
Checking Interaction-Based Declassification
Policies for Android Using Symbolic Execution

Kristopher Micinski1, Jonathan Fetter-Degges1, Jinseong Jeon1,
Jeffrey S. Foster1, and Michael R. Clarkson2

1 University of Maryland, College Park
{micinski,jonfd,jsjeon,jfoster}@cs.umd.edu

2 Cornell University
clarkson@cs.cornell.edu

Abstract. Mobile apps can access a wide variety of secure information,
such as contacts and location. However, current mobile platforms include
only coarse access control mechanisms to protect such data. In this pa-
per, we introduce interaction-based declassification policies, in which the
user’s interactions with the app constrain the release of sensitive infor-
mation. Our policies are defined extensionally, so as to be independent of
the app’s implementation, based on sequences of security-relevant events
that occur in app runs. Policies use LTL formulae to precisely specify
which secret inputs, read at which times, may be released. We formalize
a semantic security condition, interaction-based noninterference, to de-
fine our policies precisely. Finally, we describe a prototype tool that uses
symbolic execution to check interaction-based declassification policies for
Android, and we show that it enforces policies correctly on a set of apps.

Keywords: Information flow, program analysis, symbolic execution.

1 Introduction

Android devices manage sensitive information, such as contacts and location. To
prevent apps from abusing this information, Android employs an access control
system based on permissions, which are capabilities granted to apps at install
time. Unfortunately, once an app has a permission, it has carte blanche to use it
in any way at run time. For example, an app with location and Internet access
could continuously broadcast the device’s location. Thus, permissions do not
enable fine-grained control of what and when sensitive information may be used.

To address that limitation, this paper presents a new framework for Android
app security based on information flow control. The key idea behind our frame-
work is that users naturally express their intentions about information release as
they interact with an app. For example, clicking a button may permit an app to
release a phone number over the Internet. Or, as another example, toggling a ra-
dio button from “coarse” to “fine” and back to “coarse” may temporarily permit
an app to use fine-grained GPS location vs. a coarse-grained approximation.

2

To model these kinds of scenarios, we introduce interaction-based declassifica-
tion policies, which extensionally specify what information flows may occur after
which sequences of events. Events are GUI interactions (e.g., a button click), in-
puts (e.g., reading the phone number), or outputs (e.g., a send over the Internet).
A policy is a set of declassification conditions, written φ � S, where φ is a linear-
time temporal logic (LTL) [18] formula over events, and S is a sensitivity level.
If φ holds at the time an input occurs, then that input is declassified to level S.
(Our declassification policies thus refine those of Chong and Myers [3] by provid-
ing a logical notation for expressing the conditions under which declassification
is permitted.) We formalize a semantic security condition, interaction-based non-
interference (IBNI), over sets of event traces generated by an app. Intuitively,
IBNI holds of an app and policy if observational determinism [25] holds after
all inputs have been declassified according to the policy. (Section 2 describes
policies further, and Section 3 presents our formal definitions.)

We introduce ClickRelease, a prototype tool that analyzes whether an An-
droid app and its declassification policy satisfies IBNI. ClickRelease generates
event traces using SymDroid [9], a Dalvik bytecode symbolic executor. ClickRe-
lease simulates user interactions with the app. In practice, it is not feasible to
enumerate all program traces, so ClickRelease generates traces up to some input
depth of n GUI events. ClickRelease then synthesizes a set of logical formulae
that hold if and only if IBNI holds, and uses Z3 [15] to check their satisfiability.
(Section 4 describes ClickRelease in detail.)

To validate ClickRelease, we used it to analyze four Android apps, including
both secure and insecure variants of those apps. We ran each app variant under
a range of input depths, and confirmed that, as expected, ClickRelease scales
exponentially. However, we manually examined each app and its policy, and
found that an input depth of at most 5 is sufficient to guarantee detection of a
security policy violation (if any) for these cases. We ran ClickRelease at these
minimum input depths and found that it correctly passes and fails the secure
and insecure app variants, respectively. At these depths, ClickRelease takes just
a few seconds to run. (Section 5 describes our experiments.)

In summary, we believe that ClickRelease takes an important step forward
in providing powerful new security mechanisms for mobile devices.

2 Example Apps and Policies

We begin with two example apps that show interesting aspects of interaction-
based declassification policies.

2.1 Bump app

The boxed portion of Fig. 1 gives (simplified) source code for an Android app
that releases a device’s unique ID and/or phone number. This app is inspired
by the Bump app, which let users tap phones to share selected information with

3

1 public class BumpApp extends Activity {
2 protected void onCreate(. . .) {
3 Button sendBtn = (Button) findViewById(. . .);
4 CheckBox idBox = (CheckBox) findViewById(. . .);
5 CheckBox phBox = (CheckBox) findViewById(. . .);
6 TelephonyManager manager = TelephonyManager.getTelephonyManager();
7 final int id = manager.getDeviceId();
8 final int ph = manager.getPhoneNumber();
9 idBox.setChecked(false);

10 phBox.setChecked(false);
11 sendBtn. setOnClickListener (
12 new OnClickListener() {
13 public void onClick(View v) {
14 if (idBox.isChecked())
15 Internet . sendInt(id);
16 //Internet.sendInt(ph);
17 if (phBox.isChecked())
18 Internet . sendInt(ph);
19 //Internet.sendInt(id);
20 }})}}

id! ∗ ∧(F(sendBtn!unit ∧ last(idBox, true))) � Low,
ph! ∗ ∧(F(sendBtn!unit ∧ last(phBox, true))) � Low

Fig. 1. “Bump” app and policy.

each other. We have interspersed an insecure variant of the app in the red code
on lines 16 and 19, which we will discuss in Section 3.1.

