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Compiling Data-Parallel Datalog
Anonymous Author(s)

ABSTRACT
Datalog allows intuitive declarative specification of logical infer-
ence tasks while enjoying efficient implementation via state-of-
the-art engines such as LogicBlox and Soufflé. These engines en-
able high-performance implementation of complex logical tasks
including graph mining, program analysis, and business analytics.
However, all efficient modern Datalog solvers make use of shared
memory, and present inherent challenges scalability.

In this paper we leverage recent insights in parallel relational al-
gebra and present a methodology for constructing data-parallel de-
ductive databases. Our approach leverages recent developments in
parallelizing relational algebra to create an efficient data-parallel
semantics for Datalog. Based on our methodology, we have im-
plemented the first MPI-based data-parallel Datalog solver. Our
experiments demonstrate comparable performance and improved
single-node scalability versus Soufflé, a state-of-art solver.

1 INTRODUCTION
Database systems are broadly declarative, typically supporting ex-
pressive query languages. Systems for deductive databases such as
Datalog further allow persistent rules that specify relations defined
intensionally, only in terms of other relations. Picture a database
listing inventory and sales for an online business where a set of
simple declarative rules are used to update an out-of-stock table or
a table listing the total profit earned for each customer. In such sys-
tems, expressive reasoning can be embedded alongside ones data
and used to generate sophisticated analytics on-the-fly as changes
are made.

Effective declarative programming represents a long-standing
dream of computing—exchanging code describing how to compute
for code simply describing what to compute. Instead of requiring
programmers to themselves balance the concerns of correctness,
maintainability, and scalability in each task, declarative program-
ming languages permit users to focus on the first two concerns,
writing high-level, correct specifications of what should be com-
puted, while allowing the underlying implementation (i.e., how the
operational mechanics of the program work) to be extracted au-
tomatically. This puts significant pressure on the implementation
strategy used for declarative languages as it must compete with
hand-optimized implementations while remaining generic and ef-
fective for a wide variety of applications.

At the same time, this approach presents an opportunity: as ef-
fective means are found for parallelizing the semantics of declara-
tive languages, the strategy will apply immediately to all analytics
using these platforms. This is already the case for bottom-up (for-
ward chaining) logic programs written in Datalog, and related lan-
guages with semantics that implement first-order or higher-order
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Horn-clause satisfiability. Such programs may be implemented us-
ing high-performance relational algebra, as is done in the state-of-
the-art logic-programming language Soufflé [31]. Standard oper-
ations on relations such as selection, projection, join, and union
may be used in combination to implement efficient kernels that
infer new facts from available facts in a (fixed-point) loop. Fortu-
nately, the underlying primitives used in these kernels are inher-
ently quite data-parallel. For example, the Cartesian product of two
relations, R×S may be computed by partitioning the left-hand rela-
tionR for a set of threads and then performing a local productRi×S
for each partition i , of R, in a trivially parallel manner. Unfortu-
nately, many important inference problems must be scaled beyond
single-node parallelism; e.g., state-of-the-art program analyses for
Java that are implemented in Soufflé can take many hours and only
terminate for lower-precision tunings, targeting real-world code-
bases [35].

While this approach to parallelizing bottom-up logic program-
ming is already being used to great effect on single-node systems [3],
scaling the approach to many-thread clusters using MPI’s inter-
process communication paradigms has proven a significant chal-
lenge. Recent work has introduced techniques for managing par-
allel relational algebra using MPI on clusters. This has been quite
tricky as both communication and decomposition of the compu-
tational workload over many nodes must be done explicitly in a
dynamically balanced manner, while on shared-memory systems
both these problems become nearly trivial when using efficient
thread-safe data-structures—tools produced through decades of suc-
cessful research.

In this paper, we present a synthesis of two ongoing threads
of research: (1) an approach to compiling Datalog-like languages
to relational algebra for synthesizing fast program analyzers [18],
and (2) a scheme for balanced parallel relational algebra using MPI
that addresses communication challenges of putting operations on
relations in a loop [25]. Putting these ideas together, we are able
to present a highly data-parallel deductive database engine that
shows promising scaling on the DOE supercomputer Theta.

To the literature, we contribute:

(1) An approach to developing scalable, data-parallel Datalog
solvers using parallel relational algebra. We formalize our
approach as a parallel relational algebra machine (PRAM)
for which we have implemented a compiler.

(2) An evaluation of kCFA, a core program analysis algorithm,
showing higher performance and scalabiliy compared with
Soufflé. In general, we observed varying but comparable per-
formance and improved relative scaling in our comparison
studies.

2 BACKGROUND
Our approach synthesizes two foundational threads: compilation
of Datalog-like inference languages to relational algebra kernels

1
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and recent success enabling the development of data-parallel rela-
tional algebra implementations. In this section, we present a sum-
mary of these developments to ground our own contributions.

2.1 Relational Algebra
Relations are sets of flat tuples of homogenous arity. By flat, we
mean that each tuple consists of base values, for example a 64-bit
integer or tagged pointer into a string table. Standard set opera-
tions including union, intersection, and product naturally lift to
relations.

Projection of a relation R restricts it to a particular set of dimen-
sionsα0, . . . ,α j , whereα0 < . . . < α j , and iswrittenΠα0, ...,α j (R) ≜
{(rα0 , . . . , rα j ) | (r0, . . . , rk ) ∈ R}. Renaming (i.e., recording) columns
can be defined in several ways. We define a renaming operator,
ραi /α j (R), to swap two columns, αi and α j where αi < α j—an op-
eration that can be repeated to rename/reorder as many columns
as desired.

Two relations can also be joined into one on a subset of columns
they have in common. Join combines two relations into one, where
a subset of columns are required to have matching values, and gen-
eralizes both intersection and Cartesian product operations.

To formalize natural join as an operation on such a relation, we
parameterize it by the number of prefix values that must match,
assumed to be the first j of each relation (if they are not, a renaming
operationmust come first).The join of relations R and S on the first
j columns is written as R ▷◁j S and can be defined:

R ▷◁j S ≜{ (r0, . . . , rk , sj , . . . , sm )

| (r0, . . . , rk ) ∈ R ∧ (s0, . . . , sm ) ∈ S ∧
∧

i=0..j−1
ri = si }

Naturally a system of relational algebra can support a variety
of additional operations or compositions of the above operations
(e.g., join followed by project followed by reorder) in theory, and
usually does in practice for reasons of efficiency.

