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The restricted logic programming language Datalog has become a popular implementation target for deductive-

analytic workloads including social-media analytics and program analysis. Modern Datalog engines compile

Datalog rules to joins over explicit representations of relations—often B-trees or hash maps. While these

modern engines have enabled high scalability in many application domains, they have a crucial weakness:

achieving the desired algorithmic complexity may be impossible due to representation-imposed overhead

of the engine’s data structures. In this paper, we present the “Bring Your Own Data Structures” (Byods)

approach, in the form of a DSL embedded in Rust. Using Byods, an engineer writes logical rules which are

implicitly parametric on the concrete data structure representation; our implementation provides an interface

to enable “bringing their own” data structures to represent relations, which harmoniously interact with code

generated by our compiler (implemented as Rust procedural macros). We formalize the semantics of Byods

as an extension of Datalog’s; our formalization captures the key properties demanded of data structures

compatible with Byods, including properties required for incrementalized (semi-naïve) evaluation. We detail

many applications of the Byods approach, implementing analyses requiring specialized data structures for

transitive and equivalence relations to scale, including an optimized version of the Rust borrow checker

Polonius; highly-parallel PageRank made possible by lattices; and a large-scale analysis of LLVM utilizing

index-sharing to scale. Our results show that Byods offers both improved algorithmic scalability (reduced

time and/or space complexity) and runtimes competitive with state-of-the-art parallelizing Datalog solvers.
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1 INTRODUCTION

Declarative programming languages are an attractive candidate for the implementation of systems
based on formal rules, including industrial-scale program analyses [Bravenboer and Smaragdakis
2009; Smaragdakis and Bravenboer 2011], type systems [Pacak et al. 2020], network analytics [Lopes
et al. 2016] and graph algorithms [Wang et al. 2018]. These languages balance expressivity and
implementation strategy, promising their users an optimal implementation substrate tailored to
their application domain. For example, Soufflé compiles Horn clauses to iterated joins [Jordan
et al. 2016]; Datafun generalizes these rules to programming with monotonic maps [Arntzenius
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and Krishnaswami 2019, 2016], and Formulog further allows incorporating satisfiability-modulo
theories (SMT) [Bembenek et al. 2020].

Datalog, i.e., first-order Horn clauses, serves as a common basis for many modern declarative
languages tailored towards the high-performance operationalization of deductive-analytic work-
loads. Horn clauses naturally enable chain-forward programming, which may be operationalized
in a bottom-up fashion (e.g., via semi-naïve evaluation [Bancilhon and Ramakrishnan 1986]). Data-
log’s restriction to first-order Horn clauses has enabled orders-of-magnitude scalability gains in
declaratively-specified program analysis (e.g., DOOP [Smaragdakis and Bravenboer 2011]) due to
the efficiency of iterated joins over concurrent B-trees and tries [Jordan et al. 2019].

Unfortunately, users of Datalog face a crucial challenge—the data structures exposed by the
underlying engine become a leaky abstraction, and induce representation-imposed blowup in work-
loads ill-suited to the sets-of-tuples representation. For example, Datalog-based implementations
of tasks which rely upon union-find (common in type synthesis and compiler optimization) face
intrinsic blowup due to their need to explicitly materialize all facts of an equivalence relation (see
Table 1 in Section 5.1). One modern engine combats this challenge in an ad-hoc fashion, allowing
the user to chose among a finite number of engine-provided data structures on a per-relation
basis (e.g., the eqrel relations in Soufflé). While this partially remediates the issue in case the user
happens to need exactly the data structures provided by the engine, the user is out of luck when
the demands of their application domain have not been foreseen by engine authors.

There is another angle from which we can view the issue. While marking a relation as an
equivalence changes the semantics of a Datalog program, equivalence relations do not extend
the expressive power of Datalog in principle, as one could include auxiliary rules necessary to
materialize the equivalence. Many extensions of Datalog (e.g., Datalog�( [Mazuran et al. 2013], Flix
[Madsen et al. 2016], and DeALS [Shkapsky et al. 2015]) seek to extend the expressive power of
Datalog, while retaining efficient evaluation strategies like semi-naïve evaluation. For example, Flix
extends Datalog with non-powerset lattices, necessary for declarative implementation of programs
such as constant propagation analysis and shortest-path computations. One may wonder if a new
Datalog variant is required for each such application.

In this work we ask: how can we harmoniously integrate user-provided data structures with
Horn clauses, so that a user may write logical rules parametric to the underlying data structure
representation? We propose the “Bring Your Own Data Structures” approach. In this approach, the
user supplies a data structure which exposes an interface for fact enumeration; Horn clauses are
then compiled to joins which perform tuple enumeration indirectly, via a concretization function.
To enable users to bring robust, high-performance data structures to Datalog, our tool, Byods1, is
implemented as an embedded domain-specific language (EDSL) within Rust [Matsakis and Klock
2014] via procedural macros. In contrast to approaches which require users to pick from a set of
engine-provided relations (such as DER [Jordan et al. 2022]), users are free to build space-and-
time-efficient relation-backing data structures, achieving state-of-the-art efficiency using all of
the features available in Rust. Our macro-based compiler (detailed in Section 4) emits code which
interacts with these user-provided data structures via a protocol inspired by our formalization.

To rigorously define the semantics of Byods we present a core formalism, DLDS, which explicates
the interface demanded of user-provided data structures. Our formalism, presented in section 3,
builds upon the intuition that user-provided relations are “standing in for” extensionally-manifest
relations: custom relations, reminiscent of galois connections, are formalized as lattices equipped
with the aforementioned concretization function, which allows extensional enumeration—we then
extend Datalog’s fixed point-based semantics to work in terms of this concretization operator rather

1Rhymes with “roads.”
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than a “hard wired” representation, recovering Datalog’s typical interpretation by taking the lattice
to be the power set of facts. We extend our formalism to account for semi-naïve evaluation and
detail its ramifications for the design of data structures users bring themselves. We then scale DLDS

to a complete implementation as a Rust EDSL, detailing several semantics-preserving optimizations
necessary to achieve an implementation competitive with state-of-the-art parallel engines.

To evaluate the utility and flexibility of the Byods approach, we have implemented a wide variety
of specialized data structures, each meant to excel in a given application domain. In section 5,
we present several evaluations, including Steensgaard analysis using union-find, an optimized
implementation of the Rust borrow checker, index sharing using bipartite graph matching, parallel
PageRank, and a large-scale context-sensitive analysis of LLVM IR (which scales to Redis and
SQLite). Our applications show that Byods offers an ideal platform for implementing highly-
scalable deductive-analytic workloads without the compromises imposed by engine-supplied tuple
representations.

Specifically, this paper offers the following contributions:

• Byods, a framework for customizing relation-backing data structures and extending Datalog
semantics through specialized data structures.
• DLDS, a formal language extending Datalog with abstract data structures, including its fixed

point and incrementalized semantics, and properties that abstract data structures must satisfy
for equivalence of the two.
• An evaluation showing several customized data structures implemented in this framework,

and how each one provides performance benefits or expressivity benefits compared to Datalog.
The data structures include specialized equivalence and transitive relations, index-sharing
for relations, and user-defined lattices.

2 OVERVIEW

As Datalog is used to solve problems in more domains, Datalog users find themselves having to
live with the choices made for them by Datalog engine authors, in particular, the choices of data
structures that back relations. From Binary Decision Diagrams [Whaley et al. 2005], to B-trees
and hash maps, each data structure has its strengths and weaknesses when it comes to storing
relation data. B-trees allow efficient index-sharing [Subotić et al. 2018], but may be slower than
hash maps and require values to be totally ordered. Hash maps usually perform better when it
comes to raw performance compared to B-trees, but do not admit straightforward index-sharing
strategies. Binary Decision Diagrams allow dense representation of facts, but require the values
they store to be essentially small bit-sequences. In addition, modern Datalog engines provide
parallelism, which requires concurrent data structures. Designing concurrent data structures is
also not a once-and-for-all solved problem, different strategies exist with varying tradeoffs.

For certain tasks, special-purpose data structures are necessary to achieve the desired algorithmic
complexity. For example, equivalence relations [Nappa et al. 2019] perform significantly better in
time and space complexity with special-purpose data structures compared to a naïve implementation
backed by a B-tree-based tuple representation. Many general-purpose programming languages
permit their users to define new data structures to satisfy their use cases, and often have a growing
ecosystem of high quality data structures that their users can choose from. Datalog has not been
able to afford its users the same freedom, as it is a declarative, logic programming language, not
one suited for modern data structure implementation. In this paper, we present Byods, a solution
to this problem. We realize Byods as a Datalog engine embedded in Rust in the style of Ascent
[Sahebolamri et al. 2022] and Crepe [Zhang 2023], one that extends Datalog to allows users to
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implement their own data structures to back relations in their Datalog programs. This approach
has three main benefits:

• The user is no longer bound by the choice of data structures made for them by the authors
of the Datalog engine. If the in-box data structures are not well-optimized, the user can
implement their own data structures.
• It is possible to utilize or define new special-purpose data structures, such as union-find data

structures, offering significant run time speedups.
• The Datalog user can extend the semantics of Datalog by defining data structures whose

semantics cannot be emulated by Datalog rules, gaining the ability to express more logical
programs in Datalog. For example, programs that require lattices or recursive aggregation
are expressible in Byods (5.6).