Each screen of an Android app is implemented using a class that extends
Activity. When an app is launched, Android invokes the onCreate method for a
designated main activity. (This is part of the activity lifecycle [8], which includes
several methods called in a certain order. For this simple app, and the other apps
used in this paper, we only need a single activity with this one lifecycle method.)
That method retrieves (lines 3–5) the GUI IDs of a button (marked “send”) and
two checkboxes (marked “ID” and “phone”). The onCreate method next gets
an instance of the TelephonyManager, uses it to retrieve the device’s unique ID
and phone number information, and unchecks the two checkboxes as a default.
Then it creates a new callback (line 12) to be invoked when the “send” button is
clicked. When called, that callback releases the user’s ID and/or phone number,
depending on the checkboxes.

This app is written to work with ClickRelease, a symbolic execution tool we
built to check whether apps satisfy interaction-based declassification policies. As
we discuss further in Section 4, ClickRelease uses an executable model of Android
that abstracts away some details that are unimportant with respect to security.
While a real app would release information by sending it to a web server, here
we instead call a method Internet.sendInt. Additionally, while real apps include

4

an XML file specifying the screen layout of buttons, checkboxes, and so on,
ClickRelease creates those GUI elements on demand at calls to findViewById
(since their screen locations are unimportant). Finally, we model the ID and
phone number as integers to keep the analysis simpler.

ClickRelease symbolically executes paths through subject apps, recording a
trace of events that correspond to certain method calls. For example, one path
through this app generates a trace

id!42, ph!43, idBox!true, sendBtn!unit, netout!42

Each event has a name and a value. Here we have used names id and ph for secret
inputs, idBox and sendBtn for GUI inputs, and netout for the network send. In
particular, the trace above indicates 42 is read as the ID, 43 is read as the
phone number, the ID checkbox is selected, the send button is clicked (carrying
no particular value, indicated by unit), and then 42 is sent on the network. In
ClickRelease, events are generated by calling certain methods that are specially
recognized. For example, ClickRelease implements the manager.getDeviceId call
as both returning a value and emitting an event.

Notice here that in the trace, callbacks to methods such as idBox and sendBtn
correspond to user interactions. The key idea behind our framework is that these
actions convey the user’s intent as to which information should be released. More-
over, traces also contain actions relevant to information release—here the reads
of the ID and phone number, and the network send. Thus, putting both user
interactions and security-sensitive operations together in a single trace allows
our policies to enforce the user’s intent.

The policy for this example app is shown at the bottom of Fig. 1. Policies are
comprised of a set of declassification conditions of the form φ�S, where φ is an
LTL formula describing event traces and S is a security level. Such a condition
is read, “At any input event, if φ holds at that position of the event trace, then
that input is declassified at level S.” For this app there are two declassification
conditions. The top condition declassifies (to Low) an input that is a read of
the ID at any value (indicated by ∗), if sometime in the future (indicated by
the F modality) the send button is clicked and, when that button is clicked, the
last value of the ID checkbox was true. (Note that last is not primitive, but is
a macro that can be expanded into regular LTL.) The second declassification
condition does the analogous thing for the phone number.

To check such a policy, ClickRelease symbolic executes the program, generat-
ing per-path traces; determines the classification level of every input; and checks
that every pair of traces satisfies noninterference. Note that using LTL provides
a very general and expressive way to describe the sequences of events that imply
declassification. For example, here we precisely capture that only the last value
of the checkbox matters for declassification. For example, if a user selects the ID
checkbox but then unselects it and clicks send, the ID may not be released.

Also notice this policy depends on the app reading the ID and phone number
when the app starts. If the app instead waited until after the send button is
clicked, it would violate this policy. We could address this by replacing the F

5

21 public class ToggleRes extends Activity { . . .
22 LocSharer mLocSharer = new LocSharer();
23 RadioManager mRadio = new RadioManager();
24 protected void onCreate(. . .) { . . .}
25 private class LocSharer implements LocationListener { . . .
26 public LocSharer(RadioManager rm) {
27 lm = (LocationManager) getSystemService(LOCATION SERVICE);
28 lm.requestLocationUpdates(mCurrentProvider, SHARE INTERVAL, distance, this);
29 }
30 public void onLocationChanged(Location l) {
31 if (mRadio.mFine) {
32 Internet . sendInt(l .mLatitude);
33 Internet . sendInt(l .mLongitude);
34 } else {
35 Internet . sendInt(l .mLatitude & 0 xffffff00);
36 Internet . sendInt(l .mLongitude & 0 xffffff00);
37 } } }
38 private class RadioManager
39 implements OnClickListener {
40 public boolean mFine = false;
41 public void onClick(View v) { mFine = !mFine; }
42 } }

longitude! ∗ ∧last(mRadio, true) � Low,
longitude! ∗ ∧last(mRadio, false) � MaskLower8

Fig. 2. Location sharing app and policy.

modality by P (past) in the policy (and we could form a disjunction of the two
policies if we wanted to allow either). More generally, we designed our framework
to be sensitive to such choices to support reasoning about secret values that
change over time, so we can precise specify the level of a secret input that was
read at a particular time. We will see an example next.

