
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Compiling Data-Parallel Datalog
Anonymous Author(s)

ABSTRACT
Datalog allows intuitive declarative specification of logical infer-
ence tasks while enjoying efficient implementation via state-of-
the-art engines such as LogicBlox and Soufflé. These engines en-
able high-performance implementation of complex logical tasks
including graph mining, program analysis, and business analytics.
However, all efficient modern Datalog solvers make use of shared
memory, and present inherent challenges scalability.

In this paper we leverage recent insights in parallel relational al-
gebra and present a methodology for constructing data-parallel de-
ductive databases. Our approach leverages recent developments in
parallelizing relational algebra to create an efficient data-parallel
semantics for Datalog. Based on our methodology, we have im-
plemented the first MPI-based data-parallel Datalog solver. Our
experiments demonstrate comparable performance and improved
single-node scalability versus Soufflé, a state-of-art solver.

1 INTRODUCTION
Database systems are broadly declarative, typically supporting ex-
pressive query languages. Systems for deductive databases such as
Datalog further allow persistent rules that specify relations defined
intensionally, only in terms of other relations. Picture a database
listing inventory and sales for an online business where a set of
simple declarative rules are used to update an out-of-stock table or
a table listing the total profit earned for each customer. In such sys-
tems, expressive reasoning can be embedded alongside ones data
and used to generate sophisticated analytics on-the-fly as changes
are made.

Effective declarative programming represents a long-standing
dream of computing—exchanging code describing how to compute
for code simply describing what to compute. Instead of requiring
programmers to themselves balance the concerns of correctness,
maintainability, and scalability in each task, declarative program-
ming languages permit users to focus on the first two concerns,
writing high-level, correct specifications of what should be com-
puted, while allowing the underlying implementation (i.e., how the
operational mechanics of the program work) to be extracted au-
tomatically. This puts significant pressure on the implementation
strategy used for declarative languages as it must compete with
hand-optimized implementations while remaining generic and ef-
fective for a wide variety of applications.

At the same time, this approach presents an opportunity: as ef-
fective means are found for parallelizing the semantics of declara-
tive languages, the strategy will apply immediately to all analytics
using these platforms. This is already the case for bottom-up (for-
ward chaining) logic programs written in Datalog, and related lan-
guages with semantics that implement first-order or higher-order

Conference’17, July 2017, Washington, DC, USA
2020.

Horn-clause satisfiability. Such programs may be implemented us-
ing high-performance relational algebra, as is done in the state-of-
the-art logic-programming language Soufflé [31]. Standard oper-
ations on relations such as selection, projection, join, and union
may be used in combination to implement efficient kernels that
infer new facts from available facts in a (fixed-point) loop. Fortu-
nately, the underlying primitives used in these kernels are inher-
ently quite data-parallel. For example, the Cartesian product of two
relations, R×S may be computed by partitioning the left-hand rela-
tionR for a set of threads and then performing a local productRi×S
for each partition i , of R, in a trivially parallel manner. Unfortu-
nately, many important inference problems must be scaled beyond
single-node parallelism; e.g., state-of-the-art program analyses for
Java that are implemented in Soufflé can take many hours and only
terminate for lower-precision tunings, targeting real-world code-
bases [35].

While this approach to parallelizing bottom-up logic program-
ming is already being used to great effect on single-node systems [3],
scaling the approach to many-thread clusters using MPI’s inter-
process communication paradigms has proven a significant chal-
lenge. Recent work has introduced techniques for managing par-
allel relational algebra using MPI on clusters. This has been quite
tricky as both communication and decomposition of the compu-
tational workload over many nodes must be done explicitly in a
dynamically balanced manner, while on shared-memory systems
both these problems become nearly trivial when using efficient
thread-safe data-structures—tools produced through decades of suc-
cessful research.

In this paper, we present a synthesis of two ongoing threads
of research: (1) an approach to compiling Datalog-like languages
to relational algebra for synthesizing fast program analyzers [18],
and (2) a scheme for balanced parallel relational algebra using MPI
that addresses communication challenges of putting operations on
relations in a loop [25]. Putting these ideas together, we are able
to present a highly data-parallel deductive database engine that
shows promising scaling on the DOE supercomputer Theta.

To the literature, we contribute:

(1) An approach to developing scalable, data-parallel Datalog
solvers using parallel relational algebra. We formalize our
approach as a parallel relational algebra machine (PRAM)
for which we have implemented a compiler.

(2) An evaluation of kCFA, a core program analysis algorithm,
showing higher performance and scalabiliy compared with
Soufflé. In general, we observed varying but comparable per-
formance and improved relative scaling in our comparison
studies.

2 BACKGROUND
Our approach synthesizes two foundational threads: compilation
of Datalog-like inference languages to relational algebra kernels

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and recent success enabling the development of data-parallel rela-
tional algebra implementations. In this section, we present a sum-
mary of these developments to ground our own contributions.

2.1 Relational Algebra
Relations are sets of flat tuples of homogenous arity. By flat, we
mean that each tuple consists of base values, for example a 64-bit
integer or tagged pointer into a string table. Standard set opera-
tions including union, intersection, and product naturally lift to
relations.

Projection of a relation R restricts it to a particular set of dimen-
sionsα0, . . . ,α j , whereα0 < . . . < α j , and iswrittenΠα0, ...,α j (R) ≜
{(rα0 , . . . , rα j) | (r0, . . . , rk) ∈ R}. Renaming (i.e., recording) columns
can be defined in several ways. We define a renaming operator,
ραi /α j (R), to swap two columns, αi and α j where αi < α j—an op-
eration that can be repeated to rename/reorder as many columns
as desired.

Two relations can also be joined into one on a subset of columns
they have in common. Join combines two relations into one, where
a subset of columns are required to have matching values, and gen-
eralizes both intersection and Cartesian product operations.

To formalize natural join as an operation on such a relation, we
parameterize it by the number of prefix values that must match,
assumed to be the first j of each relation (if they are not, a renaming
operationmust come first).The join of relations R and S on the first
j columns is written as R ▷◁j S and can be defined:

R ▷◁j S ≜{ (r0, . . . , rk , sj , . . . , sm)

| (r0, . . . , rk) ∈ R ∧ (s0, . . . , sm) ∈ S ∧
∧

i=0..j−1
ri = si }

Naturally a system of relational algebra can support a variety
of additional operations or compositions of the above operations
(e.g., join followed by project followed by reorder) in theory, and
usually does in practice for reasons of efficiency.

2.2 Datalog
Datalog is a bottom-up logic programming language supporting a
restricted logic corresponding to first-order HornSAT—the satisfia-
bility problem for conjunctions of Horn clauses [1]. A Horn clause
is a disjunction of atoms, all but one of which is negated: a0 ∨
¬a1 ∨ . . . ∨ ¬aj . Atoms are predicates over universally-quantified
variables. By DeMorgan’s laws, Horn clauses may be equivalently
as a0 ∨ ¬(a1 ∧ . . . ∧ aj) or equivalently via implication as a0 ←
a1 ∧ . . . ∧ aj .

ADatalog program is a set of (Horn clause) rules P(x0, . . . , xk) ←
Q(y0, . . . ,yj)∧ . . .∧S(z0, . . . , zm). It is common to have an “input”
database of facts called the extensional database (EDB), consisting
of an explicitly listed (extensional) set of tuples. Running a Data-
log program in terms of some EDB reifies the intensional database
(IDB), all facts (transitively) derivable via the program’s rules. The
following example program computes the uncle relation from
the relations brother and parent :

uncle(x,u) :- parent(x,p), brother(p,u).