Byods defines a macro-based protocol for the Datalog compiler to interact with data structure
providers. This macro based protocol allows the Datalog engine to provide information about a
relation’s use in the Datalog program to the data structure provider, and allows data structure
providers to employ arbitrary logic in choosing data structures.

We use a simple example to show how Byods works. Graph mining and network analysis tasks
are major applications of Datalog [Seo et al. 2013]. A common and routine task in graph mining is
computing the transitive closure of the input graph. Scrutinizing graphs of social networks, we
realize that they usually are made up of relatively large communities, where each node in the
community has a path to every other node. Storing all the connected node pairs of a community
(which would be  2 facts for a community of size  and is what a Datalog program would do) is
suboptimal.We can instead implement a data structure for transitive relations, TrRelUnionFind<T>,
that is optimized to handle graphs/relations made up of large communities. We can then plug it
into our Datalog program, speeding up our Datalog computation without sacrificing the benefits of
using a declarative language (as we do in 5.4).

/// program with explicit rules for
/// transitive closure

relation path(Node, Node)
path(x, y) :- edge(x, y).
path(x, z) :- path(x, y), edge(y, z).
/// .....

/// program with a customized data
/// structure for transitive relations
##[ds(trrel_uf)]
relation path(Node, Node)
path(x, y) :- edge(x, y).

/// .....

In the code snippet above, on the right, we have removed the explicit rule for making path the
transitive closure of edge, and have instead tagged pathwith trrel_uf, the data structure provider
for transitive relations that we have defined. As we’ll discuss in more detail in Section 4, a data
structure provider is a Rust module that implements a number of macros for various components
of a relation. For example, rel_ind_common! is the macro that evaluates to the type implementing
the data structure shared by all indices of a relation (the Datalog engine interacts with a relation
through its indices). In our example, this macro invocation evaluates to (a type containing) our
data structure for transitive relations: TrRelUnionFind<Node>.

We should emphasize that the point of Byods is not any single data structure provider. Rather,
it is extensibility: the fact that Byods makes it possible for the Datalog user to define new data
structure providers and plug them into their Datalog computations.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 264. Publication date: October 2023.
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3 DATALOG WITH CUSTOM RELATIONS

This section introduces DLDS, a language that captures the essence of Byods by generalizing Datalog
to enable custom relations. We’ll introduce both a fixed point semantics, and an incrementalized
semantics for DLDS, and present properties that abstract data structures must satisfy for the
equivalence of the two.

Custom relations in DLDS are defined by a triple (�, inj, $ ). For a relation rel() ) tagged by
such an abstraction, � is an abstract domain representing the modified behavior/characteristics of
the relation. We require � to be a lattice and therefore equipped with an idempotent, associative,
and commutative join operator. inj : ) → � is the injection function, and $ : � → P() ) is the
concretization function. These abstractions encapsulate the interactions between a custom relation-
backing data structure and the Datalog engine per-se: the Datalog engine stores instances of � ,
updates them by asking new tuples to be added to stored instances of � (analogous to updating
an instance as follows: 3 ′ = 3 ⊔ inj(C) where C is the new tuple to be added), and enumerates the
tuples in a stored instance by calling the concretization function $ .

We assume every relation rel in a DLDS program is equipped with an abstract data structure
(�rel, injrel, $rel). For relations without a custom backing data structure (i.e., normal Datalog
relations), the abstract domain is the powerset of the type of tuples of the relation (P() )), and the
injection and concretization functions are simply the singleton-set creation and identity functions.
In case there are no custom relations in a DLDS program, the program is equivalent to its Datalog
counterpart.

DLDS’s syntax is identical to Datalog: a rule in DLDS has a head atom and a set of body atoms,
where an atom is a relation symbol followed by a list of arguments (variables Var or constant
symbols Val). A DLDS program is a collection of rules.

Following the Datalog tradition [Ceri et al. 1989], we define a fixed point semantics for DLDS.
The key component of the semantics is the immediate consequence operator. This operator for a rule
' in Datalog is a function)' : DB→ DB that adds to the input database db all the facts derivable in
one step when ' is treated as an inference rule and the facts in db are treated as axioms. In Datalog,
a db ∈ DB is a set of facts, where each fact is a relation symbol followed by a sequence of constant
symbols.

For DLDS we need to modify this operator and the definition of a database to accommodate
custom relations. In DLDS, a database is a tuple of abstract data structures, one for each relation in
the program. Since abstract data structures for relations (�s) are lattices, a database is also a lattice
with product ordering. The notation db @ r selects the abstract data structure for relation r from
database db. The immediate consequence operator for a rule ' in DLDS is defined as follows.

)' (db) = ⊔
{

inj headrel(')
(

head(') [\ ]
)
�

� \ : Var ⇀ Val.
∀r(xs) ∈ body('). xs[\ ] ∈ $r (db @ r)

}

In words, the immediate consequence of a rule finds substitutions (\s) of values for variables
that make all the body atoms of the rule present in their respective concretizations in the current
database, and builds up a lattice by injecting the corresponding head tuples into the abstract domain
of the head relation.

This definition is similar to the definition of the immediate consequence operator for Datalog,
except injection and concretization function calls are inserted where required to interact with
custom data structures.

The immediate consequence operator for a program lifts this definition to a collection of rules. We
define an updated immediate consequence operator for rules) ′

'
(db) where) ′

'
(db) @ headrel(') =
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)' (db), and for every other relation r, ) ′
'
(db) @ r = ⊥. The sole purpose of this updated definition

is for the output of the function to match the schema of DLDS databases. This definition also hints
at another requirement for abstract data structures: they need to have a bottom element. With this
updated definition, the immediate consequence operator for a program % is defined as:

)% (db) = db ⊔
(

⊔

'∈%

) ′' (db)
)

The fixed point semantics of DLDS is the least fixed point of )% . Note that for the semantics to be
well defined,)% needs to be a monotonic function [Tarski 1955]. Monotonicity is defined in the usual
way: a function )% is monotonic in case for all db1 and db2, db1 ⊑ db2 implies )% (db1) ⊑ )% (db2).
In Datalog )% is guaranteed to be monotonic, but in DLDS, monotonicity of )% is contingent on the
behavior of abstract data structures. We specify sufficient conditions for monotonicity of )% :

Theorem 3.1. If all the concretization functions ($s) associated with abstract data structures are

monotonic, )% is monotonic and the program % has a well defined semantics.

Proof. To prove this theorem, we start by showing that monotonicity of $s implies that )'s are
monotonic. We assume db1 ⊑ db2, from the monotonicity of$s, we know that for all body relations
r in a rule ', $ (db1@r) ⊆ $ (db2@r), therefore for all substitution schemes \ and all body atoms
r(xs) of ', if r(xs) [\ ] ∈ $ (db1@r) then r(xs) [\ ] ∈ $ (db2@r). This implies that the set of tuples
fed to the injection function for )' (db1) is a subset of the set of tuples fed to the injection function
for )' (db2). Since both sets go through the same projection (the injection function for the rule
head), then the post-injection set of elements for )' (db1) is also a subset of the post-injection set
of elements for )' (db2); from which we conclude that )' (db1) ⊑ )' (db2). Monotonicity of )%
directly follows from monotonicity of )'s. �

This theorem gives us a grip on what kinds of abstract data structures are well-behaved in
Byods and what kinds are problematic. For example we expect eqrel, an abstract data structure
for equivalence relations (5.1) to be well-behaved and indeed, it is. The DLDS version of eqrel can
be defined as:

�eqrel = P() )

injeqrel (C) = {C}

$ eqrel(B) = (equivalence closure of B)

In this definition,$ eqrel is clearly monotonic, satisfying the requirements for well-behaved programs.

From Theorem 3.1 we can conclude other kinds of custom relations are also well-behaved: relations
that have built-in filtering or projection are other examples of well-behaved relations. The theorem
also gives us an idea of what custom relation data structures may not be well-behaved. For example,
lattices á la Flix [Madsen et al. 2016] can be implemented using our custom relations approach.
However, Theorem 3.1 does not provide a guarantee that they would be well-behaved. Whether
a program with Flix-style lattices is well-behaved depends on the structure of the rules, and no
blanket guarantee exists for its well-behavedness.

Composition through custom domains. An interesting aspect of DLDS is that it allows composition
through custom domains. That is, an abstract domain � for a relation can itself be defined via
a Datalog (or DLDS) program! Take the eqrel example. One can define eqrel through a Datalog
program %eq with relations reqin and reqout and rules ensuring reqout is the equivalence closure
of reqin. The injection function associated with eqrel in that case would be the fixed point of )%eq

reached from the database containing a single fact: the input tuple as a fact of the relation reqin.
The concretization function would return the tuples of reqout in the output database of evaluation
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of %eq. Finally, the abstract domain associated with this DLDS-defined custom relation would be the
fixed points of )%eq , which, by Tarski’s fixed point theorem [Tarski 1955], form a lattice.