2.2 Datalog
Datalog is a bottom-up logic programming language supporting a
restricted logic corresponding to first-order HornSAT—the satisfia-
bility problem for conjunctions of Horn clauses [1]. A Horn clause
is a disjunction of atoms, all but one of which is negated: a0 ∨
¬a1 ∨ . . . ∨ ¬aj . Atoms are predicates over universally-quantified
variables. By DeMorgan’s laws, Horn clauses may be equivalently
as a0 ∨ ¬(a1 ∧ . . . ∧ aj ) or equivalently via implication as a0 ←
a1 ∧ . . . ∧ aj .

ADatalog program is a set of (Horn clause) rules P(x0, . . . , xk ) ←
Q(y0, . . . ,yj )∧ . . .∧S(z0, . . . , zm ). It is common to have an “input”
database of facts called the extensional database (EDB), consisting
of an explicitly listed (extensional) set of tuples. Running a Data-
log program in terms of some EDB reifies the intensional database
(IDB), all facts (transitively) derivable via the program’s rules. The
following example program computes the uncle relation from
the relations brother and parent :

uncle(x,u) :- parent(x,p), brother(p,u).

Efficient implementation strategies for Datalog would evaluate
this program by first compiling to relational algebra primitives. On

shared-memory systems, this would involve ordering the parent

relation so it can be efficiently joined with brother , then project-
ing out the shared p column; this is writtenΠ1,2(ρ0/1( parent ) ▷◁1
brother ). This reduces optimization of evaluation to efficient im-
plementation of the relational algebra primitives. We call a set of
RA primitives used to implement a Datalog program a relational
algebra plan (RA plan).

While some relations can be computed via a fixed number of
RA operations in sequence, others must be computed via a fixed-
point of a set of operations. For example, transitive closure (TC) of
a relation or graph is efficiently implemented via a loop (check-
ing whether a fixed-point has been achieved) over a set of high-
performance RA operations. Consider the Datalog rules for com-
puting the ancestor relation:

ancestor(x,p) :- parent(x,p).

ancestor(x,a) :- ancestor(x,ac), parent(ac,a).

The first rule represents a base case that says any parent is triv-
ially an ancestor, and the second represents the inductive step of
inferring that an ancestor ac for x and a parent a for ac implies an
older ancestor a for x.

We can also view parent as an input graph defined as a set of
edges, and view TC computation as a graph mining problem. Com-
puting the transitive closure ancestor , of input graph parent ,
is a simple example of logical inference. From paths of length 0

(an empty graph) and the existence of edges in graph parent , we
may trivially deduce the existence of paths of length 0 . . . 1. From
paths of length 0 . . .n and the original edges in graph parent , we
may infer the existence of paths of length 0 . . .n + 1. The function
F

parent
below performs a single round of inference, finding paths

one edge (parental relationship) longer than any found previously
and exposing new inferences to be made for the next iteration of
F

parent
. When the computation reaches a fixed-point, the solution

has been found as no further paths may be deduced from the avail-
able facts.

F
parent

( ancestor ) ≜ parent

∪ Π1,2(ρ0/1( ancestor ) ▷◁1 parent )

The first rule says that any direct edge in parent implies a
path, in ancestor (taking the role of the left operand of union in
FG ), and the second rule says that any path (x,ac) and edge (ac,a)
imply a path (x,a) (adding edges for the right operand of union
in F

parent
). Other kinds of graph mining problems, such as com-

puting triangles or k-cliques, can also be naturally implemented
as Datalog programs [41]. See Section 4 for several case studies on
graph mining and program analysis applications.

Each Datalog rule may be encoded as a monotonic function F ,
mapping databases to databases conjoined with their immediate
consequences, where a fixed-point for F is guaranteed to satisfy
the corresponding rule. Once a set of functions F0 . . . Fm are con-
structed (one for each rule), naïve Datalog evaluation operates by
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iterating the initially empty IDB and input EDB to a mutual fixed-
point for F0 . . . Fm . Because the EDB includes a fixed number of
atoms, and because Datalog programs cannot generate new atoms,
termination is guaranteed.

In practice, most “Datalog” implementations are more expres-
sive than this, and most permit some basic built-in operations (e.g.,
x!=y ), and frequently will allow constructors for inductive data
types, such as linked lists. However, while most Datalog implemen-
tations are ultimately Turing-complete, they optimize for terminat-
ing programs accelerated via fast RA operations.

2.3 Implementation via RA
So far, we have elided important optimization and implementation
details in favor of focusing onDatalog’s semantics. High-performance
Datalog solvers employ specializations of general RA operations
that combine sequences of simple operations (join, project, and
rename) into one efficient combined operation. We have so far
presented the so-called naïve evaluation strategy, recomputing all
previously-discovered facts at every iteration. Efficient implemen-
tations employ incrementalization, tracking a frontier of freshly-
discovered facts to produce yet-undiscovered facts. For example,
when computing transitive closure, another relation ancestor ∆
is used which only stores the longest ancestry paths—those discov-
ered in the previous iteration. When computing paths of length n,
in fixed-point iteration n, only new paths discovered in the previ-
ous iteration, paths of lengthn−1, need to be considered, as shorter
paths extended with edges from parent necessarily yield paths
which have been discovered already. This optimization is known
as semi-naïve evaluation [1].

Using semi-naïve evaluation, each non-static relation (those that
may be updated in given iteration, such as ancestor ) is effec-
tively partitioned into three relations: ancestor

full
, ancestor ∆,

and ancestor
new

. ancestor
full

stores any facts discovered more
than one iteration ago; ancestor ∆ maintains facts thatwere newly
discovered in the previous iteration, and is joined with parent

each iteration to discover new facts; and ancestor
new

holds these
newly discovered facts only just learned in the current iteration.
At the end of each iteration, ancestor ∆’s tuples are added to
ancestor

full
, the pointers are swapped for ancestor ∆ and ancestor

new
,

and ancestor
new

is truncated to prepare for the subsequent iter-
ation.