Efficient implementation strategies for Datalog would evaluate
this program by first compiling to relational algebra primitives. On

shared-memory systems, this would involve ordering the parent

relation so it can be efficiently joined with brother , then project-
ing out the shared p column; this is writtenΠ1,2(ρ0/1(parent) ▷◁1
brother). This reduces optimization of evaluation to efficient im-
plementation of the relational algebra primitives. We call a set of
RA primitives used to implement a Datalog program a relational
algebra plan (RA plan).

While some relations can be computed via a fixed number of
RA operations in sequence, others must be computed via a fixed-
point of a set of operations. For example, transitive closure (TC) of
a relation or graph is efficiently implemented via a loop (check-
ing whether a fixed-point has been achieved) over a set of high-
performance RA operations. Consider the Datalog rules for com-
puting the ancestor relation:

ancestor(x,p) :- parent(x,p).

ancestor(x,a) :- ancestor(x,ac), parent(ac,a).

The first rule represents a base case that says any parent is triv-
ially an ancestor, and the second represents the inductive step of
inferring that an ancestor ac for x and a parent a for ac implies an
older ancestor a for x.

We can also view parent as an input graph defined as a set of
edges, and view TC computation as a graph mining problem. Com-
puting the transitive closure ancestor , of input graph parent ,
is a simple example of logical inference. From paths of length 0

(an empty graph) and the existence of edges in graph parent , we
may trivially deduce the existence of paths of length 0 . . . 1. From
paths of length 0 . . .n and the original edges in graph parent , we
may infer the existence of paths of length 0 . . .n + 1. The function
F

parent
below performs a single round of inference, finding paths

one edge (parental relationship) longer than any found previously
and exposing new inferences to be made for the next iteration of
F

parent
. When the computation reaches a fixed-point, the solution

has been found as no further paths may be deduced from the avail-
able facts.

F
parent

(ancestor) ≜ parent

∪ Π1,2(ρ0/1(ancestor) ▷◁1 parent)

The first rule says that any direct edge in parent implies a
path, in ancestor (taking the role of the left operand of union in
FG), and the second rule says that any path (x,ac) and edge (ac,a)
imply a path (x,a) (adding edges for the right operand of union
in F

parent
). Other kinds of graph mining problems, such as com-

puting triangles or k-cliques, can also be naturally implemented
as Datalog programs [41]. See Section 4 for several case studies on
graph mining and program analysis applications.

Each Datalog rule may be encoded as a monotonic function F ,
mapping databases to databases conjoined with their immediate
consequences, where a fixed-point for F is guaranteed to satisfy
the corresponding rule. Once a set of functions F0 . . . Fm are con-
structed (one for each rule), naïve Datalog evaluation operates by

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Compiling Data-Parallel Datalog Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

iterating the initially empty IDB and input EDB to a mutual fixed-
point for F0 . . . Fm . Because the EDB includes a fixed number of
atoms, and because Datalog programs cannot generate new atoms,
termination is guaranteed.

In practice, most “Datalog” implementations are more expres-
sive than this, and most permit some basic built-in operations (e.g.,
x!=y), and frequently will allow constructors for inductive data
types, such as linked lists. However, while most Datalog implemen-
tations are ultimately Turing-complete, they optimize for terminat-
ing programs accelerated via fast RA operations.

2.3 Implementation via RA
So far, we have elided important optimization and implementation
details in favor of focusing onDatalog’s semantics. High-performance
Datalog solvers employ specializations of general RA operations
that combine sequences of simple operations (join, project, and
rename) into one efficient combined operation. We have so far
presented the so-called naïve evaluation strategy, recomputing all
previously-discovered facts at every iteration. Efficient implemen-
tations employ incrementalization, tracking a frontier of freshly-
discovered facts to produce yet-undiscovered facts. For example,
when computing transitive closure, another relation ancestor ∆
is used which only stores the longest ancestry paths—those discov-
ered in the previous iteration. When computing paths of length n,
in fixed-point iteration n, only new paths discovered in the previ-
ous iteration, paths of lengthn−1, need to be considered, as shorter
paths extended with edges from parent necessarily yield paths
which have been discovered already. This optimization is known
as semi-naïve evaluation [1].

Using semi-naïve evaluation, each non-static relation (those that
may be updated in given iteration, such as ancestor) is effec-
tively partitioned into three relations: ancestor

full
, ancestor ∆,

and ancestor
new

. ancestor
full

stores any facts discovered more
than one iteration ago; ancestor ∆ maintains facts thatwere newly
discovered in the previous iteration, and is joined with parent

each iteration to discover new facts; and ancestor
new

holds these
newly discovered facts only just learned in the current iteration.
At the end of each iteration, ancestor ∆’s tuples are added to
ancestor

full
, the pointers are swapped for ancestor ∆ and ancestor

new
,

and ancestor
new

is truncated to prepare for the subsequent iter-
ation.

The state of art evaluating Datalog on a single compute node is
perhaps best embodied in the Soufflé engine [18–20, 31]. Soufflé
systematically optimizes the RA kernels obtained from an input
Datalog program, yielding a program for an abstract Relational
Algebra Machine (RAM). Figure 1 shows a portion of the exact
C++ code produced by Soufflé (v1.5.1) for the two-rule TC pro-
gram (indentation and code comments have been added by the
authors to improve clarity). To compute ρ0/1(ancestor ∆) ▷◁1
parent , first the outer relation (the left-hand relation—in this
case T∆) is partitioned so that Soufflé may process each on a sep-
arate thread via OpenMP (line 1 in Figure 1). For each partition, a
loop iterates over all tuples in the current partition of ancestor ∆

(line 2) and computes a selection tuple, key, representing all tu-
ples in parent that match the present tuple from ancestor ∆
in its join-columns (in this case, just the second column value,
env0[1]). This selection tuple is then used to produce an iterator
selecting only tuples in parent whose column-0 value matches
the particular tuple env0’s column-1 value. Soufflé thus iterates
over each (x,y) ∈ ancestor ∆ and creates an iterator that se-
lects all corresponding (y, z) ∈ parent . Soufflé iterates over all
matching tuples in parent (line 5), and then constructs a tuple
(x, z), produced by pairing the column-0 value of the tuple from
ancestor ∆, env0[0], with the column-1 value of the tuple from
parent , env1[1], which is inserted into ancestor

new
(line 8)

only if it is not already in ancestor
full

(line 6).

// Partition ancestor
∆

for a pool of OpenMP threads; iterate over parts

1 pfor(auto it = part.begin(); it<part.end();++it){

// Iterate over each tuple, env0, of ancestor
∆

(in each partition)

2 try{for(const auto& env0 : *it) {

// Construct an iterator selecting tuples in parent that match env0

3 const Tuple<RamDomain,2> key({{env0[1],0}});
4 auto range = rel_1_edge->equalRange_1(key,

READ_OP_CONTEXT(rel_1_edge_op_ctxt));

// Iterate over matching tuples in parent

5 for(const auto& env1 : range) {

// Has this output tuple already been discovered (is in ancestor
full

)

6 if(!(rel_2_path->contains(Tuple<RamDomain,2>({{env0[0],env1[1]}}),
READ_OP_CONTEXT(rel_2_path_op_ctxt)))) {

// Construct the output tuple and insert it into T_new
7 Tuple<RamDomain,2> tuple({{static_cast<RamDomain>(env0[0]),

static_cast<RamDomain>(env1[1])}});
8 rel_4_new_path->insert(tuple,

READ_OP_CONTEXT(rel_4_new_path_op_ctxt));
9 }
10 }
11 }} catch(std::exception &e){SignalHandler::instance()->error(e.what());}
12 }

Figure 1: The join in TC, as implemented by Soufflé.