�eqrel = {db | db = )%eq (db)}

injeqrel (C) = )
∗
%eq
({reqin (C)})

$ eqrel(db) = {C | reqout (C) ∈ db}

One can show that this style of composition yields DLDS programs that behave the same as their
explicitly inlined versions. That is, a DLDS program % with relation r tagged with a custom domain
� that is itself defined by another DLDS program %� with normal designated relations rin and rout
is equivalent to its inlined version %� ; where r is removed, appearances of r in rule heads and
bodies in % are replaced by rin and rout respectively, and rules of %� are included in %� (assuming
there are no common relation names between % and %� ). Existence of this composition strategy for
DLDS provides a potential for making DLDS programs modular.

The fixed point semantics of DLDS provides an evaluation strategy: starting with the empty
(bottom) database and applying the immediate consequence operator successively, until a fixed
point is reached. The inefficiency of this evaluation strategy forces us to study the implications of
incrementalized evaluation of DLDS programs.

Incrementalized Semantics. The semantics presented above is analogous to the naïve evaluation
strategy of Datalog, where the same ground version 2 of a rule fires over and over again over
the course of evaluation (it fires in every iteration after the first time it fires until a fixed point
is reached). To avoid this useless work, Datalog engines employ an incrementalized3 evaluation
strategy called semi-naïve evaluation [Bancilhon 1986]. To study the implications of semi-naïve
evaluation for DLDS, we present the semi-naïve semantics of DLDS. To ease our way into semi-naïve
evaluation of DLDS and its ramifications for custom relations, we start by presenting a semi-naïve
semantics for Datalog and proving its equivalence to the naïve evaluation strategy of Datalog.

We employ a slightly modified version of )% that records at what iteration each fact was added
to the database. We do this by providing the iteration number as an argument:

) 8
% (db) = db ∪ ()% (db) − db)8

That is, every new fact at iteration 8 is tagged with 8 . We now define the semi-naïve semantics
of Datalog. In this semantics, each rule ℎ ← 11, 12, ..., 1= is duplicated 2= − 1 times 4, where body
atoms acquire a version tag: g (for total) or Δ. All the combinations of g and Δ are present except
the all-g combination. The semi-naïve immediate consequence operator ) (#

%
operates over pairs of

databases, one is the total database, from which g atoms read, and the other is the delta database,
from which the Δ atoms read. The intuition is that to produce a new fact at iteration 8 , a rule must
examine at least one fact produced in iteration 8 − 1; these are exactly the facts stored in the delta
database. Iteration in the semi-naïve semantics of Datalog happens as follows: 5

2A ground version of a rule is a rule with all its variables substituted with concrete values. It’s trivially the case that in

Datalog and DLDS, a rule can be replaced by all its ground versions.
3Not to be confused with incremental Datalog solvers (e.g., DDlog [Ryzhyk and Budiu 2019] and the work of [Szabó et al.

2021]). An incremental Datalog solver is able to speedup reevaluating a Datalog program when the input set of facts changes

by reusing the previous evaluation.
4If = = 0, we leave the rule alone!
5We’ll omit the iteration superscript on )% for the rest of this section, as it will clutter the presentation and will be a

distraction. We however will make frequent use of the notion of the iteration at which a fact was discovered.
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db8+1g = db8g ∪ db8
Δ

db8+1
Δ

= ) (#
% (db

8
g , db

8
Δ
) − (db8g ∪ db8

Δ
)

To show that the naïve and semi-naïve semantics of Datalog are equivalent, we present the
following lemma:

Lemma 3.2. Each iteration of ) (#
%

discovers the same new facts as those discovered by )% .

Proof. We prove the lemma by contradiction. Assume iteration 8 is the first iteration where
there are new facts discovered by )% and not ) (#

%
(it’s straightforward to rule out the reverse case,

since db8 = db8g ∪ db8
Δ
, every rule in ) (#

%
operates over subsets of facts from the corresponding

rule in )% ). The facts newly discovered by )% and not ) (#
%

can only originate from the absent all-g
version of a rule. Assume there is a new fact that would be discovered by the all-g version of a
rule. From the facts that match the body of the rule, causing it to fire, let 9 be the iteration of the
newest fact(s), 9 must be smaller than 8 − 1 (otherwise an all-g rule would not fire). At iteration
9 + 1, there would have been a version of the rule containing Δs that would have fired (since 9 + 1 is
the first iteration in which the facts appear in the input database, they must be in the delta database
at iteration 9 + 1), discovering the fact. Since 9 + 1 < 8 , we have reached a contradiction, which
completes the proof. �

To incrementalize DLDS, we follow a similar strategy. But instead of having g atoms read from
the total database and Δ atoms read from the delta database through the $ concretization function,
we require abstract data structures to have a pair of concretization functions:$g and$

Δ
, for g atoms

and Δ atoms respectively. These two functions take the pair of total and delta databases as input
(and return a set of tuples like $ ). Furthermore, we require the following properties of $g and $

Δ
:

$g (dbg , dbΔ) ∪$Δ
(dbg , dbΔ) = $ (dbg ⊔ dbΔ) (1)

$
Δ
(dbg , dbΔ) ⊇ $ (dbg ⊔ dbΔ) −$ (dbg ) (2)

Property (1) is self explanatory. The intuition for Property (2) (and introduction of $g and $
Δ
in

the first place) is to ensure facts don’t skip the delta database. We’ll discuss this more at the end of
this section.

For DLDS, we also simplify the iteration scheme by not deduplicating facts across dbg and
dbΔ, noting (without proof) that a version of the semi-naïve semantics with deduplication can be
constructed that is equivalent to our semantics.

db8+1g = db8g ⊔ db8
Δ

db8+1
Δ

= ) (#
% (db

8
g , db

8
Δ
)

We prove the equivalence of semi-naïve and naïve semantics for DLDS in two steps. Before
taking the first step, we introduce yet another semantics: the super-duper-naïve semantics of DLDS!
Super-duper naïve semantics is just like the semi-naïve semantics, except it also includes all-g
versions of rules, defeating the purpose of semi-naïve semantics and hence the name. In the first
step, we prove the equivalence of the super-duper-naïve and semi-naïve semantics. In the second
step, we prove the equivalence of the super-duper-naïve and the naïve semantics.

Lemma 3.3. For a DLDS program % , ) SDN
%

(from super-duper-naïve semantics) and ) SN
%

produce the

same databases at each iteration.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 264. Publication date: October 2023.
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Proof. We prove the lemma by contradiction. Assume iteration 8 is the first iteration in which
the outputs of ) SDN

%
and ) SN

%
diverge. From the definitions, it follows that there is an all-g version

of a ground rule ' in ) SDN
%

that has fired for the first time, causing the divergence. Let 9 be the
iteration at which the newest fact 5 matching the body of the rule appeared in either $g or $

Δ
.

From properties (1) and (2), we know $
9

Δ
∪$

9
g = $

9 , and $
9

Δ
⊇ $ 9 −$ (db

9
g )

6. From the iteration

scheme we have db
9
g = db

9−1
g ⊔ db

9−1

Δ
, from which we get $ (db

9
g ) = $

9−1. Put together, we conclude

that $
9

Δ
⊇ $ 9 −$ 9−1. Since 9 is the first iteration at which the fact appeared in $ , it means it was

not in $ 9−1, therefore it was in $
9

Δ
.

5 appearing in $
9

Δ
means a version of the rule ' containing Δs fired at iteration 9 for both

) SDN
%

and ) SN
%

, and since 9 ≤ 8 , it rendered subsequent firings of the rule without effect (given

monotonicity of $s and the iteration scheme), preventing divergence of ) SDN
%

and ) SN
%

at iteration 8 .
This contradicts our assumption and completes the proof. �

Lemma 3.4. For a DLDS program % , super-duper-naïve and naïve semantics are equivalent.

Proof. We show that for any decomposition of a database db into dbg and dbΔ such that
db = dbg ⊔ dbΔ, )

SDN
%
(dbg , dbΔ) = )% (db); from which the lemma follows.

Take a ground version of a rule that fires in)% , for all its body facts r(C), C is in the concretization
of r in the database (i.e., C ∈ $ (db @ r)). From property (1) of $g and $

Δ
, it follows that C is either

in $g or $
Δ
. Since all the g and Δ combinations of the rule are present in ) SDN

%
, there is at least one

version of the rule in ) SDN
%

that fires, causing the same tuple to be injected into the output of ) SDN
%

.

Conversely, since all the rules in ) SDN
%

read from databases that are subsumed by db, if a ground

version of a rule fires in ) SDN
%

, the corresponding rule also fires in )% , again causing the same tuple
to be injected into the output of )% . �

Theorem 3.5. The semi-naïve and naïve semantics of DLDS are equivalent.

Proof. Using Lemmas 3.3 and 3.4. �

Having presented the semi-naïve semantics for DLDS and properties required of $g and $
Δ
, we

can reflect on them now.The first thing to note is that the simplistic approach of setting$g = $ (dbg )
and$

Δ
= $ (dbΔ) works for normal (semantics-preserving) relations, but it will not work in general.

