
Kristopher Micinski Page 1 of 3

RESEARCH STATEMENT
Kristopher Micinski (kris@cs.haverford.edu)

To be confident our systems conform to some consistent definition of security, we have to appeal to
formal techniques when we reason about those systems. But to be confident that the systems we build
are meaningful to users, we have to evaluate them by studying humans. I build on foundations from
programming languages and apply them to security.

In my dissertation I studied security in mobile apps. Mobile apps have access to a large amount
of sensitive user data. So it is crucial to ensure that users are aware when that data is accessed or
declassified. My insight is that the app’s GUI serves as a bridge between a user’s conceptualization of
security and an app’s implementation. Using this, I define a new class of (so called interaction-based)
policies that leverages the app’s GUI to enforce informed consent. I built tools to measure these policies
in apps and studied users to understand how they conceptualize security with respect to the UI.

My goal is to allow users to have precise control over their data with minimum overhead (cognitive
load, technical understanding, cost, etc.). This requires further research in many directions. For
example, it requires tools to help us understand what the policies should be. Then, it requires us to
understand how to present these policies to users. If we want to be sure our programs behave according
to these specifications, we also need tools to enforce these policies.

I still have a lot of work left to do. Much of my research includes scaling core ideas to implemen-
tations that work on production systems. I see this as an ideal platform for undergraduate research
because it allows students to learn science in the context of novel scientific contributions.

Dynamic Analysis for Security To decide which problems in security to tackle, we must first
measure app behavior in situ. I do this using dynamic analysis. Dynamic analysis retrofits off-the-shelf
apps with runtime tracking to check or ensure some property. My first collaboration—Dr. Android
and Mr. Hide1—allows replacing permissions (e.g., INTERNET) with finer-grained permissions (e.g.,
cnn.com). This is done using a trusted service (Mr. Hide) to arbitrate access to sensitive resources and
a binary rewriter (Dr. Android) that retrofits apps with a desired security policy [1].

We applied Dr. Android and Mr. Hide to 14 apps from Google Play and were successfully able to
enforce fine-grained permissions access for each of those apps while imposing only a modest performance
overhead. This was all performed without modifying the Android operating system. With the help of
my collaborators, I publicly released Dr. Android as a more general binary rewriter for Android named
Redexer2. Redexer is actively maintained and used by groups in industry and academia. To date the
Dr. Android paper has been cited 190 times (240 including the tech report version). After this work, I
also worked with a high school student (Philip Phelps) to build an extension to Dr. Android and Mr.
Hide that allowed the user to truncate bits of the location before giving it to apps. We measured this
tool on a set of apps and published our results at Mobile Security Technologies (MoST) 2013 [4].

Information Flow and declassification Dynamic analysis is useful for tracking runtime properties
of programs, but doesn’t offer very strong formal guarantees. For example, dynamic analysis can’t tell
us anything about the paths we don’t see at runtime. Information flow is a powerful property that can
offer formal privacy guarantees. Informally, a program satisfies information flow if any pair of secret
inputs leads to the same public output. But this power comes at a cost: it has proven hard to apply
to realistic applications. I wanted to apply information flow policies to Android apps. The problem

1Dr. Android is the Dalvik Rewriter for Android (Dalvik being the bytecode language of Android) is the Hide interface
to the dalvik environment

2https://github.com/plum-umd/redexer

1

https://github.com/plum-umd/redexer


Kristopher Micinski Page 2 of 3

was that most real apps leak some information. Various researchers have studied information flow in
the presence of declassification. Previous efforts forced programmers to provide annotations. But this
is unrealistic for typical apps. Further, it doesn’t help users understand the policy.

My hypothesis was that well-behaving apps use the GUI to implement informed consent: secret in-
puts can be declassified only when the user explicitly performs some GUI interaction. Based on this
idea, I defined interaction-based information flow. I formalized this by defining a variant of information
flow and applied it to Android apps using program analysis [2]. This work appeared at ESORICS 2015,
a strong security conference with a 20% acceptance rate.

Comparing User Interactions and Security on Android I wanted to test my hypothesis. So
next, I ran two studies to measure how the UI informs expectation of sensitive resource usage3.

The first was an app study. I needed to understand the relation between an app’s GUI and how
it accessed sensitive resources. Techniques such as symbolic execution are hard to scale to production
apps. Instead, my technique works by using instrumentation to log the app as it is executed and
then creating a visualization of those logs [5]. I implemented this in a tool called AppTracer. I ran
AppTracer on 150 popular Android apps to classify the types of interactive resource use in those apps.
I used the visualization and a human-curated codebook to assign a set of codes to each permission use.

Next, I conducted a user study to evaluate when users expected permission use to occur. The study
is comprised of a vignette interspersed with questions about what resources the user expects will be
used. Different participants are assigned different vignettes, in which authorization for resources at
different times (on app start, a button click, or not at all).

I found apps largely match user expectations, but there are still key shortcomings with Android’s
permission system. Users seemed to expect the most invasive permissions (e.g., camera and microphone)
to be used only after a click. My app study confirmed this is almost exclusively the case. I recommend
that this be made mandatory with rare exceptions, since uses of these resources not clearly associated
with a relevant click are unexpected by users. Even when users understand resources will be accessed,
Android still asks users for explicit permission via a dialog. This implies Android is being too invasive.
More results appear in my CHI 2017 (the top HCI conference) paper.