Given this architecture, Soufflé achieves good performance by
using fast thread-safe data-structures, template specialized for com-
mon use cases, that represent each relation extensionally—explicitly
storing each tuple in the relation, organized to be amenable to fast
iteration, selection, and insertion. Soufflé includes a concurrent B-
tree implementation [19] and a concurrent prefix-tree implementa-
tion [20] as underlying representations for relations. Soufflé does
not support MPI or distributed computation of Datalog programs.

2.4 Balanced Parallel RA
Implementation of Datalog as performant RA suggests a strategy
for extractingmassive parallelism if these primitive operations them-
selves can be made highly data-parallel. Several lines of work have
approached the challenge of developing schemes for decompos-
ing large RA operations over many parallel threads. The double-
hashing approach, with local hash-based joins and hash-based dis-
tribution of relations, is broadly the most commonly used method
to distribute join operations over many nodes in a networked clus-
ter computer [12, 13, 38]. Recently, both radix-hash join andmerge-
sort join have been evaluated [7] at up to 4k threads.

Another recent approach proposes algorithms for balanced par-
allel relational algebra (BPRA) adapting the representation of im-
balanced relations, using a two-layered distributed hash-table to
partition tuples over a fixed set of buckets, and, within each bucket,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

to a dynamic set of subbuckets which may vary across buckets [24].
This represents a decomposition of the relation across processes
that is keyed both on a set of join columns, and also on all other
columns to ensure a balanced mapping of tuples to processes. Each
tuple is assigned to a bucket based on a hash of its join-column
values, but within each bucket, tuples are hashed on all non-join-
column values, assigning them to a local subbucket. Each bucket
and subbucket pair unqiuely assigns that group of tuples to a par-
ticular MPI process. This scheme permits buckets that have more
tuples to be split across multiple processes uniformly and for the
number of subbuckets to increase as the tuples in that bucket in-
creases. This balancing can be done periodically in both the direc-
tion of splitting buckets into more subbuckets, or of consolidating
them, as needed. To distribute subbuckets to managing processes,
BPRA uses a round-robin mapping scheme that requires a very
small amount of additional communication, but ensures that no
process manages more than one subbucket more than any other.
Locally, subbuckets store tuples using B-trees (an approach also
used by Soufflé, although their data structures have undergone par-
ticular engineering refinements). This carries performance advan-
tages over the double-hashing approach’s use of hash tables. Cru-
cially, hash-tables can also lead to complications in a distributed
setting where a resizing operation may delay synchronization.

Figure 2 shows a schematic diagram of the BRPA join algorithm
in the context of an incrementalized TC computation. A join op-
eration can only be performed for two co-located relations: two re-
lations each keyed on their respective join columns that share a
bucket decomposition (but not necessarily a subbucket decomposi-
tion for each bucket). This ensures that the join operation may be
performed separately on each bucket as all matching tuples will
share a logical bucket; it does not ensure that all pairs of match-
ing tuples will share the same subbucket as tuples are assigned to
subbuckets (within some bucket) based on the values of non-join
columns.

The first step in a join operation is an intra-bucket communica-
tion phase within each bucket in which every subbucket receives
all tuples for the outer relation, across all subbuckets (while the
inner relation only needs tuples belonging to the local subbucket).
After this, a local join operation (corresponding to a Datalog rule,
with possible projection and renaming) can be performed in ev-
ery subbucket in parallel. Output tuples from these local joins may
each belong to an arbitrary bucket in the output relation, so an
MPI all-to-all communication phase shuffles the output of all joins
to their managing processes (preparing them for any subsequent
rules or iterations). Upon receiving output tuples from the previ-
ous join, each receiving process inserts them into the local B-tree
for each applicable Rnew. It then propagates R∆ into Rfull and Rnew

becomes R∆ for the next iteration. If no new tuples have been dis-
covered, globally, a fixed-point has been reached and iteration may
halt.

Intra-bucket communication (shown on the left of Figure 2) uses
MPI point-to-point communication to shuffle tuples from each sub-
bucket of the outer relation to subbuckets of the inner-relation,
which is then able to perform local, per-subbucket joins. It may
seem appealing to fuse the final all-to-all communication phase
among buckets with the intra-bucket communication of the subse-
quent iteration, sending new tuples (for R∆ in the next iteration)

directly to all subbuckets of the inner relation; however, doing this
fusion forgoes an opportunity for per-subbucket deduplication and
yields meaningful slowdowns in practice.

The local join phase proceeds in a parallel and unsynchronized
fashion. Each process iterates over its subbuckets, performing a sin-
gle join operation for each. Our join is implemented as a straight-
forward tree-based join as shown in the center of Figure 2. In this
diagram, colors are used to indicate the hash value of each tuple
as determined by its join-column value. Once received, the outer
relation’s tuples are iterated over, grouped by key values, where,
for each, a lookup is performed to select a portion of the inner
relation’s B-tree where all tuples have a matching key value (in
the case of TC computation, this is selecting the first column of
parent). For two sets of tuples with matching join-column val-
ues, we effectively perform aCartesian product computation, yield-
ing one tuple for all possible pairs of outer and inner tuple.

Each output tuple has projection and renaming performed on-
the-fly; in the case of TC, the prior join columns that matched are
projected away. These tuples are locally deduplicated, organized,
and staged for transmission to new managing subbuckets in their
receiving relation. After evaluating a rule, each output tuple des-
tined for a head-relation R belongs to Rnew and must be hashed on
its join columns; in the case of TC, this is the rightmost column of
ancestor . Join columns are hashed to determine the bucket and
non-join columns to determine the subbucket; together bucket and
subbucket determine a managing process via the current round-
robin mapping (stored on every process). An all-to-all communica-
tion phase (shown on the right side of Figure 2) transmits materi-
alized joins to their new bucket-subbucket decomposition in head-
relation Rnew. The managing process for each bucket and subbucket
involved is obtained from a local round-robin map and tuples are
organized into buffers for MPI’s All_to_allv synchronous com-
munication operation. When this is invoked, all tuples are shuffled
to their destination processes.

Finally, after the one synchronous communication phase per it-
eration, each R∆ is locally propagated into Rfull, which stores all tu-
ples discovered more than 1 iteration ago. New tuples are checked
against this Rfull to ensure they are genuinely new facts, and are
inserted into a B-tree for Rnew on each receiving process to per-
form remote deduplication. At this point, the iteration ends, Rnew

becomes R∆ for the subsequent iteration, and an empty Rnew is al-
located. If no new tuples were actually discovered in the previous
iteration, a fixed-point has been reached and no further iterations
are needed as the database as stabilized with respect to all rules of
inference.

BPRA is notable for allowing two kinds of load-imbalance to be
remediated dynamically across fixed-point iterations. Spatial load
imbalance occurs when a relation’s stored tuples are mapped un-
evenly to processes due to key-skew or inherent imbalance in rela-
tion’s distribution of tuples. Temporal load imbalance occurs when
the number of output tuples produced varies significantly across
iterations.