Take eqrel that we introduced earlier for example, if we follow the above simplistic approach for
eqrel, there could be facts that would show up in $g without showing up in $

Δ
first. For example,

if for an eqrel, at some iteration dbg = {(1, 2)} and dbΔ = {(2, 3)}, the fact (1, 3) would not be
in $

Δ
, it would only show up in $g in the next iteration. This would undermine the semi-naïve

evaluation strategy: if a fact skips the delta database (or delta concretization in case of DLDS) and
jumps directly to the total database, lack of all-g rules means it could leave some of its consequences
undiscovered by semi-naïve evaluation. Properties (1) and (2) of $g and $

Δ
ensure that such issues

are prevented.
The importance of property (2) also justifies us going through the semi-naïve semantics for DLDS:

it gives us insight into how custom data structures should behave in Byods, in particular, they must
avoid the pitfall of having facts skip the delta phase.

4 FROM DLDS TO BYODS

In this section, we extend our core semantics (DLDS) to account for several implementation-relevant
concerns necessary to scale Byods to a mature implementation.

6We define $
9

g,Δ
= $g,Δ (db

9
g , db

9

Δ
) ; and $ 9

= $ (db
9
g ⊔ db

9

Δ
).
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Datalog engines use several techniques for efficient evaluation of programs not covered by
Datalog (or DLDS semantics); chief among them is indexing, which materializes multiple copies of a
relation based on its usage in rule bodies. For example, given the rule baz(x, y, z) :- foo(x,
y), bar(y, z), a modern Datalog engine may materialize the indices {1} for foo (i.e., an index
on the second column), and {0} for bar (i.e., an index on the first column). This allows the above
rule to be operationalized via the following join plan:

for (y, xs) in foo_ind_1.iter_all() {
if let Some(zs) = bar_ind_0.index_get(y) {

for (x, z) in product(xs, zs) { baz.add(x, y, z); } } }
The example motivates the following design principle taken by Byods: Datalog engines interact

with (read from and write to) a relation via its indices. In general, multiple logical indices will be
necessary, and thus user-provided relation-backing data structures must expose multiple indices.
Data structure choice may also depend on other factors, such as arity and column types of a
relation (e.g., an array-backed relation requiring columns to have integral types, an equivalence
relation requiring columns to have the same type), or whether the data structure needs to support
concurrent iteration and mutation for parallel evaluation of the Datalog program. For these reasons,
rather than requiring relations to be tagged with specific data structures, Byods requires them to
be tagged with what we call data structure providers. A data structure provider can take all the
information relevant to a relation into account, and choose specific data structure(s) for the relation.

To enable the Byods compiler to communicate these implementation-relevant concerns to
user-provided data structures—and thus enable optimal data structure selection— Byods defines a
two-stage protocol. The first stage consists of a set of compile-time macros which the data structure
provider must implement: these macros allow the data structure provider to perform compile-time
customization based on static compile-time information. The second stage is concerned with the
interaction of the Datalog engine and the data structures.

For the first stage, a data structure provider needs to implement a number of macros for various
components required for a relation. For example, a macro named rel_ind decides on the type
of a logical relation index, and another named rel_ind_common decides on the type of the data
shared between all logical indices. The types returned by these macros correspond to the abstract
domains (�s) in DLDS. With this protocol in place, our compiler calls these macros, providing all
the information relevant to data structure selection mentioned above.

To give a concrete example, let’s assume relation foo from the example above is defined like so:
##[ds(my_provider)] relation foo(Col0, Col1). This definition specifies that foo is backed
by the data structure provider my_provider. A macro invocation in Byods for this relation looks
like this:

my_provider:::rel_ind_common!(
foo, /// rel name
(Col0, Col1), /// column types
[[1]], /// logical indices
ser, /// parallel or serial
(), /// user-specified params

)
Data structure providers can employ arbitrary logic when constructing a type for a relation or

its indices. For example, a provider can provide structural sharing of logical indices of a relation
[Subotić et al. 2018]. Index-sharing requires sophisticated logic, including graph algorithms. With
our approach, we are in luck, we can use procedural macros in Rust to implement arbitrarily
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sophisticated logic for a provider. As the name implies, procedural macros are Rust functions
invoked at compile-time in response to macro invocations.

As a final note on the first stage, data structure providers implemented using procedural macros
sometimes find it useful to be able to inject code into the Datalog compilation, to, for example,
define types implementing the traits required by Byods. They are given the opportunity to do so
through the codegenmacro that they must define. We use this capability in defining the ind_share
(5.5) and lat (5.6) data structure providers.

For the second stage, our Datalog compiler expects the types constructed by data structure
providers to implement a number of traits, through which it communicates with the data structures.
Sharing data among logical indices is made possible by the indirection provided by the ToRelIndex
trait. rel_ind!-returned types must implement this trait, whose functions to_rel_index and
to_rel_index_write are supplied with the shared data, and whose return types must implement
the relevant traits.

In Byods, the primary operations required of a logical index for querying its contents are key-
based lookup (given a key, which is a tuple of the indexed-on columns, return an iterator over all the
tuples corresponding to the key), and iteration over all the pairs of (key, value iterator)s. To support
these operations, an index needs to implement the RelIndexRead and RelIndexReadAll traits
respectively. These traits play a role analogous to the concretization function that we introduced in
Section 3: the Datalog engine reads tuples represented by the abstract data structure for the relation
via these traits. Naturally, all indices of a relation must agree on the same concretization for the
Datalog program to behave sensibly. Another trait, RelIndexWrite, is responsible for injecting
new facts into the data structure. This trait plays the role of the injection function from Section 3.
Figure 1 provides the definitions for some of the key traits mentioned above.

Byods supports parallel evaluation of Datalog programs as well. When a Datalog program is
to be evaluated in parallel, data structures need to also implement concurrent versions of the
aforementioned traits. CRelIndexRead for example is the concurrent version of RelIndexRead.
Parallelism in Byods relies on parallel iterator traits from the rayon crate. This both simplifies the
task of implementing Byods traits for parallel data structures, as there exists a comprehensive
library of combinators for parallel iterators that data structure providers can use, and ensures
good utilization of multi core machines enabled by rayon’s work-stealing thread pools. Rather
than employing global locks when writing to indices in parallel, Byods requires data structures
to implement CRelIndexWrite. The index_insert function of this trait takes a shared reference
to self and therefore can be called concurrently by the Datalog engine. It is left to data structure
providers to employ appropriate synchronization mechanisms to support parallel insertion. This
strategy ensures data structures that can provide fine-grained locking (as employed by the default
data structure provider in Byods) or lock-free insertion do not suffer from needless global locking.

In Byods relations must participate in semi-naïve evaluation, and as we explored in 3, a custom
data structure must take care to populate its delta version correctly in particular. To that end, logical
indices and the common index must implement the RelIndexMerge trait, whose merge function is
provided with mutable references to all three versions of a relation index (new, delta, and total,
where new is the version being written to in each iteration, and delta and total correspond to Δ

and g concretizations) and is responsible for correctly updating these versions (roughly speaking,
that is joining delta into total, making sure delta has everything in new, plus everything that
would be in total in the next iteration that isn’t in total now, and finally clearing out new). From
the point of view of the semi-naïve semantics of DLDS, RelIndexMerge prepares a relation (index)
for Δ and g concretizations.

The reader may have noticed that implementing a data structure provider is somewhat of an
involved task. A user who wishes to implement a data structure for use in Byods must implement
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pub trait RelIndexRead<'a> {
type Key; /// indexed-on columns
type Value; /// remaining columns
type IteratorType: Iterator<Item = Self:::Value> + Clone + 'a;
fn index_get(&'a self, key: &Self:::Key) -> Option<Self:::IteratorType>;

}
pub trait RelIndexReadAll<'a> {
type Key: 'a; type Value;
type ValueIteratorType: Iterator<Item = Self:::Value> + 'a;
type AllIteratorType: Iterator<Item = (Self:::Key, Self:::ValueIteratorType)> + 'a;
fn iter_all(&'a self) -> Self:::AllIteratorType;
fn len_estimate(&'a self) -> usize;

}
pub trait RelIndexWrite {
type Key; type Value;
fn index_insert(&mut self, key: Self:::Key, value: Self:::Value);

}
pub trait RelIndexMerge {
fn init(new: &mut Self, delta: &mut Self, total: &mut Self);
fn merge(new: &mut Self, delta: &mut Self, total: &mut Self);

}

Fig. 1. Key traits through which Byods interacts with custom relations

a number traits and then a number of macros for the data structure. One might prefer a simpler
protocol, where implementing a trait or two would suffice for a data structure provider. This
tension between flexibility and power on one hand, which our protocol is designed to provide, and
simplicity and convenience on the other hand often exists in designing extensibility protocols for
systems. Fortunately, this gap can be bridged. For example, we’ll present a number of data structure
providers specifically for binary relations in the next section. We’ve implemented an adaptor for
binary relations: a type that implements the trait ByodsBinRel becomes a data structure provider
with little more work. Using this approach saved us around 220 LOC when implementing the
trrel_uf provider (5.4). We developed another abstraction, BinRelToTernary, that produces a
ternary version of any binary relation (that implements ByodsBinRel) for free. We experiment
with a ternary trrel in 5.3.