The state of art evaluating Datalog on a single compute node is
perhaps best embodied in the Soufflé engine [18–20, 31]. Soufflé
systematically optimizes the RA kernels obtained from an input
Datalog program, yielding a program for an abstract Relational
Algebra Machine (RAM). Figure 1 shows a portion of the exact
C++ code produced by Soufflé (v1.5.1) for the two-rule TC pro-
gram (indentation and code comments have been added by the
authors to improve clarity). To compute ρ0/1( ancestor ∆) ▷◁1
parent , first the outer relation (the left-hand relation—in this
case T∆) is partitioned so that Soufflé may process each on a sep-
arate thread via OpenMP (line 1 in Figure 1). For each partition, a
loop iterates over all tuples in the current partition of ancestor ∆

(line 2) and computes a selection tuple, key, representing all tu-
ples in parent that match the present tuple from ancestor ∆
in its join-columns (in this case, just the second column value,
env0[1]). This selection tuple is then used to produce an iterator
selecting only tuples in parent whose column-0 value matches
the particular tuple env0’s column-1 value. Soufflé thus iterates
over each (x,y) ∈ ancestor ∆ and creates an iterator that se-
lects all corresponding (y, z) ∈ parent . Soufflé iterates over all
matching tuples in parent (line 5), and then constructs a tuple
(x, z), produced by pairing the column-0 value of the tuple from
ancestor ∆, env0[0], with the column-1 value of the tuple from
parent , env1[1], which is inserted into ancestor

new
(line 8)

only if it is not already in ancestor
full

(line 6).

// Partition ancestor
∆

for a pool of OpenMP threads; iterate over parts

1 pfor(auto it = part.begin(); it<part.end();++it){

// Iterate over each tuple, env0, of ancestor
∆

(in each partition)

2 try{for(const auto& env0 : *it) {

// Construct an iterator selecting tuples in parent that match env0

3 const Tuple<RamDomain,2> key({{env0[1],0}});
4 auto range = rel_1_edge->equalRange_1(key,

READ_OP_CONTEXT(rel_1_edge_op_ctxt));

// Iterate over matching tuples in parent

5 for(const auto& env1 : range) {

// Has this output tuple already been discovered (is in ancestor
full

)

6 if(!(rel_2_path->contains(Tuple<RamDomain,2>({{env0[0],env1[1]}}),
READ_OP_CONTEXT(rel_2_path_op_ctxt)))) {

// Construct the output tuple and insert it into T_new
7 Tuple<RamDomain,2> tuple({{static_cast<RamDomain>(env0[0]),

static_cast<RamDomain>(env1[1])}});
8 rel_4_new_path->insert(tuple,

READ_OP_CONTEXT(rel_4_new_path_op_ctxt));
9 }
10 }
11 }} catch(std::exception &e){SignalHandler::instance()->error(e.what());}
12 }

Figure 1: The join in TC, as implemented by Soufflé.

Given this architecture, Soufflé achieves good performance by
using fast thread-safe data-structures, template specialized for com-
mon use cases, that represent each relation extensionally—explicitly
storing each tuple in the relation, organized to be amenable to fast
iteration, selection, and insertion. Soufflé includes a concurrent B-
tree implementation [19] and a concurrent prefix-tree implementa-
tion [20] as underlying representations for relations. Soufflé does
not support MPI or distributed computation of Datalog programs.

2.4 Balanced Parallel RA
Implementation of Datalog as performant RA suggests a strategy
for extractingmassive parallelism if these primitive operations them-
selves can be made highly data-parallel. Several lines of work have
approached the challenge of developing schemes for decompos-
ing large RA operations over many parallel threads. The double-
hashing approach, with local hash-based joins and hash-based dis-
tribution of relations, is broadly the most commonly used method
to distribute join operations over many nodes in a networked clus-
ter computer [12, 13, 38]. Recently, both radix-hash join andmerge-
sort join have been evaluated [7] at up to 4k threads.

Another recent approach proposes algorithms for balanced par-
allel relational algebra (BPRA) adapting the representation of im-
balanced relations, using a two-layered distributed hash-table to
partition tuples over a fixed set of buckets, and, within each bucket,
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to a dynamic set of subbuckets which may vary across buckets [24].
This represents a decomposition of the relation across processes
that is keyed both on a set of join columns, and also on all other
columns to ensure a balanced mapping of tuples to processes. Each
tuple is assigned to a bucket based on a hash of its join-column
values, but within each bucket, tuples are hashed on all non-join-
column values, assigning them to a local subbucket. Each bucket
and subbucket pair unqiuely assigns that group of tuples to a par-
ticular MPI process. This scheme permits buckets that have more
tuples to be split across multiple processes uniformly and for the
number of subbuckets to increase as the tuples in that bucket in-
creases. This balancing can be done periodically in both the direc-
tion of splitting buckets into more subbuckets, or of consolidating
them, as needed. To distribute subbuckets to managing processes,
BPRA uses a round-robin mapping scheme that requires a very
small amount of additional communication, but ensures that no
process manages more than one subbucket more than any other.
Locally, subbuckets store tuples using B-trees (an approach also
used by Soufflé, although their data structures have undergone par-
ticular engineering refinements). This carries performance advan-
tages over the double-hashing approach’s use of hash tables. Cru-
cially, hash-tables can also lead to complications in a distributed
setting where a resizing operation may delay synchronization.

Figure 2 shows a schematic diagram of the BRPA join algorithm
in the context of an incrementalized TC computation. A join op-
eration can only be performed for two co-located relations: two re-
lations each keyed on their respective join columns that share a
bucket decomposition (but not necessarily a subbucket decomposi-
tion for each bucket). This ensures that the join operation may be
performed separately on each bucket as all matching tuples will
share a logical bucket; it does not ensure that all pairs of match-
ing tuples will share the same subbucket as tuples are assigned to
subbuckets (within some bucket) based on the values of non-join
columns.

The first step in a join operation is an intra-bucket communica-
tion phase within each bucket in which every subbucket receives
all tuples for the outer relation, across all subbuckets (while the
inner relation only needs tuples belonging to the local subbucket).
After this, a local join operation (corresponding to a Datalog rule,
with possible projection and renaming) can be performed in ev-
ery subbucket in parallel. Output tuples from these local joins may
each belong to an arbitrary bucket in the output relation, so an
MPI all-to-all communication phase shuffles the output of all joins
to their managing processes (preparing them for any subsequent
rules or iterations). Upon receiving output tuples from the previ-
ous join, each receiving process inserts them into the local B-tree
for each applicable Rnew. It then propagates R∆ into Rfull and Rnew

becomes R∆ for the next iteration. If no new tuples have been dis-
covered, globally, a fixed-point has been reached and iteration may
halt.