BPRA includes threemain algorithms for adjusting the represen-
tation of a relation or RA operation to improve both these kinds of
balancing. Bucket refinement is a dynamic check of each bucket to
see if its subbuckets are significantly heavier than average. When

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Compiling Data-Parallel Datalog Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Start Stop
Intra-

bucket
Comm

Local join
All-to-all
comm

Local
inserts

Fixed
point

?

Rank 0

Rank 1

Rank2

Rank 3

Rank 4

No

Yes

Figure 2: Shows the major phases of a BPRA join in the context of a TC computation.

this is detected, it triggers a refinement in which new subbuckets
are allocated to support the larger number of tuples in this specific
bucket. Bucket consolidation is the reverse and occurs only if there
are a significant number of refined buckets. It consolidates buckets
into fewer subbuckets when spatial imbalance has again lessened.
Last, iteration roll-over allows particularly busy iterations to be in-
terrupted part-way, with completed work being processed imme-
diately via an added communication phase and with the residual
workload from the iteration “rolling over” to a new iteration. This
improves robustness in the face of temporal imbalance, prevent-
ing crashes at the cost of an additional sychronization phase and
poorer deduplication behavior.

3 PARALLEL RA MACHINE
We develop the standard techniques for compiling Datalog-like
languages to RA, and for parallelizing RA over large numbers of
threads using BPRA, into a Parallel Relational Algebra Machine
(PRAM) and its intermediate representation (IR). Soufflé’s RAM is
a model for deductive databases in terms of shared-memory rela-
tional algebra on a single machine. We introduce PRAM as a evo-
lution of this concept that suits the unique challenges and oppor-
tunities of applying BPRA to logical inference tasks.

In the example of Soufflé’s compiled C++ in Section 2, any k-
ary join operation could be implemented as a series of k nested
for loops (with partitioning among threads, efficient selecting iter-
ators, etc). By contrast, BPRA imposes a key restriction to facilitate
data-parallelism: all joined relationsmust use indices that have pre-
cisely homogenous join columns. This means a rule such as

H(x,y,z) :- B0(w,x,y), B1(y,z), B2(z).

must be evaluated using two sequential binary joins, since B0

and B1 share a different column in common than do B1 and
B2 . While trinary or k-ary joins that are homogenous in their join
columns are conceivable via BPRA, they are not common in our
Datalog code. The fact that we must use binary joins, and cannot
reuse indices for their prefixes [36], represent key restrictions that
countervail Soufflé’s approach to optimizing Datalog for shared-
memory systems. However, with several key innovations, we man-
age and exploit the unique distributed setting of our parallel RA
operations and obtain an approach that can scale well.

We implement PRAM using BPRA. BPRA’s approach to paral-
lel RA is amenable to iterated RA operations over relations with
highly dynamic topologies, but it has several challenging limita-
tions we must overcome:

• Lacking of support for heterogenous k-ary joins,
• Inability to run operations in parallel—in BPRA, each op-
eration has its own synchronous all-to-all communication
phase.
• Lack of support for tracking multiple indices of relations,
adding new tuples to each index.

3.1 PRAM IR
Our definition of a compiled PRAM program or IR is shown in
Figure 3. A program is a directed acyclic graph among compiled
strongly connected components (SCCs), of program rules, indicat-
ing which other SCCs must be run before each SCC can be run.
SCCs with no incoming dependencies may be run immediately,

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

ir ∈ PRAM = P(SCC) × P(SCC × SCC)
scc ∈ SCC = P(Rule)
rule ∈ Rule ::= (rule hclause bclause)

| (rule hclause bclause prim)

| (rule hclause bclause bclause)

| (arule hclause bclause)

hclause ∈ HClause ::= (hrel var . . .+)

hrel ∈ HRel ::= (rel-select name arity index)

bclause ∈ BClause ::= (brel var . . .+)

Brel ∈ BRel ::= (rel-version name arity index ver)

prim ∈ Prim ::= (op var . . .+)

name ∈ Name = ⟨symbols⟩
var ∈ Var = ⟨symbols⟩
op ∈ Op = ⟨primitive operations⟩

arity ∈ Arity = N
index ∈ Index = N∗

ver ∈ Version = {delta, full}

Figure 3: PRAM domains used to define the core IRwe target.

and SCCs that contain only a single non-recursive rule are non-
recursive and are not iterated to a fixed point because a single itera-
tion always guarantees output consistent with the rule. PRAM sup-
ports four fundamental kinds of rules: a unary copy rule that prop-
agates one relation into another, with possible reordering and pro-
jection; i.e., H(y,x) :- B(x,y,z). ; a copy with primitive opera-
tion that can filter or extend tuples; i.e., H(x,y) :- B(x,y), x<y. ;
a binary join rule that joins two relations with possible reordering
and projection; i.e., H(z,x) :- B0(x,y), B1(y,z). ; and finally,
an administrative copy rule between a canonical index for a rela-
tion and a non-canonical index for a relation.

Our system designates exactly one index for each relation as
canonical (this may be the only index for a relation), and creates
administrative rules that, acting like a unary copy rule, propagate
newly discovered tuples from a canonical index to each of the non-
canonical indices.The canonical index is always used in the head of
a rule and our compiler generates appropriate indices and admin-
istrative copy rules. Note that an hclause is the same as a bclause
except that it must be the canonical index and does not need a ver-
sion tag, as newly discovered tuples are always placed inHnew. Body
clauses are specific to either the version delta or full, an artifact
of semi-naïve evaluation.

3.2 Implementation
Our implementation of a Datalog compiler and run-time is written
in Racket and C++, and is composed of several major passes:

Parsing and lexing. We support typical Datalog notation that
overlapswith a substantial fragment of syntactic niceties supported

by Soufflé. We track source locatoins explictly so we can report er-
rors and we’ve included support for a few dozen common built-in
operators to be attached to rules, such as the comparison x < y .

Organization. A first pass performs simplification and canoni-
calization steps. For example, we allow suggestions to be given for
how to order rules as an extension, these are broken apart into a
sequence of rules in this pass. Rules with multiple head clauses
can also be split effectively into multiple rules with a single head-
clause each. Wildcard variables, as in the clause r(_,x) are re-
named to a unique anonymous variable; e.g., r(_3,x) .

Static unification. A second pass performs transitive static uni-
fication of variables that are explicitly unified by a built-in com-
parison, as in p(x,x),q(y),x=y , so equal variables across rela-
tions use the same variable name and within the same relation
use a built-in to filter that relation; this example is converted to
p(x,_0),q(x),x=_0 .

Partitioning. The next pass partitions complex rules into a set of
simple rules that form a linear chain of dependence on one another.
For example, the rule

a(x,y,z) :- b(w,x), c(x,y), d(y,z).

is compiled into a sequence of two binary rules, inserting an inter-
nal relation representing the half-evaluated rule:

a(x,y,z) :- b(w,x), int(x,y,z).

int(x,y,z) :- c(x,y), d(y,z).

As balanced parallel relational joins must be performed on two
relations with an identical selection index (to guarantee a compati-
ble parallel decomposition of the two relations), the only rules per-
mitted after this pass are unary copy rules that may reorder or
project columns, unary built-in rules that may also perform a gen-
erative or filtering built-in operation (such as x < y), or a binary
rule that joins two relations, projects some columns, and reorders
columns for the head relation.