We demonstrate in the sections that follow the power and versatility of Byods. We define multiple
data structure providers. They include ind_share, which provides index sharing for relations, but
does not alter the semantics of a relation; lat, which extends Datalog with user-defined lattices,
improving the expressivity of Datalog programs, including providing a framework for recursive
aggregation; trrel and eqrel, which support transitive and equivalence relations respectively.
The fact that Byods supports these data structure providers, some of which having little in common,
shows the power of our approach.

5 EVALUATION AND APPLICATIONS

This section presents various data structure providers implemented in Byods, together with bench-
mark programs utilizing them. Our benchmarks show how Byods enables improving the perfor-
mance of Datalog programs by tuning the data structures to the task at hand. We also present
a data structure provider that extends the expressivity of Datalog, allowing us to write Datalog
programs that would require recursive aggregation built-in to the Datalog engine otherwise.

Unless stated otherwise, the experiments presented in this section were run on a PC with an
AMD Ryzen 9 4900H CPU and 32GB of RAM.
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Table 1. Performance of eqrel vs. explicit (implemented via Datalog rules) equivalence relations

N Time (s) Memory (KiB)

eqrel explicit eqrel explicit

100 0.000256 0.009 14 516
200 0.000397 0.077 28 2,032
400 0.001240 0.660 57 8,064
800 0.002420 14.670 114 32,129
1600 0.004700 191.000 228 128,259

5.1 Equivalence Relations

The first benchmark uses equivalence relations. For this benchmark we implement specialized data
structures for equivalence relations based on the union-find data structure [Galil and Italiano 1991;
Galler and Fisher 1964]. High-performance equivalence relations in Datalog were first introduced in
[Nappa et al. 2019]. These data structures can greatly improve the performance of Datalog programs
requiring equivalence relations, including certain program analyses. Equivalence relations in
Datalog are a good example of the benefits of the Byods approach. An equivalence relation, when
implemented explicitly in Datalog, computes and stores all the tuples explicitly. For an equivalence
class of size  , this means storing  2 tuples. This is clearly suboptimal compared to specialized
data structures for equivalence relations that avoid materializing the tuples and instead store the
equivalence classes (that is, require $ ( ) space per equivalence class).

In this benchmark, we have a relation eq that is seeded with a collection of facts of the form
eq(i, i + 1) for 0 ≤ 8 < # for some fixed # . The explicit version of the test program contains
rules ensuring eq is an equivalence relation, while in the implicit version, eq is tagged with the
eqrel backing data structure. This is a pathological case for the explicit version of the program, as it
requires Ω(# 3) time to compute the equivalence closure of the input facts (there are$ (# 2) facts of
the form eq(a, b), and for each such fact, there are$ (# ) facts of the form eq(b, c)). In contrast,
the eqrel version uses a union-find-like backing data structure, and requires close to $ (# ) time
to compute the equivalence closure of the seeded facts. There is a significant improvement to space
complexity as well: in the worst case, the explicit version of the program stores$ (# 2) tuples, while
the eqrel version stores equivalence classes rather than individual tuples, and requires only $ (# )
space.

Table 1 summarizes the running times and memory usage of these two versions of the program
with different# s.The results in the table bear out the$ (# ) vs. Ω(# 3) difference in time complexity,
and $ (# ) vs. $ (# 2) difference in space complexity.

5.2 Steensgaard Analysis

Steensgaard analysis [Steensgaard 1996] is a near-linear time pointer analysis when implemented
using union-find data structures.The analysis efficiently merges flow-sets of variables at assignment
points. This merging deliberately sacrifices precision to improve performance. The same tradeoff
would not be possible in Datalog without a specialized data structure for equivalence relations,
since, as we discussed, computing equivalence relations in Datalog explicitly is very costly.

Soufflé’s authors benchmarked their implementation of equivalence relations via a Steensgaard
analysis of OpenJDK [Nappa et al. 2019]. We implemented an equivalent analysis in Byods and
replicated the same experiment. An exemplary rule is shown in Figure 2: the explicit version

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 264. Publication date: October 2023.



264:14 Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher Micinski

/// Analysis using explicit
/// equivalence relations

relation vpt(Symbol, Symbol)
vpt(y, x), vpt(x, x) :- vpt(x, y).
vpt(x, z) :- vpt(x, y), vpt(y, z).
/// .....

/// Analysis using eqrel for
/// equivalence relations
##[ds(eqrel)]
relation vpt(Symbol, Symbol)

/// .....

Fig. 2. Steensgaard analysis via explicit rules (left) and our eqrel relations (right).

materializes an equivalence in the the vpt relation (standing for “variable points to”); the optimized
version is simply tagged with eqrel.

Because our results are due to the same issues studied in section 5.1, we elide a detailed compari-
son. We did, however, replicate the evaluation to compare our eqrel performance against Soufflé on
one thread. As we expected, we saw very significant speedups compared to the explicit version of
the analysis, which would take over ten hours either in Soufflé or Byods. Furthermore, we saw
similar results to Soufflé’s eqrel, with a median run time (five runs) of 120ms in Byods vs. 170ms in
Soufflé. We also verified that both analyses produced identical outputs.

5.3 Transitive Relations

Computing transitive closures is a common task in Datalog, and required by various program
analyses. A relation r can be made transitive in Datalog by inclusion of the rule r(x, z) :- r(x,
y), r(y, z). This incurs a time complexity of $ (# 3) in the worst case, where # is the number
of tuples in the relation before it is made transitive. There is a transformation that improves the
time complexity of making a relation transitive to $ (# 2): it requires a whole-program rewrite that
replaces appearances of r in rule heads with a new relation r_proto, and replaces the above rule
with r(x, z) :- r_proto(x, y), r(y, z). Manually performing this task could be somewhat
laborious and error-prone. What’s more, the addition of another relation increases the space
requirements by a constant factor.

We take advantage of our approach and implement trrel, a provider for transitive relations.
trrel improves the time complexity of making a relation transitive compared to the naïve way of
doing so, and helps eliminate the manual transformation described above. Note that unlike eqrel,
trrel is backed by normal data structures for relations, and provides asymptotic improvements
in time-complexity only compared to the naïve approach to making a relation transitive. trrel
however can still provide constant-factor improvements compared to the whole-program-rewrite
approach to making a relation transitive.

To test trrel, we use Polonius, a Datalog-based implementation of the Rust borrow checker
[Matsakis and RustDevelopers 2023]. Borrow checking is a static analysis done by the Rust compiler
to ensure references (borrows) in Rust code are valid when dereferenced, a crucial feature of the
Rust language that contributes to its memory-safety [Weiss et al. 2019]. Polonius contains a ternary
relation subset(point, origin1, origin2) whose selection on every point is made transitive
by inclusion of the following rule:

subset(p, o1, o3) :- subset(p, o1, o2), subset(p, o2, o3).
This is the most taxing relation in Polonius, and optimizing its storage and computation can lead

to potentially significant speedups.
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Table 2. Rust borrow checker experiments for the transitive relation and index sharing data structure providers.

ind_share is introduced in 5.5. Benchmark programs are from [Sahebolamri et al. 2022].

Program LOC
Time (s) Memory (MiB)

explicit trrel speedup ind_share speedup explicit trrel ind_share
clap-rs 2100 8.5 5.1 1.7x 9.65 0.88x 621 328 414
serde-fmt 170 3.74 1.77 2.1x 4.00 0.93x 483 311 360
ascent-codegen 800 1.38 0.65 2.1x 1.14 1.21x 182 125 148
polonius_comp 1000 32 6.2 5.2x 15.8 2.02x 1461 768 1034
chess-search 600 39 14.5 2.7x 26 1.50x 2879 2224 2344

Our trrel implementation is capable of handling ternary relations like subset. We compare an
implementation of Polonius with subset backed by trrel vs. a version with the above explicit rule
for subset in Table 2. As the results demonstrate, using trrel noticeably improves the performance
of the analysis in most cases, with speedups of up to 5×. This improvement is partially due to
algorithmic improvements in computing transitive closures, and it is partially due to structural
sharing of different indices of the subset relation made possible by our approach. We also observe
lower memory consumption as a result of structural sharing of indices.

5.4 Union-find Based Transitive Relations

Following the Byods philosophy that one size does not necessarily fit all, besides trrel, we
implemented an alternative data structure provider for transitive relations: trrel_uf. This provider
is based on ideas from the union-find data structure. To motivate trrel_uf, we note that a binary
relation, when thought of as a directed graph, can be represented as a DAG (directed acyclic graph)
of its SCCs (strongly connected components). In case the graph has a relatively small number of
relatively large SCCs, its transitive closure is best stored as (the transitive closure of) the DAG of
equivalence classes, rather than an explicit list of all connected nodes, where each equivalence
class corresponds to an SCC of the graph.

Based on this idea, we implemented the TrRelUnionFind data structure, which backs trrel_uf.
TrRelUnionFind only stores connections between equivalence classes (SCCs) explicitly, and when
two (or more) equivalence classes are to be unified (i.e., when a new fact (G,~) is to be added, where
there is already a connection from ~’s equivalence class to G ’s), it uses the union-find technique of
marking one class as the parent of the other to unify the classes, and updates the stored connections
between classes, ensuring they always point to up-to-date class ids.