Intra-bucket communication (shown on the left of Figure 2) uses
MPI point-to-point communication to shuffle tuples from each sub-
bucket of the outer relation to subbuckets of the inner-relation,
which is then able to perform local, per-subbucket joins. It may
seem appealing to fuse the final all-to-all communication phase
among buckets with the intra-bucket communication of the subse-
quent iteration, sending new tuples (for R∆ in the next iteration)

directly to all subbuckets of the inner relation; however, doing this
fusion forgoes an opportunity for per-subbucket deduplication and
yields meaningful slowdowns in practice.

The local join phase proceeds in a parallel and unsynchronized
fashion. Each process iterates over its subbuckets, performing a sin-
gle join operation for each. Our join is implemented as a straight-
forward tree-based join as shown in the center of Figure 2. In this
diagram, colors are used to indicate the hash value of each tuple
as determined by its join-column value. Once received, the outer
relation’s tuples are iterated over, grouped by key values, where,
for each, a lookup is performed to select a portion of the inner
relation’s B-tree where all tuples have a matching key value (in
the case of TC computation, this is selecting the first column of
parent ). For two sets of tuples with matching join-column val-
ues, we effectively perform aCartesian product computation, yield-
ing one tuple for all possible pairs of outer and inner tuple.

Each output tuple has projection and renaming performed on-
the-fly; in the case of TC, the prior join columns that matched are
projected away. These tuples are locally deduplicated, organized,
and staged for transmission to new managing subbuckets in their
receiving relation. After evaluating a rule, each output tuple des-
tined for a head-relation R belongs to Rnew and must be hashed on
its join columns; in the case of TC, this is the rightmost column of
ancestor . Join columns are hashed to determine the bucket and
non-join columns to determine the subbucket; together bucket and
subbucket determine a managing process via the current round-
robin mapping (stored on every process). An all-to-all communica-
tion phase (shown on the right side of Figure 2) transmits materi-
alized joins to their new bucket-subbucket decomposition in head-
relation Rnew. The managing process for each bucket and subbucket
involved is obtained from a local round-robin map and tuples are
organized into buffers for MPI’s All_to_allv synchronous com-
munication operation. When this is invoked, all tuples are shuffled
to their destination processes.

Finally, after the one synchronous communication phase per it-
eration, each R∆ is locally propagated into Rfull, which stores all tu-
ples discovered more than 1 iteration ago. New tuples are checked
against this Rfull to ensure they are genuinely new facts, and are
inserted into a B-tree for Rnew on each receiving process to per-
form remote deduplication. At this point, the iteration ends, Rnew

becomes R∆ for the subsequent iteration, and an empty Rnew is al-
located. If no new tuples were actually discovered in the previous
iteration, a fixed-point has been reached and no further iterations
are needed as the database as stabilized with respect to all rules of
inference.

BPRA is notable for allowing two kinds of load-imbalance to be
remediated dynamically across fixed-point iterations. Spatial load
imbalance occurs when a relation’s stored tuples are mapped un-
evenly to processes due to key-skew or inherent imbalance in rela-
tion’s distribution of tuples. Temporal load imbalance occurs when
the number of output tuples produced varies significantly across
iterations.

BPRA includes threemain algorithms for adjusting the represen-
tation of a relation or RA operation to improve both these kinds of
balancing. Bucket refinement is a dynamic check of each bucket to
see if its subbuckets are significantly heavier than average. When
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Figure 2: Shows the major phases of a BPRA join in the context of a TC computation.

this is detected, it triggers a refinement in which new subbuckets
are allocated to support the larger number of tuples in this specific
bucket. Bucket consolidation is the reverse and occurs only if there
are a significant number of refined buckets. It consolidates buckets
into fewer subbuckets when spatial imbalance has again lessened.
Last, iteration roll-over allows particularly busy iterations to be in-
terrupted part-way, with completed work being processed imme-
diately via an added communication phase and with the residual
workload from the iteration “rolling over” to a new iteration. This
improves robustness in the face of temporal imbalance, prevent-
ing crashes at the cost of an additional sychronization phase and
poorer deduplication behavior.

3 PARALLEL RA MACHINE
We develop the standard techniques for compiling Datalog-like
languages to RA, and for parallelizing RA over large numbers of
threads using BPRA, into a Parallel Relational Algebra Machine
(PRAM) and its intermediate representation (IR). Soufflé’s RAM is
a model for deductive databases in terms of shared-memory rela-
tional algebra on a single machine. We introduce PRAM as a evo-
lution of this concept that suits the unique challenges and oppor-
tunities of applying BPRA to logical inference tasks.

In the example of Soufflé’s compiled C++ in Section 2, any k-
ary join operation could be implemented as a series of k nested
for loops (with partitioning among threads, efficient selecting iter-
ators, etc). By contrast, BPRA imposes a key restriction to facilitate
data-parallelism: all joined relationsmust use indices that have pre-
cisely homogenous join columns. This means a rule such as

H(x,y,z) :- B0(w,x,y), B1(y,z), B2(z).

must be evaluated using two sequential binary joins, since B0

and B1 share a different column in common than do B1 and
B2 . While trinary or k-ary joins that are homogenous in their join
columns are conceivable via BPRA, they are not common in our
Datalog code. The fact that we must use binary joins, and cannot
reuse indices for their prefixes [36], represent key restrictions that
countervail Soufflé’s approach to optimizing Datalog for shared-
memory systems. However, with several key innovations, we man-
age and exploit the unique distributed setting of our parallel RA
operations and obtain an approach that can scale well.

We implement PRAM using BPRA. BPRA’s approach to paral-
lel RA is amenable to iterated RA operations over relations with
highly dynamic topologies, but it has several challenging limita-
tions we must overcome:

• Lacking of support for heterogenous k-ary joins,
• Inability to run operations in parallel—in BPRA, each op-
eration has its own synchronous all-to-all communication
phase.
• Lack of support for tracking multiple indices of relations,
adding new tuples to each index.