Complex rules that join four or more relations at once, are like-
wise partitioned into a linear chain of joins, each performed after
the last. We also experimented with creating balanced binary trees
of joins, and with various heuristics for partitioning some com-
plex rules roughly in half, before recuring to partition each parti-
tion of body clauses. In nearly every case, we observed between
5× and 25× the overall tuple-load in these experiments (vs strictly
linear chains of rules), representing a very substantial blow-up in
intermediate relations. Intuitively, this is because in a linear chain
it takes a greater number of iterations to compute the rule, more
join operations between starting the rule and adding facts to the
head relation, however the tuples involved are always maximally
grounded and filtered by all relations taking into account so far.
Using balanced binary trees of joins optimizes for lower latency,
but leads to constraints apparent in the original rule being taken
into account only after a much larger number of intermediate facts
are materialized, at significant expense.

As the goal of our system is to exploit themassive data-parallelism
of balanced parallel RA operations, we favor pipelining a longer
sequence of RA operations in a linear chain, with the exception of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Compiling Data-Parallel Datalog Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

cases where two subsets of body clauses have completely disjoint
sets of variables, as in the example

h(x,y) :- f(a,x), g(x,b), p(c,y), q(y,d).

For this input, our compiler will produce two independent binary
rules, for f and g and for p and q, followed by a single binary rule
to compute the Cartesian product int0(x),int1(y) :

h(x,y) :- int0(x),int1(y).

int0(x) :- f(a,x), g(x,b).

int1(y) :- p(c,y), q(y,d).

As the Cartesian product is the actual semantics of our original
rule, it does not represent a spurious blow-up. Note that the com-
piler will detect that variables such as a or b are not required for
the head, and so can be pruned from intemediate relations as well.

Selection splitting. This pass looks at the binary rules generated
in the previous pass and determines the needed set of indices for
each relation. This is a set of ordered subsets of their columns that
may be used as a key for efficient access in a parallel join operation.
If a relation is used in the body of a binary rule, it must have an
index for the exact subset of columns it has in common with the
other relation used in the binary rule, because we require such
compatible matching indices for our parallel join algorithm.

This pass also decides which index is canonical, and modifies
rules so that the head of every rule is the canonical index for that
relation. Administrative rules are then added to propagate discov-
ered tuples to all indices once discovered in the canonical index.
These admin rules are essentially unary rules that copy tuples with
possible column reordering. This makes it natural to compact the
communication needed to maintain a set of indices for a relation
with the normal communication used during a parallel join, in
pipelined fashion.This is to say, the iteration after a tuple is discov-
ered, it is copied to all its indices during the single communication
phase shared by all rules.

Stratification. uses a modified Tarjan’s algorithm [37] to com-
pute a directed graph of strongly connected components (SCCs) in
the dependency structure of rules. For example, rules that can be
run upon initialization only once will appear as rules whose body
relations are already available and never modified.

Incrementalization. prepares the program for semi-naïve eval-
uation by explicitly splitting each relation into three versions, a
new, delta, and full version as described previously. The body
clauses of rules are modified so that static relations (those that do
not change when this rule is evaluated) draw tuples from the full
version, while dynamic relationsmust use the delta version.When
two dynamic relations are joined, these are split into three rules
that join full with delta, delta with full, and delta with delta.
For complex k-ary join rules, these combinatoins blow up expo-
nentially, so it ends up being convenient we are stuck with having
already partitioned these down to chains of binary rules.

C++ emission. Finally, the incrementalized rules are written out
as a driver in C++ corresponding to PRAM IR code in the previous
section. That is to say, our backend’s API interfaces to the IR the

AST described in the last section. There is an object for encoding
an administrative rule between two relations with a particular re-
naming and projection and another for encoding a join rule or a
rule that operates on a relation using a built-in primitive to filter
or extend the relation as tuples are emitted.

Run-time system. Our backend then finally interprets this PRAM
IR, evaluating it efficiently in terms of our extension to the origi-
nal BPRA source [25]. We have modified the library for BPRA into
a more general run-time for PRAM IR. The original library was
not developed to allow multiple RA rules to be evaluated in paral-
lel, leading to some engineering challenges in terms of meta-data
transfer and keeping track of all relations. We add a logical infer-
ence engine object which can be populated with any number of
relations and can act generically as a primitive RDBMS and can
accept a PRAM IR and set of input relations to evaluate a program
and extract the final IDB.

Instead of running each RA operation in an SCC, one at a time,
wemodify evaluation to interleave all RA operations in a collective
single operation with one shared communincation phase. Com-
munication is non-uniform, where every process sends different
amounts of data to every other process. This is typically imple-
mented using MPI_alltoallv, but, in order to facilitate this non-
uniform communication we first have to share the offsets and sizes
of all relations and processes, so that every process has a consistent,
global view.Thismeta-data exchange is implemented by MPI_alltoall.
After thismetadata exchange, we populate send buffers and receive
buffers on every process before invoking MPI_alltoallv.

Unlike plain BPRA, every process performs a large batch of lo-
cal joins (or copies, reorderings, projections, etc) for all given rules
in the current SCC. This means that before a single comunication
phase, each process will have generated output for potentially a
large number of PRAM IR rules. We have introduced an crucial
optimization in the form of comm-compaction where we concate-
nate all-to-all send buffers across all rules into one large buffer that
can be transmitted in a single communication epoch. This step sig-
nificantly cuts down communication costs, especially for compute
intensive problem such as kCFA (see section 4) that have several
rules in a single SCC and at each step of a collective fixed-point iter-
ation for that SCC.This crucial improvement to RA that would oth-
erwise be individually parallel, but not across multiple operations,
requires ordering information to be broadcast during the epoch’s
fixed meta-data transfer, but appears to grant improved scalability
versus Soufflé.

4 CASE STUDIES
In this section, we motivate PRAM by its application to compute
transitive closure, k-cliques, and kCFA (a program analysis). To
compare our implementation against a known baseline, we bench-
mark our PRAM-based implementation on a single node against
Soufflé, the state-of-the-art Datalog engine. In the next section, we
demonstrate the true power of PRAM by scaling these experiments
to the Theta supercomputer.

4.1 Graph Mining
Graph-pattern mining (GPM) includes a rich source of core prob-
lems that highlight the expressivity of deductive databases. As a

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

first example we consider transitive closure (TC). We can imple-
ment TC using the following Datalog program, which iteratively
computes the path relation:
path(x,y) :- edge(x,y).
path(x,z) :- path(x,y), edge(y,z).

To compile this Datalog program to PRAM IR, we generate two
initial administrative rules to set up path and prepare for the bulk
of the work to be done in a subsequent SCC:
; Admin rule to load index for edge on column-1:
(arule
((rel-select edge 2 (1)) ident a1)
((rel-version edge 2 (1 2) delta) a1 ident))
; The first Datalog rule as a binary join rule:
(rule
((rel-select path 2 (1 2)) x y)
((rel-version edge 2 (1 2) total) x y))
; The next two rules are in an SCC together,
; stratified to run after the previous rules.
; A rule to join path and edge:
(rule
((rel-select path 2 (1 2)) x z)
((rel-version path 2 (2) delta) y x)
((rel-version edge 2 (1) total) y z))
; Admin rule to propagate discovered paths to
; the index for path on column-2:
(arule
((rel-select path 2 (2)) a1 a0)
((rel-version path 2 (1 2) delta) a0 a1))

The third rule implements the iterative extension of path to com-
pute TC. Observe that tuples are pulled from the delta version, im-
plementing semi-naïve evaluation.

w

x y

z

yx

w z

w z

x y

Figure 4:The rule for computing 4-cliques frompairs of over-
lapping 3-cliques combined with a 2-clique.The existence of
the top three subgraphs, as represented in the 2cl and 3cl re-
lations, implies the 4-clique below.

