
REs, FSMs, Forth, 
and CFGs

Part 2 of 3



Three things today
The foundations of regular expressions

(Don’t need to remember details)

Introduction to grammars
(Important to get concepts)

Intro to FORTH
(You’ll need this for the lab)



Regular expressions have a nice property…

If you give me a regex and a string, I can check if that string 
matches the regex in linear time





Can I cook up a regular expression that 
will classify any string?

(No…)



If I could, it would imply I could solve any 
problem in linear time!



So what’s an example of a regular 
expression I couldn’t write?

“The set of strings P such that P…?”



So what’s an example of a regular 
expression I couldn’t write?

“The set of strings P such that P…?”

(Answer: is a program that halts)



Regular expressions can be implemented 
using finite state machines



We won’t talk too much about FSMs in this class

All regexes can “compile” (turn to, in systematic way) FSM





Starting state



Transition on input



Accepting state 
(two circles)



011 S1



011 S2



011 S2 Stay!



011 S2



011 S2

Reject!



0110 S1



0110 S1

Accept!



(1|01*0)*

Note that I got this wrong in class



“Any number of 1s, followed by an even 
number of 0s, followed by a single 1”



1*0(01*0)*1

Note that I got this wrong in class



Idea: FSMs remember only “one 
state” of memory

It’s kind of like programming with only one 
register (of unbounded width)



Theorem: for every regex, a corresponding FSM 
exists, and vice versa



Q: Why is this useful?

Theoretical A: Bedrock automata theory, 
useful in proving computational bounds

Practical A: Efficient regex implementation 



Motivating CFGs



{}

{{}}

{{{}}}

{{{{}}}}

Parenthesis are balanced when 
each left matches a right



Balancing parentheses necessary to check program syntax 
(e.g., for C++)



{*}* doesn’t work



Turns out: it is impossible to write a regex to capture this fact

Instead, we will use context-free grammars



S -> ε
S -> { S }

Here’s a grammar that matches balanced parentheses

We’ll talk more about grammars later today and on Friday





CFG’s are more expressive than regular 
expressions, and commensurately more 

complex to check



Whereas regular expressions are modeled by finite state machines, CFGs 
are modeled by state machines that also can push / pop a stack



But what programming languages can we 
implement right now

(Without needing to implement CFGs)





Forth is a stack-based language



http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm

A beginner’s guide to FORTH



Assembly uses registers and memory, 
but FORTH uses a stack as its main 

abstraction



5



5

6



5

6

+



11

+



You have already implemented parts of forth



Each command in forth is called a word



Words manipulate the stack



drop
Drops the most recent thing on the stack

( x1 -- )



swap
( x1 x2 -- x2 x1 )

Top!



nip
( x1 x2 -- x2 )



dup
( x1 -- x1 x1)



over
( x1 x2 —- x1 x2 x1 )



tuck
( x1 x2 —- x2 x1 x2 )



You can define your own words (functions)



: add1 1 + ;



Adding two Euclidian points

x1 y1 x2 y2 —> (x1 + x2) (y1 + y2) 

Want to define addcartesian word, which does this:

1 2 3 4  ok
addcartesian  ok
.s <2> 4 6  ok



Adding two Euclidian points

x1 y1 x2 y2 —> (x1 + x2) (y1 + y2) 

x1 y1 x2 y2 —> x1 x2 y2 y1
rot

+
x1 x2 y2 y1 —> x1 x2 (y1+y2)

What do I do from here?



Adding two Euclidian points

x1 y1 x2 y2 —> (x1 + x2) (y1 + y2) 

x1 y1 x2 y2 —> x1 x2 y2 y1
rot

+
x1 x2 y2 y1 —> x1 x2 (y1+y2)

x1 x2 (y1+y2) —> x2 (y1+y2) x1
rot

(y1+y2) x1 x2 —> (y1+y2) (x1+x2)
+

(y1+y2) (x1+x2) -> (x1+x2) (y1+y2)
swap

x2 (y1+y2) x1 -> (y1+y2) x1 x2
rot



So that’s forth, we’ll touch a bit more of it Friday

And you’ll be implementing part of it in Lab 4



Back to CFGs!

Why? Because most languages use infix operators



Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

Here’s a context free grammar



Formally, a grammar is…
• A set of terminals 

• These are the things you can’t rewrite any further 

• A set of nonterminals 

• These are the things you can rewrite further 

• A set of production rules 

• These are a bunch of rewrite rules 

• A start symbol



Terminals = {number, +, *}

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

Nonterminals = {Expr}

Productions = 

Start symbol = Expr



To determine if a grammar matches an expression, you play a game



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr

To play the game: attempt to apply each production so that you arrive 
at your full expression



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr -> Expr + Expr



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Expr 
-> Expr + Expr 
-> number + Expr 
-> number + number 
-> 1 + number 
-> 1 + 2



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Some moves don’t lead you to winning the game.



First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2

Some moves don’t lead you to winning the game.

Expr 
-> Expr * Expr 
???



Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2 * 3
Expr 
-> Expr + Expr

Expr 
-> Expr * Expr

This grammar is ambiguous 

Exercise: complete the derivations from here

We’ll define this more rigorously on Friday



Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

1 + 2 * 3

Expr 
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Expr 
-> Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number



if …
  if …
  else …

Famous example from C, the “dangling else”

Does the else belong to the first if? Or the second?

Most real languages handle these in hacky one-off ways

(Ans: in C, the second)



We can turn a derivation into a parse tree



Expr 
-> Expr + Expr 
-> number + Expr 
-> number + number 
-> 1 + number 
-> 1 + 2

Expr

+Expr Expr

Number Number

1 2



This parse tree is a hierarchical representation of  the data

A parser is a program that automatically generates a parse tree

A parser will generate an abstract syntax tree for the language



Parsing is hard

And also boring

But an important problem



And there are a ton of different parsing algorithms
We will learn one fairly useful and easy-to-code one

(Recursive descent parsing, or LL(1) parsing)



(define (parse-input)
   …)

Expr

+Expr Expr

Number Number

1 2

1 + 2

Next week, we’ll see how to write 
these parsers



Expr 
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Expr 
-> Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number

Exercise: draw the parse trees for the following derivations



Here’s an example of a grammar that is not ambiguous

Expr -> MExpr
Expr -> MExpr + MExpr
MExpr -> MExpr * MExpr
MExpr -> number



Generally, we’re going to want our 
grammar to be unambiguous



Question: Why are parse trees useful?

Answer: We can use them to define the meaning of programs



First, can represent parse trees in our PL:

(define my-tree
  '(+ 1 (* 2 3)))



(define my-tree
  '(+ 1 (* 2 3)))

(define (evaluate-expr e)
  (match e
    [`(+ ,e1 ,e2) (+ (evaluate-expr e1) (evaluate-expr e2))]
    [`(* ,e1 ,e2) (* (evaluate-expr e2) (evaluate-expr e2))]
    [else e]))

This allows us to write interpreters



Next lecture, we’ll dig into grammars even more

Our goal is to write parsers, but to do so, we need 
more intuition about grammars