3.1 PRAM IR
Our definition of a compiled PRAM program or IR is shown in
Figure 3. A program is a directed acyclic graph among compiled
strongly connected components (SCCs), of program rules, indicat-
ing which other SCCs must be run before each SCC can be run.
SCCs with no incoming dependencies may be run immediately,
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ir ∈ PRAM = P(SCC) × P(SCC × SCC)
scc ∈ SCC = P(Rule)
rule ∈ Rule ::= (rule hclause bclause)

| (rule hclause bclause prim)

| (rule hclause bclause bclause)

| (arule hclause bclause)

hclause ∈ HClause ::= (hrel var . . .+)

hrel ∈ HRel ::= (rel-select name arity index)

bclause ∈ BClause ::= (brel var . . .+)

Brel ∈ BRel ::= (rel-version name arity index ver)

prim ∈ Prim ::= (op var . . .+)

name ∈ Name = ⟨symbols⟩
var ∈ Var = ⟨symbols⟩
op ∈ Op = ⟨primitive operations⟩

arity ∈ Arity = N
index ∈ Index = N∗

ver ∈ Version = {delta, full}

Figure 3: PRAM domains used to define the core IRwe target.

and SCCs that contain only a single non-recursive rule are non-
recursive and are not iterated to a fixed point because a single itera-
tion always guarantees output consistent with the rule. PRAM sup-
ports four fundamental kinds of rules: a unary copy rule that prop-
agates one relation into another, with possible reordering and pro-
jection; i.e., H(y,x) :- B(x,y,z). ; a copy with primitive opera-
tion that can filter or extend tuples; i.e., H(x,y) :- B(x,y), x<y. ;
a binary join rule that joins two relations with possible reordering
and projection; i.e., H(z,x) :- B0(x,y), B1(y,z). ; and finally,
an administrative copy rule between a canonical index for a rela-
tion and a non-canonical index for a relation.

Our system designates exactly one index for each relation as
canonical (this may be the only index for a relation), and creates
administrative rules that, acting like a unary copy rule, propagate
newly discovered tuples from a canonical index to each of the non-
canonical indices.The canonical index is always used in the head of
a rule and our compiler generates appropriate indices and admin-
istrative copy rules. Note that an hclause is the same as a bclause
except that it must be the canonical index and does not need a ver-
sion tag, as newly discovered tuples are always placed inHnew. Body
clauses are specific to either the version delta or full, an artifact
of semi-naïve evaluation.

3.2 Implementation
Our implementation of a Datalog compiler and run-time is written
in Racket and C++, and is composed of several major passes:

Parsing and lexing. We support typical Datalog notation that
overlapswith a substantial fragment of syntactic niceties supported

by Soufflé. We track source locatoins explictly so we can report er-
rors and we’ve included support for a few dozen common built-in
operators to be attached to rules, such as the comparison x < y .

Organization. A first pass performs simplification and canoni-
calization steps. For example, we allow suggestions to be given for
how to order rules as an extension, these are broken apart into a
sequence of rules in this pass. Rules with multiple head clauses
can also be split effectively into multiple rules with a single head-
clause each. Wildcard variables, as in the clause r(_,x) are re-
named to a unique anonymous variable; e.g., r(_3,x) .

Static unification. A second pass performs transitive static uni-
fication of variables that are explicitly unified by a built-in com-
parison, as in p(x,x),q(y),x=y , so equal variables across rela-
tions use the same variable name and within the same relation
use a built-in to filter that relation; this example is converted to
p(x,_0),q(x),x=_0 .

Partitioning. The next pass partitions complex rules into a set of
simple rules that form a linear chain of dependence on one another.
For example, the rule

a(x,y,z) :- b(w,x), c(x,y), d(y,z).

is compiled into a sequence of two binary rules, inserting an inter-
nal relation representing the half-evaluated rule:

a(x,y,z) :- b(w,x), int(x,y,z).

int(x,y,z) :- c(x,y), d(y,z).

As balanced parallel relational joins must be performed on two
relations with an identical selection index (to guarantee a compati-
ble parallel decomposition of the two relations), the only rules per-
mitted after this pass are unary copy rules that may reorder or
project columns, unary built-in rules that may also perform a gen-
erative or filtering built-in operation (such as x < y ), or a binary
rule that joins two relations, projects some columns, and reorders
columns for the head relation.

Complex rules that join four or more relations at once, are like-
wise partitioned into a linear chain of joins, each performed after
the last. We also experimented with creating balanced binary trees
of joins, and with various heuristics for partitioning some com-
plex rules roughly in half, before recuring to partition each parti-
tion of body clauses. In nearly every case, we observed between
5× and 25× the overall tuple-load in these experiments (vs strictly
linear chains of rules), representing a very substantial blow-up in
intermediate relations. Intuitively, this is because in a linear chain
it takes a greater number of iterations to compute the rule, more
join operations between starting the rule and adding facts to the
head relation, however the tuples involved are always maximally
grounded and filtered by all relations taking into account so far.
Using balanced binary trees of joins optimizes for lower latency,
but leads to constraints apparent in the original rule being taken
into account only after a much larger number of intermediate facts
are materialized, at significant expense.

As the goal of our system is to exploit themassive data-parallelism
of balanced parallel RA operations, we favor pipelining a longer
sequence of RA operations in a linear chain, with the exception of
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cases where two subsets of body clauses have completely disjoint
sets of variables, as in the example

h(x,y) :- f(a,x), g(x,b), p(c,y), q(y,d).

For this input, our compiler will produce two independent binary
rules, for f and g and for p and q, followed by a single binary rule
to compute the Cartesian product int0(x),int1(y) :

h(x,y) :- int0(x),int1(y).

int0(x) :- f(a,x), g(x,b).

int1(y) :- p(c,y), q(y,d).

As the Cartesian product is the actual semantics of our original
rule, it does not represent a spurious blow-up. Note that the com-
piler will detect that variables such as a or b are not required for
the head, and so can be pruned from intemediate relations as well.

Selection splitting. This pass looks at the binary rules generated
in the previous pass and determines the needed set of indices for
each relation. This is a set of ordered subsets of their columns that
may be used as a key for efficient access in a parallel join operation.
If a relation is used in the body of a binary rule, it must have an
index for the exact subset of columns it has in common with the
other relation used in the binary rule, because we require such
compatible matching indices for our parallel join algorithm.