Permission-Use Provenance in Android

User interfaces bridge implementation and under-
standing. To exploit this, we need better tools to ana-
lyze apps. AppTracer was a first step, but could only
detect background permission uses, not explain them.
The diagram to the right shows a malicious app using
the camera in two different ways. Rectangular nodes
represent callbacks, red bubbles show permission uses,
and edges connect nodes when one handler registers
another. Edges are annotated with symbolic formulas
detailing facts which hold at registration points.

The use on the far right is benign: a photo is taken after the user clicks a button (invoking the
onClick handler). The second is malicious: an intricate sequence of callbacks registers a background
thread and waits on a command-and-control server to request a picture be sent. As an example of why
symbolic formulas are necessary, φ4 asserts that the command from the server requested a picture be
taken. This app would evade the current Android permission system, which authorizes on first use.

3This is a weaker property than information flow, but I see this as a first step in understanding human perceptions
about interactivity in apps.

2



Kristopher Micinski Page 3 of 3

Reasoning about permissions-use provenance requires precisely tracking about sequences of call-
backs. This is impossible to do at scale with traditional program analyses. My insight was that I
could use system logs to circumvent the problems with traditional techniques. This has allowed me to
targeted analysis at scale based on recorded app logs.

I implemented this in an analysis tool named Hogarth [3]. Hogarth performs symbolic execution
along the paths observed in recorded logs. I applied Hogarth to a set of ten apps and used it to study
background permission uses. For example, I found that Bumble—a popular dating app—transmits
location in the background upon request from a server to which the app is connected. My work on
Hogarth is currently under submission at ICSE 2018, the top software engineering conference.

Future Direction: Analysis-Assisted Auditing Considerable work has gone into checking that
systems fit a security policy. Much less work helps us take an arbitrary app and decide the policy. This
is especially true for greyware: data uses that aren’t explicitly malicious, but still unwanted.4

AppTracer and Hogarth are my first steps in this direction. Using program analysis to aid auditing
is not a new insight, but has traditionally been hindered by the high number of false alarms in those
analyses. However, key to my technique is recognizing that we can combine program analysis with
runtime information to help increase its precision. I also want to perform visualization to help auditors
understand results of tools like Hogarth, and generalize paths observed at runtime to help find potential
security holes that weren’t in dynamic paths (such as logic bombs).

Future Direction: Static Analysis to Optimize Dynamic Analyses for Security I strongly
believe in using dynamic analyses and tracking for security, because it often applies directly to programs
as they exist today, without modifying the language or requiring complicated analysis.

There are many promising dynamic techniques for enforcing security properties at runtime. Unfor-
tunately, these techniques are rarely used in practice because they introduce unacceptable performance
overhead. To solve this, I will use program analysis to optimize runtime security checks.

I am currently working on optimizing faceted execution, a runtime monitor for information flow.
Faceted execution lifts program variables to include “faceted” variables which track a view of the value
as it appears to a privileged party and as it appears to everyone else. Unfortunately, every function in
the program must check if the value its working with is faceted, which is quite slow.

This work is hard to perform with students because of its fairly technical nature. I am collaborating
with Thomas Gilray (Maryland) and David Darais (Vermont) to use program analysis to determine
how these programs can be optimized. We plan on submitting this work to conferences in early 2018.
Once we do that, we plan to expand our implementation to more production languages, and this may
be a rich opportunity for undergraduate collaboration.

Future Direction: Cross-app security policies So far my work has largely been confined to
apps. Now I am stepping out and focusing on what we can do when a user’s data is spread across
many different devices and services. All large platforms now include privacy controls to help users
understand and control how their data may be used. But none of these controls work together.

I have begun to push in this direction with three of my undergraduate advisees. We are using
dynamic analysis to measure how social-media permissions are used in apps. For example, we want to
know if any apps request data from Facebook instead to circumvent the Android permissions system.

To tackle user understanding, I will run user studies to understand how users reason about the
composition of different privacy systems being used together. This will happen through a continuing
collaboration between myself, Michelle Mazurek and Jeff Foster at Maryland.

4For example, apps that record user conversations to make targeted recommendations.

3



Kristopher Micinski Page 4 of 3

References

[1] Jinseong Jeon, Kristopher Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S.
Foster, and Todd Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions in Android
Applications. In ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM), pages 3–14, Raleigh, NC, USA, October 2012.

[2] Kristopher Micinski, Jonathan Fetter-Degges, Jinseong Jeon, Jeffrey S. Foster, and Michael R.
Clarkson. Checking Interaction-Based Declassification Policies for Android Using Symbolic Exe-
cution. In European Symposium on Research in Computer Security (ESORICS), volume 9327 of
Lecture Notes in Computer Science, pages 520–538, Vienna, Austria, September 2015.

[3] Kristopher Micinski, Thomas Gilray, Daniel Votipka, Jeffrey S. Foster, and Michelle L. Mazurek.
Permission-use provenance in android using sparse dynamic analysis, August 2017. In submission
to ICSE 2018. Preprint on webpage at http://kmicinski.com/assets/hogarth.pdf.

[4] Kristopher Micinski, Philip Phelps, and Jeffrey S. Foster. An Empirical Study of Location Trun-
cation on Android. In Mobile Security Technologies (MoST), San Francisco, CA, May 2013.

[5] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos Kofinas, Jeffrey S. Foster, and
Michelle L. Mazurek. User Interactions and Permission Use on Android. In Conference on Human
Factors in Computing Systems (CHI), 2017.

4

http://kmicinski.com/assets/hogarth.pdf

