

function twice(f) { return function(x) { return f(f(x)); }; }

> [1,2,3].map(function (x) { return x.toString(); })
['1', '2', '3']

> [1,2,3,4].reduce ((acc,next) => acc + " " + next.toString());
'1 2 3 4'

Another way to write functions in JS

JavaScript has closures

function countUpFrom(x) {
 var counter = x;
 return function() {
 var cur = counter;
 counter = cur+1;
 return cur;
} };

> var startingAtFive = countUpFrom(5);
undefined
> startingAtFive()
5
> startingAtFive()
6
> startingAtFive()
7

var myFirstCurry = function(word) {
 return function(user) {
 return [word , ", " , user].join("");
 };
};

var HelloUser = myFirstCurry("Hello");
HelloUser("Aadhya"); // Output: "Hello, Aadhya”

Currying…

Q: What does this look like in Racket?

Classes

function Apple (typeofapple) {
 this.typeofapple = typeofapple;
 this.color = "red";
 this.getInfo = function() {
 return this.color + ' ' + this.typeofapple + ' apple';
 };
}

function Apple (type) {
 this.type = type;
 this.color = "red";
 this.getInfo = function() {
 return this.color + ' ' + this.type + ' apple';
 };
}

Critical question: what gets passed in for this?

Observation: if I don’t explicitly specify, it goes to the default object

new Apple(3)

function Apple (type) {
 this.type = type;
 this.color = "red";
 this.getInfo = function() {
 return this.color + ' ' + this.type + ' apple';
 };
}

Creates an empty object, let’s call it x
Binds this to x
Runs the Apple function using x as this

new Apple(3)

function Apple (type) {
 this.type = type;
 this.color = "red";
 this.getInfo = function() {
 return this.color + ' ' + this.type + ' apple';
 };
}

{}This:

Apple { type: 3, color: 'red', getInfo: [Function] }

> new Apple
Apple { type: undefined, color: 'red', getInfo: [Function] }

One really crummy thing about JS: it silently fails

E.g., Apple needed an argument, but we didn’t pass
it one. So JS just fills in undefined

I can explicitly specify this by using the call builtin function

> var x = {};
> Apple.call(x)
undefined
> x
{ type: undefined, color: 'red', getInfo: [Function] }

Note: not idiomatic JS

JS has a strange take on inheritance…

var Car = {
 name: “plain old car”
}

Object literal

var car = {
wheels:
 function() { return "I have "
 + this.numWheels(); }
}

Object literal

Note: runtime error if I call wheels

var mazda = {
 numWheels: function() { return 4; }
 };

var car = {
wheels:
 function() { return "I have "
 + this.numWheels(); }
}

> mazda.__proto__ = car;
{ wheels: [Function: wheels] }
> mazda
{ numWheels: [Function: numWheels] }
> mazda.__proto__
{ wheels: [Function: wheels] }
> mazda.wheels()
'I have 4'

mazda

When I want to look up wheels

mazda

Not here!!!

car

mazda

When I want to look up wheels

Not here!!!

Climb to prototype

Found wheels here

 function() { return "I have "
 + this.numWheels(); }

car

mazda

When I want to look up wheels

car

Not here!!!

Climb to prototype

Found wheels here

 function() { return "I have "
 + this.numWheels(); }

Now, this is mazda

mazda car

Need to lookup numWheels

Finds it here!

Lookups are dynamic

car.wheels = function() { return “I have some number”; }

mazda.wheels() now gives “I have some number”

Using __proto__ directly is terrible form

Instead, use Object.create(car)

Object.create(car)

Creates a new object
Sets its prototype to be car
Now all lookups go through car

Unless you set otherwise, of course

Object.create(car)

Creates a new object
Sets its prototype to be car
Now all lookups go through car

Unless you set otherwise, of course

This effectively enables using car as a class
In the sense that a class is a blueprint for an object

http://sporto.github.io/blog/2013/02/22/a-plain-
english-guide-to-javascript-prototypes/

https://www.infoworld.com/article/3196070/node-js/10-javascript-
concepts-nodejs-programmers-must-master.html

Why do people dislike JavaScript?
Implicit Conversions, it’s hard to make JS crash

Easily leads to strange behavior, unpredictible
So you have to test your code a lot

Weird behavior of builtins, == vs ===, etc…
Javascript uses prototypical inheritance

If you think about it like C++/Java, you will be terribly wrong