This pass also decides which index is canonical, and modifies
rules so that the head of every rule is the canonical index for that
relation. Administrative rules are then added to propagate discov-
ered tuples to all indices once discovered in the canonical index.
These admin rules are essentially unary rules that copy tuples with
possible column reordering. This makes it natural to compact the
communication needed to maintain a set of indices for a relation
with the normal communication used during a parallel join, in
pipelined fashion.This is to say, the iteration after a tuple is discov-
ered, it is copied to all its indices during the single communication
phase shared by all rules.

Stratification. uses a modified Tarjan’s algorithm [37] to com-
pute a directed graph of strongly connected components (SCCs) in
the dependency structure of rules. For example, rules that can be
run upon initialization only once will appear as rules whose body
relations are already available and never modified.

Incrementalization. prepares the program for semi-naïve eval-
uation by explicitly splitting each relation into three versions, a
new, delta, and full version as described previously. The body
clauses of rules are modified so that static relations (those that do
not change when this rule is evaluated) draw tuples from the full
version, while dynamic relationsmust use the delta version.When
two dynamic relations are joined, these are split into three rules
that join full with delta, delta with full, and delta with delta.
For complex k-ary join rules, these combinatoins blow up expo-
nentially, so it ends up being convenient we are stuck with having
already partitioned these down to chains of binary rules.

C++ emission. Finally, the incrementalized rules are written out
as a driver in C++ corresponding to PRAM IR code in the previous
section. That is to say, our backend’s API interfaces to the IR the

AST described in the last section. There is an object for encoding
an administrative rule between two relations with a particular re-
naming and projection and another for encoding a join rule or a
rule that operates on a relation using a built-in primitive to filter
or extend the relation as tuples are emitted.

Run-time system. Our backend then finally interprets this PRAM
IR, evaluating it efficiently in terms of our extension to the origi-
nal BPRA source [25]. We have modified the library for BPRA into
a more general run-time for PRAM IR. The original library was
not developed to allow multiple RA rules to be evaluated in paral-
lel, leading to some engineering challenges in terms of meta-data
transfer and keeping track of all relations. We add a logical infer-
ence engine object which can be populated with any number of
relations and can act generically as a primitive RDBMS and can
accept a PRAM IR and set of input relations to evaluate a program
and extract the final IDB.

Instead of running each RA operation in an SCC, one at a time,
wemodify evaluation to interleave all RA operations in a collective
single operation with one shared communincation phase. Com-
munication is non-uniform, where every process sends different
amounts of data to every other process. This is typically imple-
mented using MPI_alltoallv, but, in order to facilitate this non-
uniform communication we first have to share the offsets and sizes
of all relations and processes, so that every process has a consistent,
global view.Thismeta-data exchange is implemented by MPI_alltoall.
After thismetadata exchange, we populate send buffers and receive
buffers on every process before invoking MPI_alltoallv.

Unlike plain BPRA, every process performs a large batch of lo-
cal joins (or copies, reorderings, projections, etc) for all given rules
in the current SCC. This means that before a single comunication
phase, each process will have generated output for potentially a
large number of PRAM IR rules. We have introduced an crucial
optimization in the form of comm-compaction where we concate-
nate all-to-all send buffers across all rules into one large buffer that
can be transmitted in a single communication epoch. This step sig-
nificantly cuts down communication costs, especially for compute
intensive problem such as kCFA (see section 4) that have several
rules in a single SCC and at each step of a collective fixed-point iter-
ation for that SCC.This crucial improvement to RA that would oth-
erwise be individually parallel, but not across multiple operations,
requires ordering information to be broadcast during the epoch’s
fixed meta-data transfer, but appears to grant improved scalability
versus Soufflé.

4 CASE STUDIES
In this section, we motivate PRAM by its application to compute
transitive closure, k-cliques, and kCFA (a program analysis). To
compare our implementation against a known baseline, we bench-
mark our PRAM-based implementation on a single node against
Soufflé, the state-of-the-art Datalog engine. In the next section, we
demonstrate the true power of PRAM by scaling these experiments
to the Theta supercomputer.

4.1 Graph Mining
Graph-pattern mining (GPM) includes a rich source of core prob-
lems that highlight the expressivity of deductive databases. As a
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first example we consider transitive closure (TC). We can imple-
ment TC using the following Datalog program, which iteratively
computes the path relation:
path(x,y) :- edge(x,y).
path(x,z) :- path(x,y), edge(y,z).

To compile this Datalog program to PRAM IR, we generate two
initial administrative rules to set up path and prepare for the bulk
of the work to be done in a subsequent SCC:
; Admin rule to load index for edge on column-1:
(arule
((rel-select edge 2 (1)) ident a1)
((rel-version edge 2 (1 2) delta) a1 ident))
; The first Datalog rule as a binary join rule:
(rule
((rel-select path 2 (1 2)) x y)
((rel-version edge 2 (1 2) total) x y))
; The next two rules are in an SCC together,
; stratified to run after the previous rules.
; A rule to join path and edge:
(rule
((rel-select path 2 (1 2)) x z)
((rel-version path 2 (2) delta) y x)
((rel-version edge 2 (1) total) y z))
; Admin rule to propagate discovered paths to
; the index for path on column-2:
(arule
((rel-select path 2 (2)) a1 a0)
((rel-version path 2 (1 2) delta) a0 a1))

The third rule implements the iterative extension of path to com-
pute TC. Observe that tuples are pulled from the delta version, im-
plementing semi-naïve evaluation.

w

x y

z

yx

w z

w z

x y

Figure 4:The rule for computing 4-cliques frompairs of over-
lapping 3-cliques combined with a 2-clique.The existence of
the top three subgraphs, as represented in the 2cl and 3cl re-
lations, implies the 4-clique below.

Another standard graph mining problem is that of k-clique com-
putation. While it is possible to leverage application-specific in-
sights to calculate cliques (see Section 6 for further discussion), k-
cliques can naturally be calculated using the intuition in Figure 4—
-forming a canonical ordering of nodes and computing k-cliques in
increasing order by k .This is represented via the following Datalog
program:

; Compute undirected 2-cliques in canonical order
2cl(x, y) :- graph(x, y), x<y.
2cl(x, y) :- graph(y, x), x<y.
; compute 3-cliques (order already checked in 2cl)
3cl(x, y, z) :- 2cl(x,y), 2cl(y, z), 2cl(x, z).
; compute 4-cliques
4cl(w, x, y, z) :- 3cl(w, x, y),

3cl(x, y, z),
2cl(w, z).