2.2 Location resolution toggle app

Fig. 2 gives code for an app that shares location information, either at full
or truncated resolution depending on the setting of a radio button. The app’s
onCreate method displays a radio button (code not shown) and then creates and
registers a new instance of RadioManager to be called each time the radio button
is changed. That class maintains a field mFine as true when the radio button is
set to full resolution and false when it is set to truncated resolution.

Separately, onCreate registers LocSharer to be called periodically with the
current location. It requests location updates by registering a callback with the
LocationManager system service. When called, LocSharer releases the location,
either at full resolution or with the lower 8 bits masked, depending on mFine.

6

Primitives p ::= n | true | false | unit | f(p1, . . . , pi)
Events η ::= name!p
Traces t ::= η list

(a) Event and Trace Definitions.

Policies P ::= C1, C2, . . .
Conditions C ::= φ� S
Security Levels S ::= High | Low | MaskLower8 | . . .
Atoms A ::= name!s | s⊕ s
Messages s ::= x | p | ∗
Formulae φ ::= A | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ∃x.φ | ∀x.φ

| Xφ | φ U φ | Gφ | Fφ | φ S φ | Pφ

(b) Interaction-based Declassification Policy Language.

Fig. 3. Formal definitions.

The declassification policy for longitude appears below the code; the policy
for latitude is analogous. This policy allows the precise longitude to be released
when mRadio is set to fine, but only the lower eight bits to be released if mRadio
is set to coarse. Here ClickRelease knows that at the MaskLower8 level, it should
consider outputs to be equivalent up to differences in the lower 8 bits.

Finally, notice that this policy does not use the future modality. This is
deliberate, because location may be read multiple times during the execution, at
multiple values, and the security level of those locations should depend on the
state of the radio button at that time. For example, consider a trace

mRadio!false, longitude!v1,mRadio!true, longitude!v2

The second declassification condition (longitude!∗∧last(mRadio, false)) will match
the event with v1, since the last value of mRadio was false, and thus v1 may be
declassified only to MaskLower8. Whereas the first declassification condition will
match the event with v2, hence it may be declassified to Low.

3 Program Traces and Security Definition

Next, we formally define when a set of program traces satisfies an interaction-
based declassification policy.

3.1 Program Traces

Fig. 3(a) gives the formal syntax of events and traces. Primitives p are terms
that can be carried by events, e.g., values for GUI events, secret input returns,
or network sends. In our formalism, primitives are integers, booleans, and terms

7

constructed from primitives using uninterpreted constructors f . As programs
execute, they produce a trace t of events η, where each event name!p pairs an
event name name with a primitive p. We assume event names are partitioned into
those corresponding to inputs and those corresponding to outputs. For all the
examples in this paper, all names are inputs except netout, which is an output.

Due to space limitations, we omit details of how traces are generated. Instead,
we simply assume there exists some set T containing all possible traces a given
program may generate. For example, consider the insecure variant bump app in
Fig. 1, which removes lines 15 and 18 and uncomments lines 16 and 19. This app
sends the phone number when the email box is checked and vice-versa. Thus, its
set T contains, among others, the following two traces:

id!0, ph!0, idBox!true, sendBtn!unit, netout!0 (1)
id!0, ph!1, idBox!true, sendBtn!unit, netout!1 (2)

In the first trace, ID and phone number are read as 0, the ID checkbox is selected,
the button is clicked, and 0 is sent. The second trace is similar, except the phone
number and sent value are 1. Below, we use these traces to show this program
violates its security policy.

3.2 Interaction-based Declassification Policies

We now define our policy language precisely. Fig. 3(b) gives the formal syntax of
declassification policies. A policy P is a set of declassification conditions Ci of the
form φi�Si, where φi is an LTL formula describing when an input is declassified,
and Si is a security level at which the value in that event is declassified.

As is standard, security levels S form a lattice. For our framework, we require
that this lattice be finite. We include High and Low security levels, and we can
generalize to arbitrary lattices in a straightforward way. Here we include the
MaskLower8 level from Fig. 2 as an example, where Low v MaskLower8 v High.
Note that although we include High in the language, in practice there is no reason
to declassify something to level High, since then it remains secret.

The atomic predicates A of LTL formulae match events, e.g., atomic predi-
cate name!p matches exactly that event. We include ∗ for matches to arbitrary
primitives. We allow event values to be variables that are bound in an enclosing
quantifier. The atomic predicates also include the ability to make atomic arith-
metic statements. The combination of these lets us describe complex events. For
example, we could write ∃x.spinner!x∧x > 2 to indicate the spinner was selected
with a value greater than 2.

Atomic predicates are combined with the usual boolean connectives (¬, ∧,
∨, →) and existential and universal quantification. Formulae include standard
LTL modalities X (next), U (until), G (always), F (future), φ S ψ (since),
and Pφ (past). Formulae also include last(name, p), which is syntactic sugar for
¬(name!∗) S name!p. We assume a standard interpretation of LTL formulae over
traces [13]. We write t, i |= φ if trace t is a model of φ at position i in the trace.

Next consider a trace t ∈ T for an arbitrary program. We write level(t, P, i)
for the security level that policy P assigns to the event t[i]:

8

level(t, P, i) =

{d
φj�Sj∈P {Sj | t, i |= φj} t[i] = name!p

Low t[i] = name!netout

In other words, for inputs, we take the greatest lower bound (the most de-
classified) of the levels from all declassification conditions that apply. We always
consider network outputs to be declassified. Notice that if no policy applies, the
level is H by definition of greatest lower bound.