This technique can provide significant improvements in time and space complexity, but only if
the structure of the underlying graph is conducive to this technique. In one extreme, if a graph
with # nodes is a single SCC, our data structure can require only$ (# ) space and time to compute
its transitive closure, a substantial improvement over the usual Datalog-based solution (or trrel),
which requires$ (# 2) space and time. In the other extreme, if the graph has # SCCs (i.e., it is a DAG
with # nodes), TrRelUnionFind provides no asymptotic improvements, it will revert to $ (# 2)

space and time (in the worst case), with some constant overhead compared to the Datalog-based
solution.

Based on this discussion, trrel_uf can be a good option for computing the transitive closure
of graphs of social networks, which usually contain communities of non-trivial sizes. To evaluate
trrel_uf, we compute the transitive closures of a number of real-world graphs, and compare the
trrel_uf results with the results of explicit rules for computing the transitive closure of a relation;
we include trrel and an implementation of transitive closure in the Soufflé Datalog engine [Jordan
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Table 3. Transitive closure experiments on real-world graphs. trrel_uf is backed by TrRelUnionFind, our
union-find based data structure for transitive relations. Graphs are from [Leskovec and Krevl 2014]. OOM

indicates that the program ran out of memory.

Graph Time (s) Memory (MiB)

Name Edges TC size trrel_uf trrel explicit Soufflé trrel_uf trrel explicit Soufflé

email-Eu 26K 793K 0.022 0.509 0.844 1.5 1.93 13.4 31.7 39.3
Wiki-Vote 104K 12M 1.8 11.9 10.2 15.0 145 182 533 469
HepTh 52K 74.6M 6.0 51 44 80 49 1222 3590 2408
ca-AstroPh 396K 320M 39 600 792 595 174 5074 15361 12328
BrightKite 428K 3.2B 775 OOM OOM OOM 2382 OOM OOM OOM

et al. 2016] as well for comparison. The results, presented in Table 3 demonstrate significant gains
in time and memory when using trrel_uf. We observe a consistent speedup of around an order
of magnitude, and slightly to very significantly (∼ 30×) lower memory usage.

5.5 Index Sharing

As we discussed, efficient evaluation of Datalog requires indexing relations as demanded by their
use in rules. Typically a relation requires multiple indices, as it is joined in different ways in rules.
Storing one physical index per required logical index can be both space- and time-inefficient.
Recognizing that one physical index can serve multiple logical indices, we can reduce the space
required for Datalog computations. As updating and combining an index is time-consuming, this
can also help speed up Datalog computations in some instances.

The key to index sharing is to allow a physical index to have a curried form. For example consider
a scenario where a relation A (�, �,�) requires two logical indices, one on columns �, �, and the
other on column �. In this scenario a single physical index of the form �→ � →∗ � could serve
both these logical indices. Here,→ indicates a map data structure, such as a hash map, and→∗

indicates a multi-valued version of this data structure. [Subotić et al. 2018] presents an algorithm
for picking the minimum number of physical indices required to cover a set of logical indices.

We implemented ind_share, an index-sharing data structure provider for Byods based on this
idea. We employ the algorithm presented in [Subotić et al. 2018] for automatic selection of the
minimum number of physical indices required to cover a set of logical indices. Our implementation
also allows the user to explicitly ask for specific physical indices. This is useful when there is more
than one minimal set of physical indices covering the required logical indices, and one choice of
physical indices is superior (e.g., heavily used logical indices provide better performance if backed
by simpler physical indices).

In our implementation of index sharing, we use hash maps as the underlying data structure
(unlike [Subotić et al. 2018], which uses B-trees). Using hash maps complicates the implementation
because unlike B-trees, which naturally allow prefix lookups through range queries, using hash
maps requires building up nested hash map structures (for example HashMap<A, HashMap<B,
Vec<C>>> for the abstract physical index � → � →∗ � , from the example above). The main
advantage of taking this approach as opposed to using B-trees is that stored keys are not required
to be total orders. A big selling point of embedding a Datalog variant in Rust is that the user can
utilize arbitrary Rust data types in their Datalog programs (including data types representing ASTs,
binding environments, evaluation contexts, states of abstract machines for program analysis, etc.),
and limiting these types by requiring them to be total orders would undermine this selling point.
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Nevertheless, Byods permits implementing a B-tree-backed index-sharing data structure provider
as well.

To support the index-sharing data structure provider, we developed a library for manipulating and
adapting physical indices to the required logical index forms. This library revolves around the traits
DictRead and MultiDictRead, representing single-valued and multi-valued maps respectively. We
developed adaptor types for transforming the shape of a physical index. For example, the type
DictOfDictUncurried transforms a map of the form � → � → � (i.e., a type implementing
DictRead<Key = A, Value: DictRead<Key = B, Value = C>) to a map of the form (�, �) →
� (i.e., DictRead<Key = (A, B), Value = C>).

To evaluate the index-sharing data structure provider, we again use the Polonius benchmarks.
Table 2 also includes a version of the Rust borrow checker where the most taxing relation in the
Datalog program, subset, is tagged with ind_share. This relation requires 5 logical indices; using
index-sharing, these 5 logical indices can backed by 2 physical indices, highlighting the benefits
of index-sharing. As the results demonstrate, using the index sharing strategy helps improve the
performance of the analysis in many cases. We also observe improvements in memory use. The
memory use of the ind_share version is consistently lower than the default version.

Comparing the index-sharing strategy results with the results of using the trrel specialized
data structures also highlights the advantages of each one. trrel is a specialized data structure
for transitive relations, providing best performance for this application. The index-sharing data
structure provider on the other hand is a general-purpose data structure provider that can be
applied to any relation in the Datalog program.

We finally note that the fact that we could implement the index-sharing data structure provider in
Byods is a testament to its generality and its capabilities. Implementing this provider requires graph
algorithms (e.g., Gabow’s algorithm for the maximum matching problem in graphs [Gabow 1976]),
in addition to employing logic for synthesis of DictRead and MultiDictRead transformer types to
adapt a physical index to its required logical forms, which are made possible by our framework
and Rust’s procedural macros.

5.6 Lattices in Datalog

Datalog evaluation can be viewed as ascending the powerset lattice to a fixed point (of the immediate
consequence operator for the program, as discussed in Section 3). It should come as no surprise
that some applications require computing fixed points of different kinds of lattices. Flix [Madsen
et al. 2016] pioneered a particular approach to solving this problem: defining lattices in addition to
relations in a Datalog program. In Flix, a table l(K, V) defined as a lat rather than a relation is
semantically a map (join-semi-)lattice as opposed to a set of tuples. A map lattice is a partial map
 ⇀ + whose least upper bound operation is defined point-wise: (<1 ⊔<2) (G) =<1 (G) ⊔<2 (G).
By convention, + is the last column of the table and  is the tuple type corresponding to the other
columns. For lattices to be an effective addition to Datalog, one needs the ability to define new
lattice data types for + . In Flix, this is achieved by inclusion of a pure functional language; as we’ll
see, in Byods the user can define lattice data types in Rust.

This style of lattices extends the expressivity of Datalog, expanding the domain of applicability
of Datalog programs. For example, lattices allow more useful program analyses to be expressed in
Datalog, including constant-propagation analyses, strong update analyses, and the like [Madsen
et al. 2016; Sahebolamri et al. 2022].

To show the versatility of our approach, we use Byods to define a lat data structure provider.
lat works similarly to lattices in Flix. A relation tagged with lat is a partial map that is strongly
updated whenever a new fact is to be added to it whose key is already present in the map. As we
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see in the evaluation that follows, having a parallelized lat could result in remarkable speedups in
certain applications of Datalog plus lattices.

A notable (and less explored) example of use of lattices in Datalog is programs that require
recursive aggregation. Recursive aggregation (as opposed to stratified aggregation, which is sup-
ported in many Datalog engines) requires updating the aggregated relation as part of evaluating
the aggregation result. Allowing Datalog to express recursive aggregation has been an active area
of research [Mazuran et al. 2013; Ross and Sagiv 1992; Zaniolo et al. 2017]. Lattices in Datalog both
support recursive aggregation, and help eliminate the air of mystery around monotonic (recursive)
aggregates, helping Datalog users better understand programs requiring recursive aggregation.

One example of recursive aggregation is counting the number of distinct paths between pairs
of nodes in a graph. This program can be expressed in DeALS, a Datalog engine that supports
recursive aggregation [Shkapsky et al. 2015], as follows:

cpaths(X, Y, mcount<X>) <- edge(X, Y).
cpaths(X, Y, mcount<(Z, C)>) <- cpaths(X, Z, C), edge(Z, Y).
countpaths(X, Y, max<C>) <- cpaths(X, Y, C).