Another standard graph mining problem is that of k-clique com-
putation. While it is possible to leverage application-specific in-
sights to calculate cliques (see Section 6 for further discussion), k-
cliques can naturally be calculated using the intuition in Figure 4—
-forming a canonical ordering of nodes and computing k-cliques in
increasing order by k .This is represented via the following Datalog
program:

; Compute undirected 2-cliques in canonical order
2cl(x, y) :- graph(x, y), x<y.
2cl(x, y) :- graph(y, x), x<y.
; compute 3-cliques (order already checked in 2cl)
3cl(x, y, z) :- 2cl(x,y), 2cl(y, z), 2cl(x, z).
; compute 4-cliques
4cl(w, x, y, z) :- 3cl(w, x, y),

3cl(x, y, z),
2cl(w, z).

4.2 Program Analysis
Static program analysis is a key and impactful application of Datalog-
like solvers that attempts to develop an accurate bounded model
of program behavior based only on the program’s source text. Pro-
gram analyses are constructed using a variety of different theories
and approaches; what these approaches share in common is the
goal of obtaining sufficient precision for specific program prop-
erties while guaranteeing analysis termination, and ideally, effi-
ciency. This central challenge of static analysis is made explicit in
the methodology of abstract interpretation [14]. An abstract inter-
pretation of a program evaluates its input source code in terms of
imprecise or abstract values and machine components, permitting
a careful loss of precision in exchange for reasonable bounds on
analyis complexity.

A wide variety of abstract interpretations can be systematically
engineered as Datalog programs, as has been extensively explored
in the literature [18, 21, 22, 29, 42]. In particular the DOOP frame-
work [9] for points-to analysis of Java, originally developed for
LogicBlox, has been ported and optimized for Soufflé.

A class of these algorithms known as flow-analyses model the
propagation of data-flow information or control-flow information
through a target program [26]. Data-flow analysis (DFA) requires
control-flow analysis (CFA) to obtain any reasonable precision for
functional languages, for multi-paradigm languages like Java that
support closures and methods associated with objects, or for struc-
tured languages with function pointers, as in C/C++: data-flow
properties and control-flow properties are naturally entangled and
must be simulated together to obtain a model with any reasonable
precision [32, 33]. CFAs form an important foundation for analy-
sis of most programming languages, in particular highly dynamic
languages, and are often extended with additional client analyses
for tracking relations among variables [5] or for verifying sophisti-
cated contracts using abstract symbolic execution [28]. Systematic
approaches to abstract interpretation of abstract-machine-based
semantics [40] allow analyses to be developed from a variety of
standard (concrete) abstract machines that precisely specify a lan-
guage’s semantics [27].

This systematic development of an abstract abstract machine
from a concrete abstract machine yields is highly configurable and
tunable, so it corresponds to a broad design space of analyses that
strike subtly different trade offs between precision of result and
complexity of analysis [17]. One classic instantiation of this frame-
work yields k-call-sensitive control flow analysis (kCFA), a well-
ordered hierarchy of CFAs with increasing precision and complex-
ity as parameter k is increased. Our implementation of kCFA for
the plain lambda calculus is about 40 lines in Datalog and can be
easily tuned to any k to increase its degree of context sensitivity.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Compiling Data-Parallel Datalog Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

We also wrote a worst-case input generator based on the worst-
case input for kCFA discussed in [39]. This allows us to scale up
either the term size, we call (t) or the context-sensitivity (k). Be-
low is a fragment showing how free variables are computed:
// Every variable is free at a reference to it
free(x, e) :- var-ref(e, x)
// At unary application a free variable for either
// subexpression is free at the call-site.
free(x, e) :-
app(e, e0, e1),
free(x, e0) or free(x, e1).

// At a lambda abstraction, variables free in the
// body that are not the formal parameter, are free.
free(x, e) :-
lambda(e, y, body),
free(x, body),
x != y.

Free variable computation propagates information up the AST
recusively, and forms an SCC in the compiled PRAM IR that is
stratified before the primary CFA logic runs.

5 EVALUATION
In this section we sought to understand the behavior of our sys-
tem on a single node. To do this, we ran several microbenchmarks
comparing single-node performance of Soufflé vs. our MPI-based
implementation.

5.1 Dataset and HPC platforms
We perform our experiments on the Theta Supercompter at the
Argonne National Lab and on a machine rented via Amazon Web
Services (AWS). For AWS, each of our experiments was run on an
instance of type m5d.24xlarge consisting of 96 virtual CPUs (Intel
Xeon Platinum 8000) and 384 GiB of RAM and NVMe-based SSD
storage. Of these 96 virtual CPUs, we ran experiments utilizing up
to either 60 processes (for MPI-based imlementation) or threads.
Theta supercomputer is a Cray machine with a peak performance
of 11.69 petaflops, 281,088 compute cores, 843.264 TiB of DDR4
RAM, 70.272 TiB of MCDRAM and 10 PiB of online disk storage.
Theta uses the Dragonfly network topology and is backed by a Lus-
tre filesystem. Theta’s node is a Intel KNL 7230 which comprises
of 64 physical cores.

5.2 Strong scaling on AWS
To compare the single-node performance of our PRAM-based im-
plementation versus Soufflé, we ran each case study using repre-
sentative input data. We performed TC using a directed graph of
the Arxiv High-Energy Physics paper citation network (consisting
of 34,546 nodes and 412,578 edges) compiled by Gehrke et al. [16].
Second, we performedkCFA using a scaled-down version of the ex-
periments. We use experiments labled t-k with a specific number
of terms (t) and degree of sensitivity (k), as described in section 3.2.
For our experiments here, we set term size (n) to be 100, and preci-
sion (t) to be 6.

We compiled each of our experiments using the compiler de-
scribed in Section 3. We modified our compiler to generate a Souf-
flé program consisting of only binary joins and benchmark the
results. We then used Soufflé’s compiled mode to produce an op-
timized binary to run and minimizing I/O overhead by dumping
the smallest output relation. We performed each experiment three

172.31 153.24 147.21 144.82

641.21

351.79

263.97
211.83

0

200

400

600

800

0 12 24 36 48 60

Ti
m

e
(s

ec
o

n
d

s)

Total number of processes

Transitive Closure

Souffle

PRAM (MPI)

138.21 134.03 135.15

164.18

61.06
33.58

25.44 21.55

0

40

80

120

160

200

0 12 24 36 48 60
Ti

m
e

(s
ec

o
n

d
s)

Total number of processes

k-CFA

Souffle

PRAM (MPI)

Figure 5: Performance results for our case studies

times, reporting the average of each of the runs, though runtime
was roughly consistent across runs. For each of our experiments,
we validated the correctness of results of Soufflé against our MPI-
based implementation by checking both implementations produce
the same set of tuples.

The results of our experiments are shown in Figure 5. We plot
time (in seconds) along the y axis against process / thread count
along the x axis. PRAM achieves better performance than Soufflé
forkCFA in our benchmarks.We believe this is because Soufflé par-
allelizes individual joins, but does not interleave joins to perform
them in parallel (further discussion is included in Section 3.2). Be-
cause kCFA contains more rules than our other benchmarks, the
difference between sequential and parallel joins becomes more ap-
parent. This demonstrates one advantage to our approach even at
smaller scales.