For example, consider trace (1) above with respect to the policy in Fig. 1. At
position 0, the LTL formula holds because the ID box is eventually checked and
then the send button is clicked, so level((1), P, 0) = Low. However, level((1), P, 1) =
High because no declassification condition applies for ph (phBox is never checked).
And level((1), P, 4) = Low, because that position is a network send.

Next consider applying this definition to the GUI inputs. As written, we
have level((1), P, 2) = level((1), P, 3) = High. However, our app is designed to
leak these inputs. For example, an adversary will learn the state of idBox if they
receive a message with an ID. Thus, for all the subject apps in this paper, we also
declassify all GUI inputs as Low. For the example in Fig. 1, this means adding
the conditions idBox! ∗�Low, phBox! ∗�Low, and sendBtn! ∗�Low. In general,
the security policy designer should decide the security level of GUI inputs.

Next, we can apply level pointwise across a trace and discard any trace
elements that are below a given level S. We define

level(t, P)S [i] =

{
t[i] level(t, P, i) v S
τ otherwise

We write level(t, P)S,in for the same filtering, except output events (i.e., network
sends) are removed as well. Considering the traces (1) and (2) again, we have

level((1), P)Low=id!0, idBox!true, sendBtn!unit, netout!0
level((2), P)Low=id!0, idBox!true, sendBtn!unit, netout!1

level((1), P)Low,in=id!0, idBox!true, sendBtn!unit
level((2), P)Low,in=id!0, idBox!true, sendBtn!unit

Finally, we can define a program to satisfy noninterference if, for every pair
of traces such that the inputs at level S are the same, the outputs at level S are
also the same. To account for generalized lattice levels such as MaskLower8, we
also need to treat events that are equivalent at a certain level as the same. For
example, at MaskLower8, outputs 0xffffffff and 0xffffff00 are the same,
since they do not differ in the upper 32 bits. Thus, we assume for each security
level S there is a appropriate equivalence relation =S , e.g., for MaskLower8, it
compares elements ignoring their lower 8 bits. Note that x =Low y is simply
x = y and x =High y is always true.

Definition 1 (Interaction-based Noninterference (IBNI)). A program sat-
isfies security policy P , if for all S and for all t1, t2 ∈ T (the set of traces of the
program) the following holds:

level(t1, P)S,in =S level(t2, P)S,in =⇒ level(t1, P)S =S level(t2, P)S

9

Looking at traces for the insecure app, we see they violate non-interference,
because level((1), P)Low,in = level((2), P)Low,in, but level((1), P)Low 6= level((2), P)Low

(they differ in the output). We note that our definition of noninterference makes
it a 2-hypersafety property [6].

4 Implementation

We built a prototype tool, ClickRelease to check whether Android apps obey the
interaction-based declassification policies described in Section 3. ClickRelease is
based on SymDroid [9], a symbolic executor for Dalvik bytecode, which is the
bytecode format to which Android apps are compiled. As is standard, Sym-
Droid computes with symbolic expressions that may contain symbolic variables
representing sets of values. At conditional branches that depend on symbolic
variables, SymDroid invokes Z3 [15] to determine whether one or both branches
are feasible. As it follows branches, SymDroid extends the current path condition,
which tracks branches taken so far, and forks execution when multiple paths are
possible. Cadar and Sen [1] describe symbolic execution in more detail.

SymDroid uses the features of symbolic execution to implement nondetermin-
istic event inputs (such as button clicks or spinner selections), up to a certain
bound. Since we have symbolic variables available, we also use them to represent
arbitrary secret inputs in a compact way. There are several issues that arise in
applying SymDroid to checking our policies, as we discuss next.

4.1 Driving App Execution

Android apps use the platform’s API, which includes classes for responding to
events via callbacks. On Android, those features are part of the framework.
We could try to symbolically execute Android framework code directly, but past
experience suggests this is intractable, since the framework is large, complicated,
and includes native code. Instead, we created an executable model, written in
Java, that mimics key portions of Android needed by our subject apps. Our
Android model includes facilities for generating clicks and other GUI events
(such as the View, Button, and CheckBox classes, among others). It also includes
code for LocationManager, TelephonyManager, and other basic Android classes.

In addition to code modeling Android, the model also includes simplified ver-
sions of Java library classes such as StringBuffer and StringBuilder. Our versions
of these APIs implement unoptimized versions of methods in Java and escape to
internal SymDroid functions to handle operations that would be unduly complex
to symbolically execute. For instance, SymDroid represents Java String objects
with OCaml strings instead of Java arrays of characters. It thus models methods
such as String.concat with internal calls to OCaml string manipulation functions.
Likewise, reflective methods such as Class.getName are handled internally.

For each app, we created a driver that uses our Android model to simulate
user input to the GUI. The driver is specific to the app since it depends on
the app’s GUI. The driver begins by calling the app’s onCreate method. Next it

10

invokes special methods in the Android model to inject GUI events. There is one
such method for each type of GUI element, e.g., buttons, checkboxes, etc. For
example, Trace.addClick(id) generates a click event for the given id and then calls
the appropriate event handler. The trace entry contains the event name for that
kind of element, and a value if necessary. Event handlers are those that the app
registered through standard Android framework mechanisms, e.g., in onCreate.