The monotonic aggregate mcount in this example can be thought of as being implemented using
a map lattice (we are referring to the inner lattice, cpaths itself would be a map lattice of a map
lattice!). The atom cpaths(X, Z, mcount<(Y, C)>) in a rule head joins (as in “takes the least
upper bound of”) the existing map lattice for the relation cpaths at point (X, Z) with the map
lattice defined on a single point: {Y -> C}. When cpaths appears in a rule body (as in cpaths(X,
Y, C)), the meaning of the aggregated column changes; now, the variable bound to the aggregated
column (C) refers to the sum of the values stored in the map lattice. The same program can be
expressed in Datalog with lattices:

relation edge(Node, Node)
##[ds(lat)] relation cpaths(Node, Node, MapLattice<Node, usize>)
relation countpaths(Node, Node, usize)

cpaths(x, y, map_lat![(x, 1)]) :- edge(x, y).
cpaths(x, y, map_lat![(z, c.sum())]) :- cpaths(x, z, c), edge(z, y).
countpaths(x, y, c.sum()) :- cpaths(x, y, c).

In this example, MapLattice is a user-defined Rust data type (again, not to be confused with
the map lattice semantics of the lat data structure provider). This example demonstrates how
straightforward it is to translate programs requiring recursive aggregation to Datalog programs
with lattices. Having translated the example, we may find it easier to interpret what the program
does. It simply states that the number of paths from x to y is the sum of the number of paths from
x to z, where z is directly connected to y (plus one if there is a direct edge from x to y).

Another typical example of the power of recursive aggregation is the PageRank algorithm [Page
et al. 1999]. We can implement PageRank in Byods straightforwardly as follows (implementation
adopted from [Wu et al. 2022]):

relation matrix(Node, Node, Num)
##[ds(lat)] relation rank(Node, MapLattice<Node, Num>)

rank(x, map_lat![(x, i)]) :-
matrix(x, _, _), let i = (1.0 - ALPHA) / vnum.

rank(x, map_lat![(y, k)]) :-
rank(y, c), matrix(y, x, w), let k = ALPHA * c.sum() * w.
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Table 4. Graphs used to test PageRank, from

[Leskovec and Krevl 2014].

Graph Time (s)
Name Nodes Edges 1 thread

Slashdot 77K 905K 26.3
BerkStan 685K 7.6M 77.2
Orkut 3.1M 117M 838
Pokec 1.6M 30M 904
LiveJournal 4.3M 69M 2004

Fig. 3. Scaling PageRank: 1 – 64 threads

Here matrix is the graph’s adjacency matrix. matrix(x, y, w) indicates there is an edge from
x to y with weight (probability) w. vnum is the number of vertices in the graph. ALPHA, a damping
factor, is a constant that affects the convergence rate of the query; it is generally (and in our
evaluation) set to 0.85. Last, the sum function on MapLattice returns the sum of the stored values.

We used the above program to benchmark the performance of lat in Byods. Our implementation
supports Byods’s parallel contracts, enabling our program to take advantage of multi-core CPUs.
For this evaluation, we use a number of large real-world graphs from [Leskovec and Krevl 2014]
(shown in Table 4). We ran our experiments on a workstation with an AMD EPYC 7713P 64-Core
CPU and 512 GB of RAM. Single-thread timings, taken as a baseline, are also shown in Table 4.
Figure 3 details speedup vs. thread count for each experiment. Our experiments show that our
implementation scales well, achieving both strong scaling (across thread counts) but also weak
scaling: scalability roughly increases with problem (graph) size.

5.7 Analysis of LLVM

To demonstrate the usability and maturity of Byods, we implemented a realistic whole-program
pointer analysis for LLVM IR. Our analysis uses the standard allocation-site abstraction, reducing
the potentially-unbounded set of run-time allocations to the static, finite set of allocation-site labels.
The overall structure is inclusion-based (Andersen-style [Andersen 1994]), and supports :-callsite
context-sensitivity for arbitrary : . Our prototype analysis is array-, field-, and flow-insensitive,
and doesn’t yet support heap cloning. Our implementation of this analysis consists of roughly 800
lines of rules in Byods, along with roughly 3400 lines of supporting code (mainly parsing LLVM
modules).

Correctness, performance, and ease of implementation are all essential for such an analysis.
Byods allows us to implement our analysis by writing rules that closely mirror traditional for-
malizations of Andersen-style analyses [Bravenboer and Smaragdakis 2009]. At the same time,
our implementation also inherents all of the parallelism of Byods and utilizes index sharing to
mitigate the significant time and memory costs associated with precise, context-sensitive static
analysis. On a more pragmatic level, Byods provides an ideal setting for rapidly prototyping such
analyses due being an EDSL embedded in Rust. :-limited contexts are represented using standard
Rust data structures (e.g., using a double-ended deque, rather than manual monomorphization of
rules), obviating the need to construct a plethora of analysis variants for each supported value
of : as is done in analyses written in other Datalog variants, including Doop [Bravenboer and
Smaragdakis 2009]. Programs can be ingested into the analysis using off-the-shelf libraries rather
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than custom, standalone programs that generate Datalog facts [van Tonder 2021]; our analysis uses
the popular llvm-ir Rust crate (library). Finally, Byods allows for experimenting with novel data
structures to achieve satisfactory performance/precision trade-offs. We implemented a variant of
our analysis based on trrel_uf, though it does not result in performance gains for our current
implementation, as our workloads generated large numbers of small equivalence classes. We plan
to improve precision by reasoning about out-of-bounds array accesses using a constant propagation
analysis that utilizes Byods’s support for lattices.

LLVM IR is a ubiquitous intermediate representation (IR) used in dozens of compilers, including
Clang, GHC, and rustc [Lattner and Adve 2004]. LLVM programs consist of functions, which are
made up of basic blocks, which are in turn composed of instructions in SSA form. Instructions store
their result (if any) to a virtual register. Instructions have operands, which may be constants, formal
parameters of the surrounding function, or virtual registers. Intra-procedural control-flow between
basic blocks is structured using primitive operations such as conditional branches. Inter-procedural
control-flow is mediated by a small number of instructions such as call. These instructions accept
a function pointer, allowing for indirect (computed) calls.

While LLVM has an extensive set of instructions, only a few are relevant to a pointer analysis.
The alloca instruction creates a new allocation on the stack. The phi instruction implements
q-nodes in the SSA form. The call instruction transfers control to another function, mapping
actual parameters to formal parameters; return returns a value to the caller.7 load reads from
memory, and store writes to it. getelementptr is used to add an offset to a base pointer. It is used
to e.g., load a specific index from an array or access a particular field of a struct. Our analysis is
neither array- nor field-sensitive, so it treats getelementptr as a no-op. The analysis does not yet
handle instructions pertaining to vectorized execution nor exception handling. The set of allocation-
site labels consist of global variables, alloca instructions, direct calls to a set of predetermined
functions such as malloc, and a special Top allocation, described below.

Following cclyzer [Balatsouras and Smaragdakis 2016], the analysis treats allocations differently
from virtual registers, which cannot be addressed by pointers. The output of the analysis consists
of the following relations:

• operand_points_to relates operands to the (abstract) allocations they may point to.
• alloc_points_to relates allocations that may contain pointers to the allocations the pointers

may point to.
• calls relates call-like instructions to the functions they may call.

Unlike cclyzer, the analysis does not attempt to recover a notion of type for each allocation. The
LLVM community has realized that the intended memory model is inherently untyped; compiler
optimizations based on notional allocation types have been found to be unsound. The language
will soon drop support for typed pointers [LLVM-Authors 2023].

To make a respectable attempt towards soundness, a pointer analysis of LLVM must handle
dozens of language-specific details. Our analysis supports many such trivialities, such as explicitly
modeling memcpy; proper initialization of the argv and envp arguments to a C program’s main
function; modeling special, pre-initialized global variables like stdin, stdout, and stderr; and
support for a variety of allocation functions including not only malloc, but also realloc, calloc,
explicit calls to libc’s alloca function (as contrasted with LLVM alloca instructions), and _Znwm
(the mangled name of C++’s new operator).

More substantially, the analysis supports user-provided function signatures, which provide sound
approximations of externally-defined functions. Calls to externally-defined functions may arise from

7For the sake of simplicity, we’ll ignore the other call-like instructions, they are handled almost identically by the analysis.
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Table 5. LLVM IR pointer analysis experiments. : is the context sensitivity of the analysis. Pts is the size of

operand_points_to, the biggest relation computed by the analysis. ind is the version of the analysis using

ind_share, and def is the version using the default data structure provider.

