
Datastructures in Racket
Part 1

For today’s class, we’re going to build every data
structure out of three things

The first is atoms

These are the primitive things in the language

‘symbol

1

These are like “int” and “char” in C++

The second is the empty list

‘()

The last is cons

Cons is a function that takes two values and
makes a pair

That pair is represented as a cons cell

(cons 1 2)

1 2

cons is the the natural
constructor of the language

I use two strange words to refer to the
elements of this cons cell

“car”

“car” “cdr”

Because car and cdr break apart what I build with
cons, I call them my destructors

And that’s all

And that’s all
Atoms ‘sym 23 #\c

Empty list ‘()
cons (cons ‘sym 23)

car/cdr (car (cons ‘sym 23))

Using just this, I can make a list

Using just this, I can make a list

(And everything else in the world, but we’ll
get back to that…)

If I want to make the list containing 2 I do this

(cons 2 ‘())

2 ‘()

When I do this, Racket prints it out as a list

‘(2)

The way to read this is

“The list containing 2, followed by the empty list.”

Just as I can build lists of a single element, I can build
larger lists from smaller lists…

And I do that by stuffing lists inside other lists…

(cons 2 ‘())

2 ‘()

(cons 2 ‘())

2 ‘()

(cons 3)

3

Racket will print this out as

‘(3 2)

Of course, I probably need at least numbers
as primitives right?

To get the head of a list, I use car

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cons 2 ‘())

2 ‘()

(cons 3)

3

(car
)

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

So now how would I get the second element?

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

(car

)

Racket abbreviates

(cons 1 (cons 2 (cons…(cons n ‘())…)))

as…

‘(1 2 … n)

If I wanted to write out lists, I could do so using

(cons 1 (cons 2 …))

How do I get the nth element of a list?

(define (nth list n)
 (if (= 0 n)
 (car list)
 (nth (cdr list) (- n 1))))

Now, write (map f l)

Writing lists would get quite laborious

Instead, I can use the primitive function list

(list 1 2 ‘serpico)

‘(1 2 serpico)

Oh, and actually I can use this to represent trees too

1 2 3 4

How would I build this?

(define empty-tree 'empty-tree)

(define (make-leaf num) num)

(define (make-tree left right)
 (cons left right))

You define (left-subtree tree)

(define (least-element tree)
 (if (number? tree)
 tree
 (least-element (left-subtree tree))))

But surely I need things like numbers right?

It turns out, you could build those using just
cons, car, cdr, if, =, and ‘()

Define the number n as …

‘()

‘(())

‘(() ())

…

(define (weird-plus i j)
 (if (equal? i '())
 j
 (weird-plus (cdr i)
 (cons '() j))))

(weird-plus '(() ()) '(() ()))

'(() () () ())

It turns out, if I’m clever, we can even get rid of
if and equal

(Though we shall not do so here..)

I can build my own datatypes in this manner

I usually write constructor functions to help
me build datatypes

I usually write constructor functions to help
me build datatypes

And I usually write destructor functions to
access it

(define (make-complex real imag)
 (cons real imag))

And I usually write destructor functions to
access it

(define (make-complex real imag)
 (cons real imag))

(define (get-real complex)
 (car complex))

(define (get-imag complex)
 (cdr complex))

Now, define (add-complex c1 c2)

Next, define (make-cartesian x y)

And the associated helper functions

Next class we will talk about…

struct
match

I/O

And switch over to layout in assembly