For transitive closure computation our experiments showedmodestly-
decreasing runtime for Soufflé, however, we observed poor scaling
characteristic when compared to PRAM. At a high level, our results
demonstrate that our system scales better than Soufflé as degree
of parallelism increases but achieves worse constant factors. One
key difference between PRAM and Soufflé is tuple representation.
While Soufflé employs highly-optimized sharedmemory datastruc-
tures (discussed briefly in Section 2). PRAM uses messsage passing
and an off-the-shelf B-tree implementation to communicate and
represent tuples. Because of this, when lots of tuples are generated
during an iteration PRAM will allocate large amounts of memory

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

to exchange messages and represent tuples. We see underlying tu-
ple representation as an important but orthogonal issue to our un-
derlying scaling approach, and plan to investigate using Soufflé’s
datastructures in future work.

5.3 Strong scaling onTheta
Every node on Theta has 64 physical cores. This allowed us to run
single-node experiments on the machine till 64 cores. We ran two
single node experiments run at 32 and 64 cores. We were unable
to run experiments at smaller scale due to memory constraints.
We ran a k-CFA worst-case instance with 80 terms and k = 7,
which took 2648 iterations to complete, turning 724 EDB facts into
165,389,799 IDB facts. We observe a speed-up of 1.76× and scal-
ing efficiency of 88% while going from 32 to 64 processes. Our
experiments are indicative of healthy scaling.

6 RELATEDWORK
To our knowledge, we present the first general-purpose technique
for implementing data-parallel deductive databases. However, there
are several areas of related work in relational algebra andprogram
analysis.

Relational Algebra. Our work directly builds upon that of Ku-
mar and Gilray, who implement parallel relational algebra prim-
itives and evaluate their scalability on supercomputers [24, 25].
Their implementation leverages the observation that joins can be
distributed to a cluster via a double-hashing approach, consisting
of local hash-based joins and hash-based distribution of relations.
Their double-hashing approach is inspired by the earlier work of
Cheiney et al. [13] andCacace et al. [12], who describe data-parallel
strategies for computing transitive closure.

Barthels et al. describe a system for distributing the radix hash
join andmerge-sort join algorithms [7].Their implementation scales
to 4,096 cores via MPI and reaches extremely high tuple through-
put at peak load. Work by Kim et al. and Balkesen et al. demon-
strates how these joins may be further accelerated via AVX/SIMD
instructions [6, 23]. While this work successfully scales a single
join iteration, it does not reorganize or balance tuples to allow sub-
sequent joins, and thus does not readily enable the fixed-point com-
putation necessary for deductive databases.

The recent work of Kumar and Gilray enables fixed-point it-
eration over hash-based joins. Tuples are distributed via a two-
layered distributed hash-table whichmultiplexes tuples onto a stat-
ically fixed set of buckets and dynamically-tunable set of subbuck-
ets [24]. Each tuple is assigned a bucket based on the hash of its
join columns; this then enables local hash-based joins. Next, all-
to-all communication is performed to communicate the result of
each join to its appropriate bucket and subbucket. In subsequent
work they develop strategies to enable spatial and temporal load
balancing of tuples across the cluster, and use these techniques to
perform the largest-ever computation of transitive closure [25].

Program Analysis and Datalog. Deductive databases offer an at-
tractive option for the implementation of large-scale program anal-
yses as they enable declarative analysis specification alongside ef-
ficient solving via modern Datalog engines. the DOOP framework

by Smaragdakis et al. poineered an elaborate context-sensitive points-
to analysis for Java implemented in Datalog [10, 35]. DOOP orig-
inally used the LogicBlox Datalog engine to achieve an order of
magnitude speedup compared to a predecessor hand-written points-
to analysis for Java [4]. DOOP was later ported to the Soufflé Dat-
alog engine, which enabled further scalability via Soufflé’s single-
node task-level parallelism [3]. While Soufflé represents the state-
of-the-art analysis platform, it is fundamentally limited in that it
cannot provide data parallelism, hindering it from operating be-
yond a single node. By contrast, our parallel relational-algebra ap-
proach can likely be scaled to clusters.

There are several other notable efforts in distributed and parallel
program analysis that achieve scalability via application-specific
task-level parallelism. For example, Aiken et al.’s Saturn program
analysis system includes a distributed mode via MPI, which they
anecdotally report achieves scalability [2].Their system distributes
the analysis via a worklist of function summaries and distributing
work among the cluster. This approach assumes that the analysis
is summarization-based and does not offer data parallelism. Simi-
larly, there have been multiple efforts to distribute symbolic exe-
cution [11, 30, 34]. Symbolic execution is a program testing tech-
nique that executes programs on symbolic inputs, branching to col-
lect a set of path conditions in the case of multiple successor states.
Symbolic execution is naturally parallelized using a worklist repre-
senting a frontier of program states. One limitation of this work is
the inherent memory blowup due to the necessary copying of path
conditions to implement task-level parallelism. As future work, we
plan to study how to integrate SMT solvers such as Z3 [15] into our
parallel relational algebra to support symbolic execution, as we ex-
pect our system could naturally distribute path conditions through
the cluster. The recent Formulog system harmoniously integrates
Datalog, functional programming, and constraint solving, andmay
provide useful inspiration for future work [8]. In contrast to these
systems, our approach offers true data parallelism, enabling the
entire cluster to make progress on the analysis at once rather than
requiring application-specific task deliniation.

7 CONCLUSION
Over the past few years, exciting advances in high-performance
Datalog solvers have enabled new frontiers in large-scale static
analysis development. However, current-generationDatalog solvers
are fundamentally limited to a single machine. In this paper, we
presented a methodology building upon emerging work in data-
parallel relational algebra that allowed us to build the first data-
parallel Datalog solver. Our solver is built on a novel parallel rela-
tional algebra machine, PRAM, which makes several key decisions
to enable implementing Datalog rules via data-parallel relational
algebra. We see this as a foundational step forward in the imple-
mentation of high-performance logical inference engines. Our case
study benchmarks demonstrate that our PRAM-based approach
achieves better single-node scalability than Soufflé, the state-of-
the-art Datalog engine. Additionally, we show promising initial
scalability of up to 2,016 nodes on the Theta supercomputer. In fu-
ture work, we hope to leverage PRAM to build next-generations
platforms for graph mining, program analysis, and other large-
scale logical inference problems.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Compiling Data-Parallel Datalog Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases:

the logical level. Addison-Wesley Longman Publishing Co., Inc.
[2] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter

Hawkins. 2007. An Overview of the Saturn Project. In Proceedings of the 7th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE ’07). Association for Computing Machinery, New York, NY,
USA, 43–48. https://doi.org/10.1145/1251535.1251543

[3] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017.
Porting doop to soufflé: a tale of inter-engine portability for datalog-based anal-
yses. In Proceedings of the 6th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis. ACM, 25–30.

[4] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and
Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’15). Associa-
tion for Computing Machinery, New York, NY, USA, 1371–1382. https://doi.
org/10.1145/2723372.2742796

[5] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. 2008. The Parma Poly-
hedra Library: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Computer Pro-
gramming 72, 1-2 (2008), 3–21.

[6] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013. Multi-
Core, Main-Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1 (Sept.
2013), 85–96. https://doi.org/10.14778/2732219.2732227

[7] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten
Hoefler. 2017. Distributed Join Algorithms on Thousands of Cores. Proc. VLDB
Endow. 10, 5 (Jan. 2017), 517–528.

[8] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog =
Datalog + ML + SMT.