Let m be the number of possible GUI events. To simulate one arbitrary
GUI event, the driver uses a block that branches m ways on a fresh symbolic
variable, with a different GUI action in each branch. Typical Android apps never
exit unless the framework kills them, and thus we cannot explore all possible
program traces. Instead, the user specifies an input depth n, and the driver runs
the GUI event block n times, branching on a fresh symbolic variable each time.
Thus, in total, the driver will execute at least mn paths.

4.2 Symbolic Variables in Traces

In addition to GUI inputs, apps also use secret inputs. We could use SymDroid to
generate concrete secret inputs, but instead we opt to use a fresh symbolic vari-
able for each secret input. For example, the call to manager.getDeviceId in Fig. 1
returns a symbolic variable, and the same for the call to manager.getPhoneNumber.
This choice makes checking policies using symbolic execution a bit more power-
ful, since, e.g., a symbolic integer variable represents an arbitrary 32-bit integer.
Note that when ClickRelease generates a symbolic variable for a secret input, it
also generates a trace event corresponding to the input.

Recall that secret inputs may appear in traces, and thus traces may now
contain symbolic variables. For example, using αi’s as symbolic variables for the
secret ID and phone number inputs, the traces (1) and (2) become

id!α1, ph!α2, idBox!true, sendBtn!unit, netout!α2 (1′)
id!α1, ph!α2, idBox!true, sendBtn!unit, netout!α2 (2′)

Note we must take care when symbolic variables are in traces. Recall level
checks t, i |= φ and then assigns a security level to position i. If φ depends
on symbolic variables in t, we may not be able to decide this. For example,
if the third element in (1′) were idBox!α3, then we would need to reason with
conditional security levels such as level(t, P, 0) = if α3 then Low else High. We
avoid the need for such reasoning by only using symbolic variables for secret
inputs, and by ensuring the level assigned by a policy does not depend on the
value of a secret input. We leave supporting such reasoning to future work.

4.3 Checking Policies with Z3

Each path explored by SymDroid yields a pair (t, Φ), where t is the trace and
Φ is the path condition. ClickRelease uses Z3 to check whether a given set of
such trace, path condition pairs satisfies a policy P . Recall that Definition 1
assumes for each S there is an =S relation on traces. We use the same relation

11

below, encoding it as an SMT formula. For our example lattice, =High produces
true, =Low produces a conjunction of equality tests among corresponding trace
elements, and =MaskLower8 produces the conjunction of equality tests of the
bitwise-and of every element with 0xffffff00.

Given a trace t, let t′ be t with its symbolic variables primed, so that the
symbolic variables of t and t′ are disjoint. Given a path condition Φ, define Φ′

similarly. Now we can give the algorithm for checking a security policy.

Algorithm 1 To check a set T of trace, path condition pairs, do the following.
Let P be the app’s security policy. Apply level across each trace to obtain the
level of each event. For each (t1, Φ1) and (t2, Φ2) in T × T , and for each S, ask
Z3 whether the following formula (the negation of Definition 1) is unsatisfiable:

level(t1, P)S,in =S level(t′2, P)S,in ∧ level(t1, P)S 6=S level(t′2, P)S ∧ Φ1 ∧ Φ′
2

If no such formula is unsatisfiable, then the program satisfies noninterference.

We include Φ1 and Φ′
2 because they constrain the symbolic variables in the

trace. More precisely, t1 represents a set of concrete traces in which its symbolic
variables are instantiated in all ways that satisfy Φ1, and analogously for t′2.

If the above algorithm finds an unsatisfiable formula, then Z3 returns a coun-
terexample, which SymDroid uses to generate a pair of concrete traces as a
counterexample. For example, consider the traces (1’) and (2’) above, and prime
symbolic variables in (2’). Those traces have the trivial path condition true, since
neither branches on a symbolic input. Thus, the formula passed to Z3 will be:

α1 = α′
1∧true = true∧unit = unit∧

(
α1 6= α′

1∨true 6= true∨unit 6= unit∨α2 6= α′
2

)
where the first line is from the equality in the definition and the second is from
the disequality. Thus we can see a satisfying assignment with α1 = α′

1 and
α2 6= α′

2, hence noninterference is violated.

4.4 Minimizing Calls to Z3

A naive implementation of the noninterference check generates n2 equations,
where n is the number of traces produced by ClickRelease to be checked by Z3.
However, we observed that many of these equations correspond to pairs of traces
with different sequences of GUI events. Since GUI events are low inputs in all
our policies, these pairs trivially satisfy noninterference (the left-hand side of the
implication in Definition 1 is false). Thus, we need not send those equations to
Z3 for an (expensive) noninterference check.

We exploit this observation by organizing SymDroid’s output traces into a
tree, where each node represents an event, with the initial state at the root,
and traces with common prefixes share the same ancestor traces in the tree. We
systematically traverse this tree using a cursor t1, starting from the root. When
t1 reaches a new input event, we then traverse the tree using another cursor
t2, also starting from the root. As t2 visits the tree, we do not invoke Z3 on

12

any traces with fewer input events than t1 (since they are not low-equivalent to
t1). We also skip any subtrees for which the root input event differs from the
corresponding event in t1—the trace represented by the root is low-inequivalent
to t1, and extending that trace cannot make it low-equivalent to t1.

