
Introducing Racket

λ

A brief tour of history…

We wanted a language that allowed symbolic manipulation

The key to understanding LISP is understanding S-Expressions
Scheme

Racket

(this (is an) (s) expression)

List of either atoms or S-expressions

(this (is an) (s) expression)

List of either atoms or S-expressions

(this (is an) (s) expression)

List of either atoms or S-expressions

atom

(this (is an) (s) expression)

List of either atoms or S-expressions

S-expression

(this (is an) (s) expression)

List of either atoms or S-expressions

also an S-expression

So how do we write programs in this?

A few terms

• LISP: The original language, grew very large over time

• E.g., included an object system

• Scheme: Minimal version of LISP, partly used for teaching

• Racket: 90s reboot of Scheme, added many new features

• Mostly compatible w/ Scheme

Tenants of Scheme

• Use recursion for computation, no mutable variables

• Basic abstraction is a list (made up of cons cells)

• Code is data

(define	(factorial	x)	
				(if	(equal?	x	0)	
								1	
								(*	(factorial	(-	x	1))	x)))

If you get stuck, use the debugger…!

Racket is dynamically typed

(define	(factorial	x)	
				(if	(equal?	x	0)	
								1	
								(*	(factorial	(-	x	1))	x)))

• Everything in parenthesis
• Prefix notation
• No variable assignment
• Recursion instead of loops
• No types
• No return

Here’s what most confused me…

(define	(bad_fib	x)	
				(cond	
						[(<	x	0)	(raise	‘lessthanzero)]	
						[(eq?	0	x)	1]	
						[(eq?	1	x)	1]	
						[else	0])	
)

Define max
• cond
• <
• >
• equal?

Define max-of-list
• empty?
• first
• rest
• length?

You can create functions with lambda

(lambda	(x)	(-	x))

(lambda	(str)	(string-ref	str	0))

(let*	([x	1]	
						[y	(+	x	1)])	
	(list	y	x))

(let	([x	1])	
		(+	x	1))

Rewrite this in terms of lambda!

(let	([x	1])	
		(+	x	1))

Transform..
(lambda	(x)	
		(+	x	1))	1

(let	([x	1])	
		(+	x	1))

Transform..
((lambda	(x)	
			(+	x	1))	1)

Let is λ

(define	(f	x)	x)

shorthand for…

(define	f	(lambda	(x)	x))

Lots of other things are λ too…

(define	(f	x)	x)

(define	f	(lambda	(x)	x))

(define	(f	x	y)	x)

(define	f	(lambda	(x	y)	x))

…

(display	“Hello”)

Define acrostic

Define hyphenate

Using higher order functions…

If you give me a function, I can use it

(define	twice	
		(lambda	(f)	
				(lambda	(x)	
						(f	(f	x)))))

Challenge: figure out how I would use twice	to add 2 to 2

Use Racket’s add1 function

(add1	(add1	2))

Explain how twice works to someone next to you

When listening, push the person for clarification when
you get confused

If you can’t figure it out, get help from someone around you

> (map (lambda (str) (string-ref str 0)) '("ha" "ha"))
'(#\h #\h)

(map	f	l) takes a function f and
applies f to each element of l

[0,	1,	2]
f f f

[0,	1,	2]
f f f

[0,	1,	2]
f f f

[0,-1,-2]

Tail Recursion

Tail recursion is the way you make recursion fast in
functional languages

Anytime I’m going to recurse more then 10k times, I
use tail recursion

(I also do it because it’s a fun mental exercise)

Tail Recursion

A function is tail recursive if all recursive calls are in
tail position

A call is in tail position if it is the last thing to
happen in a function

(define	(factorial	x)	
				(if	(equal?	x	0)	
								1	
								(*	(factorial	(-	x	1))	x)))

The following is not tail recursive

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))

The following is tail recursive

(define	(factorial	x)	
				(if	(equal?	x	0)	
								1	
								(*	(factorial	(-	x	1))	x)))

The following is not tail recursive

Explain to the person next to you why this is

Swap. Explain to the person next to you why this is

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))

The following is tail recursive

This isn’t merely trivia!

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

But wait!
I don’t need the stack at all!

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

Insight: in tail recursion, the stack is just
used for copying back the results

Insight: in tail recursion, the stack is just
used for copying back the results

So just forget the stack. Just give the final
result to the original caller.

Insight: in tail recursion, the stack is just
used for copying back the results

So just forget the stack. Just give the final
result to the original caller.

This is called “tail call optimization”

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define	(factorial	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
;	..	Later	
(factorial	2	1)

(define	(factorial	x)	
				(if	(equal?	x	0)	
								1	
								(*	(factorial	(-	x	1))	x)))

Why couldn’t I do that with this?

Talk it out with neighbor

Tail recursion for λ and profit…

To make a function tail recursive…
• add an extra accumulator argument
• that tracks the result you’re building up
• then return the result
• might have to use more than one extra arg
• Call function with base case as initial accumulator

This isn’t the only way to do it, just a nice trick that
usually results in clean code…

(define	(factorial	x)	
				(if	(equal?	x	0)	
								1	
								(*	(factorial	(-	x	1))	x)))

(define	(factorial-tail	x	acc)	
				(if	(equal?	x	0)	
								acc	
								(factorial	(-	x	1)	(*	acc	x))))	
(define	(factorial	x)	(factorial-tail	1))

(define	(max-of-list	l)	
		(cond	[(=	(length	l)	1)	1]	
								[(empty?	l)	(raise	'empty-list)]	
								[else	(max	(first	l)	(max-of-list	(rest	l))	
)]))

Write this as a tail-recursive function

foldl
Like map, a higher order function operating on lists

(foldl	/	1	‘(1	2	3))	=	(/	3	(/	2	(/	1	1)))

(foldl	+	0	‘(1	2	3))	=	(+	3	(+	2	(+	1	0)))

[0,	1,	2]
+

	0						
1

[0,	1,	2]
+ +

	0		1		
1

[0,	1,	2]
+ + +

	0		1		3
1

(define	(concat-strings	l)	
		(foldl	(lambda	(next_element	accumulator)	
							(string-append	next_element	accumulator))	
							""	
							(reverse	l)))

Challenge: use foldl to define max-of-list

**Challenge: define foldl