[9] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Speci-
fication of Sophisticated Points-to Analyses. SIGPLAN Not. 44, 10 (Oct. 2009),
243–262. https://doi.org/10.1145/1639949.1640108

[10] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifi-
cation of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems Languages and Appli-
cations (OOPSLA ’09). ACM, New York, NY, USA, 243–262. https://doi.org/10.
1145/1640089.1640108

[11] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Paral-
lel Symbolic Execution for Automated Real-World Software Testing. In Proceed-
ings of the Sixth Conference on Computer Systems (EuroSys ’11). Association for
Computing Machinery, New York, NY, USA, 183–198. https://doi.org/10.1145/
1966445.1966463

[12] Filippo Cacace, Stefano Ceri, andMaurice A.W. Houstma. 1991. An Overview of
Parallel Strategies for Transitive Closure on Algebraic Machines. In Proceedings
of the PRISMAWorkshop on Parallel Database Systems. Springer-VerlagNewYork,
Inc., New York, NY, USA, 44–62.

[13] Jean-Pierre Cheiney and Christophe de Maindreville. 1990. A Parallel Strategy
for Transitive Closure Using Double Hash-based Clustering. In Proceedings of the
Sixteenth International Conference on Very Large Databases. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 347–358.

[14] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL ’77). ACM, New York, NY, USA, 238–252.
https://doi.org/10.1145/512950.512973

[15] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[16] Johannes Gehrke, Paul Ginsparg, and Jon Kleinberg. 2003. Overview of the 2003
KDD Cup. SIGKDD Explor. Newsl. 5, 2 (Dec. 2003), 149–151. https://doi.org/10.
1145/980972.980992

[17] Thomas Gilray, Michael D. Adams, and Matthew Might. 2016. Allocation Char-
acterizes Polyvariance: A Unified Methodology for Polyvariant Control-flow
Analysis. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming (ICFP ’16). ACM, New York, NY, USA, 407–420. https:
//doi.org/10.1145/2951913.2951936

[18] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis
of Program Analyzers. In Computer Aided Verification, Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer International Publishing, Cham, 422–430.

[19] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. [n.d.]. A Spe-
cialized B-tree for Concurrent Datalog Evaluation. In Proceedings of the 24th Sym-
posium on Principles and Practice of Parallel Programming (PPoPP ’19). ACM, New
York, NY, USA, 327–339.

[20] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019. Brie: A
Specialized Trie for Concurrent Datalog. In Proceedings of the 10th International

Workshop on Programming Models and Applications for Multicores and Manycores
(PMAM’19). ACM, New York, NY, USA, 31–40.

[21] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-Sensitivity for
Points-to Analysis. SIGPLAN Not. 48, 6 (June 2013), 423–434. https://doi.org/
10.1145/2499370.2462191

[22] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-Sensitivity
for Points-to Analysis. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’13). Association for
Computing Machinery, New York, NY, USA, 423–434. https://doi.org/10.1145/
2491956.2462191

[23] Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009. Sort
vs. Hash revisited: fast join implementation on modern multi-core CPUs. Pro-
ceedings of the VLDB Endowment 2, 2 (2009), 1378–1389.

[24] Sidharth Kumar and Thomas Gilray. 2019. Distributed Relational Algebra at
Scale. In International Conference on High Performance Computing, Data, and An-
alytics (HiPC). IEEE.

[25] Sidharth Kumar and Thomas Gilray. 2020. Load-Balancing Parallel Relational
Algebra. InHigh Performance Computing, Ponnuswamy Sadayappan, Bradford L.
Chamberlain, Guido Juckeland, and Hatem Ltaief (Eds.). Springer International
Publishing, Cham, 288–308.

[26] Jan Midtgaard. 2012. Control-flow analysis of functional programs. ACM com-
puting surveys (CSUR) 44, 3 (2012), 1–33.

[27] Matthew Might. 2010. Abstract interpreters for free. In International Static Anal-
ysis Symposium (SAS ’10). Springer, 407–421.

[28] Phúc C Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn.
2017. Soft contract verification for higher-order stateful programs. Proceedings
of the ACM on Programming Languages 2, POPL (2017), 51.

[29] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. 2017. Distributed binary
decision diagrams for sbolic reachability. In Proceedings of the 24th ACMSIGSOFT
International SPIN Symposium on Model Checking of Software. ACM, 21–30.

[30] R. Sasnauskas, O. S. Dustmann, B. L. Kaminski, K. Wehrle, C. Weise, and S.
Kowalewski. 2011. Scalable Symbolic Execution of Distributed Systems. In 2011
31st International Conference on Distributed Computing Systems. 333–342.

[31] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On
Fast Large-scale Program Analysis in Datalog. In Proceedings of the 25th Interna-
tional Conference on Compiler Construction (CC 2016). ACM, New York, NY, USA,
196–206.

[32] Olin Shivers. 1988. Control Flow Analysis in Scheme. In Proceedings of the Con-
ference on Programming Language Design and Implementation. ACM, New York,
NY, 164–174.

[33] Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages. Ph.D. Dis-
sertation. Carnegie-Mellon University, Pittsburgh, PA.

[34] J. H. Siddiqui and S. Khurshid. 2010. ParSym: Parallel symbolic execution. In
2010 2nd International Conference on Software Technology and Engineering, Vol. 1.
V1–405–V1–409.

[35] Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for Fast and
Easy Program Analysis. In Proceedings of the First International Conference on
Datalog Reloaded (Datalog’10). Springer-Verlag, Berlin, Heidelberg, 245–251.

[36] Pavle Subotić, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz.
2018. Automatic Index Selection for Large-scale Datalog Computation. Proc.
VLDB Endow. 12, 2 (Oct. 2018), 141–153.

[37] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM jour-
nal on computing 1, 2 (1972), 146–160.

[38] Patrick Valduriez and Setrag Khoshafian. 1988. Parallel Evaluation of the Tran-
sitive Closure of a Database Relation. Int. J. Parallel Program. 17, 1 (Feb. 1988),
19–42.

[39] David Van Horn and Harry G Mairson. 2008. Deciding k CFA is complete for
EXPTIME. ACM Sigplan Notices 43, 9 (2008), 275–282.

[40] David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In
Proceedings of the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’10). ACM, New York, NY, USA, 51–62. https://doi.org/10.1145/
1863543.1863553

[41] KaiWang, Zhiqiang Zuo, JohnThorpe, TienQuang Nguyen, and Guoqing Harry
Xu. 2018. RStream: marrying relational algebra with streaming for efficient
graph mining on a single machine. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 763–782.

[42] JohnWhaley andMonica S. Lam. 2004. Cloning-based Context-sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. SIGPLAN Not. 39, 6 (June 2004),
131–144.

11

https://doi.org/10.1145/1251535.1251543
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1966445.1966463
https://doi.org/10.1145/1966445.1966463
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/980972.980992
https://doi.org/10.1145/980972.980992
https://doi.org/10.1145/2951913.2951936
https://doi.org/10.1145/2951913.2951936
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/1863543.1863553

	Abstract
	1 Introduction
	2 Background
	2.1 Relational Algebra
	2.2 Datalog
	2.3 Implementation via RA
	2.4 Balanced Parallel RA

	3 Parallel RA Machine
	3.1 PRAM IR
	3.2 Implementation

	4 Case Studies
	4.1 Graph Mining
	4.2 Program Analysis

	5 Evaluation
	5.1 Dataset and HPC platforms
	5.2 Strong scaling on AWS
	5.3 Strong scaling on Theta

	6 Related Work
	7 Conclusion
	References