4.2 Program Analysis
Static program analysis is a key and impactful application of Datalog-
like solvers that attempts to develop an accurate bounded model
of program behavior based only on the program’s source text. Pro-
gram analyses are constructed using a variety of different theories
and approaches; what these approaches share in common is the
goal of obtaining sufficient precision for specific program prop-
erties while guaranteeing analysis termination, and ideally, effi-
ciency. This central challenge of static analysis is made explicit in
the methodology of abstract interpretation [14]. An abstract inter-
pretation of a program evaluates its input source code in terms of
imprecise or abstract values and machine components, permitting
a careful loss of precision in exchange for reasonable bounds on
analyis complexity.

A wide variety of abstract interpretations can be systematically
engineered as Datalog programs, as has been extensively explored
in the literature [18, 21, 22, 29, 42]. In particular the DOOP frame-
work [9] for points-to analysis of Java, originally developed for
LogicBlox, has been ported and optimized for Soufflé.

A class of these algorithms known as flow-analyses model the
propagation of data-flow information or control-flow information
through a target program [26]. Data-flow analysis (DFA) requires
control-flow analysis (CFA) to obtain any reasonable precision for
functional languages, for multi-paradigm languages like Java that
support closures and methods associated with objects, or for struc-
tured languages with function pointers, as in C/C++: data-flow
properties and control-flow properties are naturally entangled and
must be simulated together to obtain a model with any reasonable
precision [32, 33]. CFAs form an important foundation for analy-
sis of most programming languages, in particular highly dynamic
languages, and are often extended with additional client analyses
for tracking relations among variables [5] or for verifying sophisti-
cated contracts using abstract symbolic execution [28]. Systematic
approaches to abstract interpretation of abstract-machine-based
semantics [40] allow analyses to be developed from a variety of
standard (concrete) abstract machines that precisely specify a lan-
guage’s semantics [27].

This systematic development of an abstract abstract machine
from a concrete abstract machine yields is highly configurable and
tunable, so it corresponds to a broad design space of analyses that
strike subtly different trade offs between precision of result and
complexity of analysis [17]. One classic instantiation of this frame-
work yields k-call-sensitive control flow analysis (kCFA), a well-
ordered hierarchy of CFAs with increasing precision and complex-
ity as parameter k is increased. Our implementation of kCFA for
the plain lambda calculus is about 40 lines in Datalog and can be
easily tuned to any k to increase its degree of context sensitivity.
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We also wrote a worst-case input generator based on the worst-
case input for kCFA discussed in [39]. This allows us to scale up
either the term size, we call (t ) or the context-sensitivity (k). Be-
low is a fragment showing how free variables are computed:
// Every variable is free at a reference to it
free(x, e) :- var-ref(e, x)
// At unary application a free variable for either
// subexpression is free at the call-site.
free(x, e) :-
app(e, e0, e1),
free(x, e0) or free(x, e1).

// At a lambda abstraction, variables free in the
// body that are not the formal parameter, are free.
free(x, e) :-
lambda(e, y, body),
free(x, body),
x != y.

Free variable computation propagates information up the AST
recusively, and forms an SCC in the compiled PRAM IR that is
stratified before the primary CFA logic runs.

5 EVALUATION
In this section we sought to understand the behavior of our sys-
tem on a single node. To do this, we ran several microbenchmarks
comparing single-node performance of Soufflé vs. our MPI-based
implementation.

5.1 Dataset and HPC platforms
We perform our experiments on the Theta Supercompter at the
Argonne National Lab and on a machine rented via Amazon Web
Services (AWS). For AWS, each of our experiments was run on an
instance of type m5d.24xlarge consisting of 96 virtual CPUs (Intel
Xeon Platinum 8000) and 384 GiB of RAM and NVMe-based SSD
storage. Of these 96 virtual CPUs, we ran experiments utilizing up
to either 60 processes (for MPI-based imlementation) or threads.
Theta supercomputer is a Cray machine with a peak performance
of 11.69 petaflops, 281,088 compute cores, 843.264 TiB of DDR4
RAM, 70.272 TiB of MCDRAM and 10 PiB of online disk storage.
Theta uses the Dragonfly network topology and is backed by a Lus-
tre filesystem. Theta’s node is a Intel KNL 7230 which comprises
of 64 physical cores.

5.2 Strong scaling on AWS
To compare the single-node performance of our PRAM-based im-
plementation versus Soufflé, we ran each case study using repre-
sentative input data. We performed TC using a directed graph of
the Arxiv High-Energy Physics paper citation network (consisting
of 34,546 nodes and 412,578 edges) compiled by Gehrke et al. [16].
Second, we performedkCFA using a scaled-down version of the ex-
periments. We use experiments labled t-k with a specific number
of terms (t ) and degree of sensitivity (k), as described in section 3.2.
For our experiments here, we set term size (n) to be 100, and preci-
sion (t ) to be 6.

We compiled each of our experiments using the compiler de-
scribed in Section 3. We modified our compiler to generate a Souf-
flé program consisting of only binary joins and benchmark the
results. We then used Soufflé’s compiled mode to produce an op-
timized binary to run and minimizing I/O overhead by dumping
the smallest output relation. We performed each experiment three
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Figure 5: Performance results for our case studies

times, reporting the average of each of the runs, though runtime
was roughly consistent across runs. For each of our experiments,
we validated the correctness of results of Soufflé against our MPI-
based implementation by checking both implementations produce
the same set of tuples.

The results of our experiments are shown in Figure 5. We plot
time (in seconds) along the y axis against process / thread count
along the x axis. PRAM achieves better performance than Soufflé
forkCFA in our benchmarks.We believe this is because Soufflé par-
allelizes individual joins, but does not interleave joins to perform
them in parallel (further discussion is included in Section 3.2). Be-
cause kCFA contains more rules than our other benchmarks, the
difference between sequential and parallel joins becomes more ap-
parent. This demonstrates one advantage to our approach even at
smaller scales.