5 Experiments

To evaluate ClickRelease, we ran it on four apps, including the two described in
Section 2. We also ran ClickRelease on several insecure variants of each app, to
ensure it can detect the policy violations. The apps and their variants are:

– Bump. The bump app and its policy appear in Fig. 1. The first insecure
variant counts clicks to the send button sends the value of the ID after three
clicks, regardless of the state of the ID checkbox. The second (indicated in
the comments in the program text) swaps the released information—if the ID
box is checked, it releases the phone number, and vice-versa.

– Location toggle. The location toggle app and its policy appear in Fig. 2. The
first insecure variant always shares fine-grained location information, regard-
less of the radio button setting. The second checks if coarse-grain information
is selected. If so, it stores the fine-grained location (but does not send it yet).
If later the fine-grained radio button is selected, it sends the stored location.
Recall this is forbidden by the app’s security policy, which allows the release
only of locations received while the fine-grained option is set.

– Contact picker. We developed a contact picker app that asks the user to select
a contact from a spinner and then click a send button to release the selected
contact information over the network. The security policy for this app requires
that no contact information leaks unless it is the last contact selected before
the button click. (For example, if the user selects contact 1, selects contact 2,
and then clicks the button, only contact 2 may be released.) Note that since
an arbitrarily sized list of contacts would be difficult for symbolic execution
(since then there would be an unbounded number of ways to select a contact),
we limit the app to a fixed set of three contacts. The first insecure variant of
this app scans the set of contacts for a specific one. If found, it sends a message
revealing that contact exists before sending the actual selected contact. The
second insecure variant sends a different contact than was selected.

– WhereRU. Lastly, we developed an app that takes push requests for the user’s
location and shares it depending on user-controlled settings. The app contains
a radio group with three buttons, “Share Always,” “Share Never,” and “Share
On Click.” There is also a “Share Now” button that is enabled when the “Share
On Click” radio button is selected. When a push request arrives, the security
policy allows sharing if (1) the “Always” button is selected, or (2) the “On
Click” button is selected and the user presses “Share Now.” Note that, in the
second case, the location may change between the time the request arrives
and the time the user authorizes sharing; the location to be shared is the one
in effect when the user authorized sharing, i.e., the one from the most recent

13

Fig. 4. Runtime vs. number of events.

location update before the button click. Note that rather than include the
full Android push request API in our model, we simulated it using a basic
callback. This app has two insecure variants. In the first one, when the user
presses the “Share Now” button, the app shares the location from the time of
the request. In the second, the app simply shares the location immediately in
response to all requests.

Scalability. We ran our experiments on a 4-core i7 CPU @3.5GHz with 16GB
RAM running Ubuntu 14. For each experiment we report the median of 10 runs.

In our first set of experiments, we measured how ClickRelease’s performance
varies with input depth. Figure 4 shows running time versus input depth for all
programs and variants. For each app, we ran to the highest input depth that
completed in one hour.

For each app, we see that running time grows exponentially, as expected. The
maximum input depth before timeout (i.e., where each curve ends) ranges from
five to nine. The differences have to do with the number of possible events at

14

Time (ms)
App Evts Exploration Analysis Total

Bump 3 114 15 142
Bump (insecure 1) 5 2,100 1,577 3,690
Bump (insecure 2) 4 266 70 344

Location toggle 2 113 12 128
Location toggle (insecure 1) 2 143 12 163
Location toggle (insecure 2) 3 117 12 143

Contact picker 2 79 2 94
Contact picker (insecure 1) 2 325 27 361
Contact picker (insecure 2) 2 149 9 170

WhereRU 3 849 183 1,045
WhereRU (insecure 1) 3 860 234 1,108
WhereRU (insecure 2) 2 257 10 280

Fig. 5. Results at minimum input depth.

each input point. For example, WhereRU has seven possible input events, so it
has the largest possible “fan out,” and times out with an input depth of five. In
contrast, Bump and Location Toggle have just three input events, and time out
with an input depth of nine. We also note the first insecure variant of Contact
Picker times out after fewer events than the other variants. Investigating further,
this occurs due to that app’s implicit flow (recall the app branches on the value
of a secret input). Implicit flows cause symbolic execution to take additional
branches depending on the (symbolic) secret value.

Minimum Input Depth. Next, for each variant, we manually calculated a mini-
mum input depth that is guaranteed to find a policy violation, if one exists. First
we determined possible app GUI states. For example, in Bump (Fig. 1), there
is a state with idBox and phBox both checked, a state with just idBox checked,
etc. Then we examined the policy and recognized that certain input sequences
lead to equivalent states modulo the policy. For example, input sequences that
click idBox an even number of times and then click send are all equivalent. Full
analysis reveals that an input depth of three (which allows the checkboxes to be
set any possible way followed by a button click) is sufficient to reach all possible
states for this policy. We performed similar analysis on other apps and variants.

Fig. 5 summarizes the results of running with the minimum input depth for
each variant, with the depths listed in the second column. We confirmed that,
when run with this input depth, ClickRelease correctly reports the benign app
variants as secure and the other app variants as insecure. The remaining columns
of Fig. 5 report ClickRelease’s running time (in milliseconds), broken down by
the exploration phase (where SymDroid generates the set of symbolic traces) and
the analysis phase (where SymDroid forms equations about this set and checks
them using Z3). Looking at the breakdown between exploration and analysis, we
see that the former dominates the running time, i.e., most of the time is spent
simply exploring program executions. We see the total running time is typically

15

around a second or less, while for the first insecure variant of Bump it is closer
to 4 seconds, since it uses the highest input depth.