Prog. : Pts Time (s) by thread count Memory (MiB)

8 16 32 64
ind def ind def ind def ind def ind def

Jackson
3 10.2M 8.8 10.9 7.6 10.8 7.4 10.1 7.3 9.7 1,940 3,107
4 164M 128 166 102 164 99 152 94 143 30,466 50,533

Luac
0 3.2M 5.2 4.9 3.8 4.4 3.2 4.4 3.3 5.0 555 732
1 45M 68 58 48 52 45 50 52 50 3,798 8,000

Lua
0 12.8M 19.6 16.5 13.0 14.6 10.4 14.6 9.7 15.8 1,782 3,222
1 214M 303 257 193 215 154 199 183 201 14,074 34,335

httpd
0 27.1M 154 103 91 72 65 59 58 61 3,545 6,100
1 5.39B 26,530 OOM 15,240 – 10,285 – 9,793 – 425,000 OOM

SQLite 0 167M 830 540 471 367 312 284 248 326 26,665 44,597

Redis 0 735M 19,083 11,536 9,210 6,486 5,424 4,087 4,063 3,541 99,500 178,264

use of a dynamically-linked library, or libc. For example, the signature { "return-aliases-arg":
{ "arg": 0 } } is used to model memchr; it states that the return value is a pointer that may
alias the function’s first argument. The analysis includes 150 such signatures for common external
functions. If the analysis encounters a call to an external function without a corresponding signature,
it treats the return value as a pointer to a special Top allocation. This allocation signals that a
pointer could point to any other allocation in the program. Loading from Top yields Top; storing to
Top is a no-op.

We evaluted our analysis on a number of real-world programs, presented in the leftmost column
of Table 5. We evaluated using our AMD EPYC workstation (64 core, 512GB) from 5.6. We ran our
analysis with either one or two choices for : (larger : makes the state space polynomially-larger).
We used six programs: Jackson is a small IRC client, Lua and Luac are the interpreter and compiler
for Lua, httpd is an HTTP server, SQLite is a SQL database engine, and Redis is an in-memory
database. We ran two versions of our analysis, one using the ind_share data structure provider
for the largest relations in the program, and the other using the default data structure provider.
We chose two settings for : in the first four programs, but analyze SQLite and Redis using only
0-callsite sensitivity; 1-callsite sensitivity for these programs resulted in OOMs.

Our results reveal several broad trends. First, both analyses scale relatively well, though diminsh-
ing returns are apparent at 64 threads; however, we believe it is promising that scalability increases
as state space increases. Second, the ind_share version consistently uses significantly less memory
compared to the default version; indeed, 1-callsite sensitivity on httpd does not even terminate
without index sharing. While the default version is often faster in low thread counts, the ind_share
version appears to exhibit better scaling, and sometimes overtakes the default version at higher
thread counts. We believe this is because the ind_share version writes to fewer indices, inducing
less lock contention. Once again, the fact that we could improve scaling simply by swapping to a
different data structure provider speaks to the robustness of the Byods approach.
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6 RELATED WORK

There are several threads of related work.

Tuple Representations for Datalog. Datalog has seen repeated resurgences in interest, often co-
inciding with novel developments in data structure representation. This excitement is often due
Datalog’s application to program analysis and related fields. For example, bddbddb demonstrated
the scalability gains to be had from BDD-based tuple representations. Such BDD-based representa-
tions have fallen out of favor due to representation-imposed blowups and the need for variable
orderings. LogicBlox provided the next innovation, this time leveraging an optimized join strat-
egy, Leapfrog Triejoin [Aref et al. 2015; Veldhuizen 2014]. LogicBlox enabled the DOOP pointer
analysis [Bravenboer and Smaragdakis 2009], which was subsequently ported to the Soufflé solver,
delivering impressive speedups [Antoniadis et al. 2017]. Soufflé contains several tuple representa-
tions, including concurrent B-trees and a novel “Brie” data structure. Brie’s purpose is to represent
high-density relations, and leverages principles from both B-trees and tries to achieve this [Jordan
et al. 2019]. Like tries, a Brie performs prefix-deduplication (for tuples, in case of Datalog), and like
B-trees, a Brie uses cache-friendly arrays of multiple values per node. More recently, Soufflé has
unified its data structures via the Datalog-Enabled Relational (DER) approach [Jordan et al. 2022].
DERs must support insertion, iteration, range lookup, and membership and emptiness checking.
Byods may be seen as systematizing and generalizing the DER approach, providing a semantic
(rather than merely mechanical) account of how to integrate user-provided data structures with
Datalog’s compilation and semi-naïve semantics. Byods enables sophisticated, semantics-altering
data structure providers that have a holistic view of the relation they are supporting, in contrast to
the DER approach, which enables alternative implementations of a B-tree-like interface. Byods
is additionally distinguished from DER by our macro-based approach, enabling the user to build
data structures directly in Rust without the need to manually extend Soufflé’s implementation (a
nontrivial effort).

Programming with Union-Find Data Structures. Union-find data structures form crucial compo-
nents in applications such as type inference and, more recently, equality saturation [Tate et al.
2009; Willsey et al. 2021]. Motivated by its inability to realize algorithms requiring union-find,
Soufflé has recently added eqrel relations, which provide union-find to users of Souffé [Nappa
et al. 2019]. While Soufflé does generate code that is compatible with a variety of engine-provided
data structures, it provides no points for user extension; Byods builds upon a formal extension
of Datalog, DLDS, to enable the user to bring their own data structures. Last, egglog has recently
provided a new platform which allows users to mix Datalog and equality saturation [Zhang et al.
2023]; we plan to study how Byods may be used to implement equality saturation in future work.

Programming with Fixed Points over Non-Powerset Lattices. Datalog’s restriction to the sets-of-
facts interpretation imposes severe limitations, forbidding the expression of common idioms in
program analysis (e.g., the constant propagation or interval lattice), graph analytics, and similar
applications. Such restrictions represent expression-limiting pain points for engineers of such
analyses in Datalog, and successful applications of Datalog have harmoniously leveraged the
powerset lattice, eliding more general non-powerset lattices. One popular line of work is that of
recursive aggregation, which puts Datalog rules in a loop with a lattice join operator (which, in
general, operates over non-powerset lattices) [Ross and Sagiv 1992]. This generalization of Datalog
from powersets to arbitrary lattices remediates the overhead from powerset-based encodings.

Datalog�( [Mazuran et al. 2013] and subsequently DeALS [Shkapsky et al. 2015] both target
high-throughput graph analytics applications which involve recursive aggregation (e.g., single-
source shortest paths). This line of work continued with several other engines evolving suit the
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needs of large-scale social-media and graph analytics, including BigDatalog [Shkapsky et al. 2016],
RaSQL [Wang et al. 2020], and DcDatalog [Wu et al. 2022]. These systems are primarily aimed at
processing extremely large graphs on a cluster of nodes, either using commodity-grade network
infrastructure (e.g., Apache Spark) or novel parallel approaches targeted at large unified nodes.
We elide a detailed comparison with the distrubted tools, though initial experimentation shows
favorable scaling (vs. DeALS and RaSQL) against these systems on a single node. DcDatalog supports
recursive aggregation and targets large unified nodes, but is closed-source; reported data from
DcDatalog’s paper suggests it scales roughly similarly to Byods for PageRank.

Several authors have explored the semantic ramifications of Datalog’s extension to lattices.
Flix extends Datalog to a rich combination of functional and logic programming, supporting
(non-powerset) lattices [Madsen et al. 2016]; we elide a detailed comparison against Flix, limited
experiments suggest that Byods’ efficient compilation and parallel implementation far outperformed
equivalent Flix implementations. Similarly, Datafun generalizes Datalog to a theory of programming
with monotonic maps over join-semilattices [Arntzenius and Krishnaswami 2019, 2016]. That work
formalizes a category-theoretic denotational semantics, and provides a rich type system, ensuring
the termination of well-typed programs. Our contributions are largely orthogonal, focused on
harmonizing Datalog’s operationalization as joins with user-provided data structures.

Datalog as an Embedded DSL. The EDSL-based strategy for implementing Datalog is becoming
popular, offering many attractive benefits, chiefly the interoperability with constructs from the
host language. Byods is a Rust EDSL, as are Ascent [Sahebolamri et al. 2022] and Crepe [Zhang
2023]; Racket also includes a Datalog [McCarthy 2022]. Our focus is on harmonizing user-provided
data structures with efficient compilation using state-of-the-art methods, and thus we see our work
as orthogonal to the current state of the art, and a natural extension to this line of work.

7 CONCLUSION

Modern Datalog engines are extremely enticing tools for the implementation of deductive-analytic
workloads due to the price-point they deliver, marrying declarative specification with high-
performance compilation. Unfortunately, would-be Datalog users confront a key challenge: if
they need to represent tuples using a special-purpose data structure (e.g., union-find), their only
option is to extend a state-of-the-art engine with their data structure (an imposing challenge).

We propose the “Bring Your Own Data Structures” approach, wherein declarative rules are
compiled to join plans which operate harmoniously with user-provided data structures. This
is accomplished by emitting code which interacts with relations by means of a concretization
function, which interfaces between the compiled rules and user-provided data structures. We
formalize our ideas in DLDS, an extension of Datalog to accomodate user-provided data structures,
and articulate the formal properties demanded by the Byods approach. This formalism is the
basis for a mature implementation, Byods, which provides a macro-based protocol to interface
user-provided data structures with join plans compiled from rules. We implement our approach
as a macro-embedded DSL in Rust. We conduct a large variety of evaluations which measure our
implementation’s robustness and scalability. Exciting results include speed and memory gains for
realistic applications (the Polonius implementation of Rust’s borrow checker), strong and weak
scaling for lattice-oriented programming (PageRank) and large-scale program analysis (LLVM),
and crucial algorithmic optimizations necessary to implement state-of-the-art deductive-analytic
workloads.
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