For transitive closure computation our experiments showedmodestly-
decreasing runtime for Soufflé, however, we observed poor scaling
characteristic when compared to PRAM. At a high level, our results
demonstrate that our system scales better than Soufflé as degree
of parallelism increases but achieves worse constant factors. One
key difference between PRAM and Soufflé is tuple representation.
While Soufflé employs highly-optimized sharedmemory datastruc-
tures (discussed briefly in Section 2). PRAM uses messsage passing
and an off-the-shelf B-tree implementation to communicate and
represent tuples. Because of this, when lots of tuples are generated
during an iteration PRAM will allocate large amounts of memory
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to exchange messages and represent tuples. We see underlying tu-
ple representation as an important but orthogonal issue to our un-
derlying scaling approach, and plan to investigate using Soufflé’s
datastructures in future work.

5.3 Strong scaling onTheta
Every node on Theta has 64 physical cores. This allowed us to run
single-node experiments on the machine till 64 cores. We ran two
single node experiments run at 32 and 64 cores. We were unable
to run experiments at smaller scale due to memory constraints.
We ran a k-CFA worst-case instance with 80 terms and k = 7,
which took 2648 iterations to complete, turning 724 EDB facts into
165,389,799 IDB facts. We observe a speed-up of 1.76× and scal-
ing efficiency of 88% while going from 32 to 64 processes. Our
experiments are indicative of healthy scaling.

6 RELATEDWORK
To our knowledge, we present the first general-purpose technique
for implementing data-parallel deductive databases. However, there
are several areas of related work in relational algebra andprogram
analysis.

Relational Algebra. Our work directly builds upon that of Ku-
mar and Gilray, who implement parallel relational algebra prim-
itives and evaluate their scalability on supercomputers [24, 25].
Their implementation leverages the observation that joins can be
distributed to a cluster via a double-hashing approach, consisting
of local hash-based joins and hash-based distribution of relations.
Their double-hashing approach is inspired by the earlier work of
Cheiney et al. [13] andCacace et al. [12], who describe data-parallel
strategies for computing transitive closure.

Barthels et al. describe a system for distributing the radix hash
join andmerge-sort join algorithms [7].Their implementation scales
to 4,096 cores via MPI and reaches extremely high tuple through-
put at peak load. Work by Kim et al. and Balkesen et al. demon-
strates how these joins may be further accelerated via AVX/SIMD
instructions [6, 23]. While this work successfully scales a single
join iteration, it does not reorganize or balance tuples to allow sub-
sequent joins, and thus does not readily enable the fixed-point com-
putation necessary for deductive databases.

The recent work of Kumar and Gilray enables fixed-point it-
eration over hash-based joins. Tuples are distributed via a two-
layered distributed hash-table whichmultiplexes tuples onto a stat-
ically fixed set of buckets and dynamically-tunable set of subbuck-
ets [24]. Each tuple is assigned a bucket based on the hash of its
join columns; this then enables local hash-based joins. Next, all-
to-all communication is performed to communicate the result of
each join to its appropriate bucket and subbucket. In subsequent
work they develop strategies to enable spatial and temporal load
balancing of tuples across the cluster, and use these techniques to
perform the largest-ever computation of transitive closure [25].

Program Analysis and Datalog. Deductive databases offer an at-
tractive option for the implementation of large-scale program anal-
yses as they enable declarative analysis specification alongside ef-
ficient solving via modern Datalog engines. the DOOP framework

by Smaragdakis et al. poineered an elaborate context-sensitive points-
to analysis for Java implemented in Datalog [10, 35]. DOOP orig-
inally used the LogicBlox Datalog engine to achieve an order of
magnitude speedup compared to a predecessor hand-written points-
to analysis for Java [4]. DOOP was later ported to the Soufflé Dat-
alog engine, which enabled further scalability via Soufflé’s single-
node task-level parallelism [3]. While Soufflé represents the state-
of-the-art analysis platform, it is fundamentally limited in that it
cannot provide data parallelism, hindering it from operating be-
yond a single node. By contrast, our parallel relational-algebra ap-
proach can likely be scaled to clusters.

There are several other notable efforts in distributed and parallel
program analysis that achieve scalability via application-specific
task-level parallelism. For example, Aiken et al.’s Saturn program
analysis system includes a distributed mode via MPI, which they
anecdotally report achieves scalability [2].Their system distributes
the analysis via a worklist of function summaries and distributing
work among the cluster. This approach assumes that the analysis
is summarization-based and does not offer data parallelism. Simi-
larly, there have been multiple efforts to distribute symbolic exe-
cution [11, 30, 34]. Symbolic execution is a program testing tech-
nique that executes programs on symbolic inputs, branching to col-
lect a set of path conditions in the case of multiple successor states.
Symbolic execution is naturally parallelized using a worklist repre-
senting a frontier of program states. One limitation of this work is
the inherent memory blowup due to the necessary copying of path
conditions to implement task-level parallelism. As future work, we
plan to study how to integrate SMT solvers such as Z3 [15] into our
parallel relational algebra to support symbolic execution, as we ex-
pect our system could naturally distribute path conditions through
the cluster. The recent Formulog system harmoniously integrates
Datalog, functional programming, and constraint solving, andmay
provide useful inspiration for future work [8]. In contrast to these
systems, our approach offers true data parallelism, enabling the
entire cluster to make progress on the analysis at once rather than
requiring application-specific task deliniation.

7 CONCLUSION
Over the past few years, exciting advances in high-performance
Datalog solvers have enabled new frontiers in large-scale static
analysis development. However, current-generationDatalog solvers
are fundamentally limited to a single machine. In this paper, we
presented a methodology building upon emerging work in data-
parallel relational algebra that allowed us to build the first data-
parallel Datalog solver. Our solver is built on a novel parallel rela-
tional algebra machine, PRAM, which makes several key decisions
to enable implementing Datalog rules via data-parallel relational
algebra. We see this as a foundational step forward in the imple-
mentation of high-performance logical inference engines. Our case
study benchmarks demonstrate that our PRAM-based approach
achieves better single-node scalability than Soufflé, the state-of-
the-art Datalog engine. Additionally, we show promising initial
scalability of up to 2,016 nodes on the Theta supercomputer. In fu-
ture work, we hope to leverage PRAM to build next-generations
platforms for graph mining, program analysis, and other large-
scale logical inference problems.
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