Discussion. Our results show that while ClickRelease indeed scales exponen-
tially, to actually find security policy violations we need only run it with a low
input depth, which takes only a small amount of time.

Our experiments used a set of small apps that we developed. There are two
main engineering challenges in applying ClickRelease to other apps, which we
leave to future work. First, our model of Android (Section 4.1) only includes
part of the framework. To run on other apps, it will need to be expanded with
more Android APIs. Second, we speculate that larger apps may require longer
input depths to go from app launch to interfering outputs. In these cases, we
may be able to start symbolic execution “in the middle” of an app (e.g., as in
the work of Ma et al. [14]) to skip uninteresting prefixes of input events.

6 Related Work

ClickRelease is the first system to enforce extensional declassification policies in
Android apps. It builds on a rich history of research in usable security, informa-
tion flow, and declassification.

One of the key ideas in ClickRelease is that GUI interactions indicate the
security desires of users. Roesner et al. [20] similarly propose access control gad-
gets (ACGs), which are GUI elements that, when users interact with them, grant
permissions. Thus, ACGs and ClickRelease are both an effort to better align
security with usability [24]. ClickRelease addresses secure information flow, es-
pecially propagation of information after its release, whereas ACGs address only
access control.

Android-based systems. TaintDroid [7] is a run-time information-flow tracking
system for Android. It monitors the usage of sensitive information and de-
tects when that information is sent over insecure channels. Like many run-time
information-flow control systems, TaintDroid does not detect implicit flows [11].
In contrast, ClickRelease does detect implicit flows.

AppIntent [23] uses symbolic execution to derive the context, meaning in-
puts and GUI interactions, that causes sensitive information to be released in an
Android app. A human analyst examines that context and makes an expert judg-
ment as to whether the release is really a security violation or not. ClickRelease
instead uses human-written LTL formulae to specify whether declassifications
are permitted. It is unclear from [23] whether AppIntent detects implicit flows.

Pegasus [2] combines static analysis, model checking, and run-time monitor-
ing to ascertain whether an app uses API calls and privileges in a way that
is consistent with users’ expectations. Those expectations are expressed using
LTL formulae, as are ClickRelease declassification policies. Pegasus synthesizes
a kind of automaton called a permission event graph from the app’s bytecode
then checks whether that automaton is a model for the formulae. Unlike Click-
Release, Pegasus does not address information flow.

16

Jia et al. [10] present a system, inspired by Flume [12], for run-time enforce-
ment of information flow policies at the granularity of Android components and
apps. This system permits a different form of declassification: components and
apps are trusted to perform declassification according to capabilities granted to
them in security labels. In contrast, ClickRelease reasons about declassification
in terms of user interactions.

Information flow and declassification. SIF (Servlet Information Flow) [4] is a
framework for building Java servlets with information-flow control. Information
managed by the servlet is annotated in the source code with security labels, and
the compiler ensures that information propagates in ways that are consistent
with those labels. The SIF compiler is based on Jif [16], an information-flow
variant of Java. SIF labels include both confidentiality and integrity compo-
nents; ClickRelease does not address integrity. SIF source code can use selective
declassification to downgrade the security of information. In the browser GUI,
SIF can render the current security label associated with text boxes and other
GUI widgets. SIF is an intensional system (security policies are in-lined with
code), whereas ClickRelease is extensional (policies are separate from the code).

Chong and Myers [3] introduce declassification policies, which use conditions
to specify when the policy on some information may be rewritten to a new,
perhaps less restrictive policy. Their policies use classical propositional logic
for conditions. ClickRelease can be seen as providing a more expressive lan-
guage for conditions by using LTL to express formulae over events. Vaughan
and Chong [22] define expressive declassification policies that allow functions of
secret information to be released after events occur, and extend the Jif compiler
to infer events. ClickRelease instead ties events to user interactions.

O’Neill et al. [17], Clark and Hunt [5], and Rafnsson et al. [19] investigate
models, definitions, and enforcement techniques for secure information flow in
interactive programs. Android apps are real-world examples of interactive pro-
grams, so ClickRelease is a practical application of this theoretical work.

Sabelfeld and Sands [21] survey approaches to secure declassification in a
language-based setting. ClickRelease can be seen as addressing their “what”
and “when” axes of declassification goals: users of Android apps interact with
the GUI to control when information may be released, and the GUI is responsible
for conveying to the user what information will be released.

7 Conclusion

We introduced interaction-based declassification policies, which describe what
and when information can flow. Policies are defined using LTL formulae describ-
ing event traces, where events include GUI actions, secret inputs, and network
sends. We formalized our policies using a trace-based model of apps based on
security relevant events. Finally, we described ClickRelease, which uses sym-
bolic execution to check interaction-based declassification policies on Android,
and showed that ClickRelease correctly enforces policies on four apps, with one
secure and two insecure variants each.

17

Acknowledgments

This research was supported in part by NSF grants CNS-1064997 and 1421373,
AFOSR grants FA9550-12-1-0334 and FA9550-14-1-0334, artnership between
UMIACS and the Laboratory for Telecommunication Sciences, and the National
Security Agency.

References

1. Cadar, C., Sen, K.: Symbolic execution for software testing: Three decades later.
Commun. ACM 56(2), 82–90 (Feb 2013), http://doi.acm.org/10.1145/2408776.
2408795

2. Chen, K.Z., Johnson, N.M., D’Silva, V., Dai, S., MacNamara, K., Magrino, T.,
Wu, E.X., Rinard, M., Song, D.X.: Contextual policy enforcement in Android ap-
plications with permission event graphs. In: NDSS. The Internet Society (2013),
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#ChenJDDMMWRS13

3. Chong, S., Myers, A.C.: Security policies for downgrading. In: Proceedings of the
11th ACM Conference on Computer and Communications Security. pp. 189–209
(Oct 2004)

4. Chong, S., Vikram, K., Myers, A.C.: SIF: Enforcing confidentiality and integrity
in web applications. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium. pp. 1:1–1:16. SS’07, USENIX Association, Berkeley,
CA, USA (2007)

5. Clark, D., Hunt, S.: Non-interference for deterministic interactive programs. In:
Degano, P., Guttman, J., Martinelli, F. (eds.) Proc. Formal Aspects in Security
and Trust, pp. 50–66. Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.
org/10.1007/978-3-642-01465-9_4

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (Sep 2010), http://dl.acm.org/citation.cfm?id=1891823.1891830

7. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation. pp. 1–6. OSDI’10, USENIX Association, Berke-
ley, CA, USA (2010), http://dl.acm.org/citation.cfm?id=1924943.1924971

8. Google: Managing the Activity Lifecycle (2015), http://developer.android.com/
training/basics/activity-lifecycle/index.html

9. Jeon, J., Micinski, K.K., Foster, J.S.: SymDroid: Symbolic Execution for Dalvik
Bytecode. Tech. Rep. CS-TR-5022, Department of Computer Science, University
of Maryland, College Park (July 2012)

10. Jia, L., Aljuraidan, J., Fragkaki, E., Bauer, L., Stroucken, M., Fukushima, K.,
Kiyomoto, S., Miyake, Y.: Run-time enforcement of information-flow properties on
Android. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) Computer Security ES-
ORICS 2013, Lecture Notes in Computer Science, vol. 8134, pp. 775–792. Springer
Berlin Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-40203-6_43

11. King, D., Hicks, B., Hicks, M., Jaeger, T.: Implicit flows: Can’t live with ’em,
can’t live without ’em. In: Sekar, R., Pujari, A. (eds.) Proc. Information Systems
Security (ICISS) 2008, Lecture Notes in Computer Science, vol. 5352, pp. 56–70.
Springer Berlin Heidelberg (2008)

18

12. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Mor-
ris, R.: Information flow control for standard OS abstractions. In: Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles. pp.
321–334. SOSP ’07, ACM, New York, NY, USA (2007)

13. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logics of Programs, Lecture Notes in Computer Science, vol. 193, pp. 196–218.
Springer Berlin Heidelberg (1985), http://dx.doi.org/10.1007/3-540-15648-8_
16

14. Ma, K.K., Phang, K.Y., Foster, J.S., Hicks, M.: Directed symbolic execution.
In: Proceedings of the 18th International Conference on Static Analysis. pp.
95–111. SAS’11, Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/
citation.cfm?id=2041552.2041563

15. de Moura, L., Bjrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer Berlin Hei-
delberg (2008), http://dx.doi.org/10.1007/978-3-540-78800-3_24

16. Myers, A.C.: Jflow: Practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 228–241. POPL ’99, ACM, New York, NY, USA (1999),
http://doi.acm.org/10.1145/292540.292561

17. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interac-
tive programs. In: Proceedings of the 19th IEEE Workshop on Computer Security
Foundations. pp. 190–201. CSFW ’06, IEEE Computer Society, Washington, DC,
USA (2006), http://dx.doi.org/10.1109/CSFW.2006.16

18. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. pp. 46–57. SFCS ’77, IEEE Com-
puter Society, Washington, DC, USA (1977), http://dx.doi.org/10.1109/SFCS.
1977.32

19. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: Pro-
ceedings of the 2012 IEEE 25th Computer Security Foundations Symposium.
pp. 293–307. CSF ’12, IEEE Computer Society, Washington, DC, USA (2012),
http://dx.doi.org/10.1109/CSF.2012.15

20. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-
driven access control: Rethinking permission granting in modern operating systems.
In: Proceedings of the 2012 IEEE Symposium on Security and Privacy. pp. 224–
238. SP ’12, IEEE Computer Society, Washington, DC, USA (2012), http://dx.
doi.org/10.1109/SP.2012.24

21. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (Oct 2009)

22. Vaughan, J.A., Chong, S.: Inference of expressive declassification policies. In: Pro-
ceedings of the 2011 IEEE Symposium on Security and Privacy. pp. 180–195. SP
’11, IEEE Computer Society, Washington, DC, USA (2011), http://dx.doi.org/
10.1109/SP.2011.20

23. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: Appintent: ana-
lyzing sensitive data transmission in Android for privacy leakage detection. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security. pp. 1043–1054. CCS ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2508859.2516676

24. Yee, K.P.: Aligning security and usability. Security Privacy, IEEE 2(5), 48–55 (Sept
2004)

19

25. Zdancewic, S., Myers, A.: Observational determinism for concurrent program secu-
rity. In: Computer Security Foundations Workshop, 2003. Proceedings. 16th IEEE.
pp. 29–43 (2003)

