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Recap: Pattern Matching

Necessary idea for today: quasipatterns

(match e 
  [`(,x z) x] 
  [`(,x ,y) x] 
  [`(,(? number? x) (,y ,z)) x]) 

Allow breaking down list-like data



Matches a list containing anything 
followed by the symbol z

Recap: Pattern Matching

Necessary idea for today: quasipatterns

(match e 
  [`(,x z) x] 
  [`(,x ,y) x] 
  [`(,(? number? x) (,y ,z)) x]) 

Allow breaking down list-like data

‘(2 z) but not ‘(2 3) or ‘(2 y)



Matches a list of length 2, binds x & y

Recap: Pattern Matching

Necessary idea for today: quasipatterns

(match e 
  [`(,x z) x] 
  [`(,x ,y) x] 
  [`(,(? number? x) (,y ,z)) x]) 

Allow breaking down list-like data

Note: clauses match in order



Recap: Pattern Matching

Necessary idea for today: quasipatterns

(match e 
  [`(,x z) x] 
  [`(,x ,y) x] 
  [`(,(? number? x) (,y ,z)) x]) 

Allow breaking down list-like data

Matches list of length two:

- First element is a number?

- Second element is a list of length two 

- Binds x, y, and z



Recap: Closures

Representing a function at runtime requires the code for the function 
plus pointers to free variables that that function relies upon.

(let ([x 1]) 
  (lambda (y) x))

To understand why, consider the following lambda.

Racket represents this at runtime as something like this:

(lambda (y) x) {x |-> 1}
Code Data (environment)

So when the code runs the value of x can be looked up from the environment.
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Representing a function at runtime requires the code for the function 
plus pointers to free variables that that function relies upon.

(let ([x 1]) 
  (lambda (y) x))

To understand why, consider the following lambda.

Racket represents this at runtime as something like this:

(lambda (y) x) {x |-> 1}
Code Data (environment)

So when the code runs the value of x can be looked up from the environment.

(To get technical about it: x points to a heap location that points to 1)



Recap: Closures

Representing a function at runtime requires the code for the function 
plus pointers to free variables that that function relies upon.

(let ([x 1]) 
  (lambda (y) x))

To understand why, consider the following lambda.

Racket represents this at runtime as something like this:

(lambda (y) x) {x |-> 1}
Code Data (environment)

So when the code runs the value of x can be looked up from the environment.

A closure is code plus environment

(To get technical about it: x points to a heap location that points to 1)



Today’s insight
If you want to build an interpreter for a language, 
you can leverage features of the metalanguage.


(These interpreters are called metacircular (or definitional) 
interpreters.)



Metalanguage Language you use to define the 
implementation of the language 

(e.g., Racket, C, etc…)

Source Language Language being implemented 

(defining language)



Core Scheme
(define (expr? e) 
  (match e 
    [(? symbol? var) #t] 
    [(? lit?) #t] 
    [`(lambda (,x) ,body) #t] 
    [`(,(? expr? e0) ,(? expr? e1)) #t] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse)) #t] 
    [`(let* ([,(? xs) ,(? expr?)] ...) 
        ,(? expr? body))] 
    [`(letrec ([,(? symbol?) ,(? expr?)]) 
        ,(? expr? body)) #t])) 

(define (lit? e) 
  [(? number?) #t] 
  [(? string?) #t] 
  [(? boolean?) #t] 
  [else #f]) 

This is “core scheme”, a 
minimal language we will use 

for a part of CIS 700



Core Scheme
This is “core scheme”, a 

minimal language we will use 
for a part of CIS 700

It includes…

• Variables (e.g., x)

• Literals (e.g., 5, “hello”)

• Lambda expressions

• Function application

• If statements

• Let* (sequenced let)

• Letrec (recursive definitions)

(define (expr? e) 
  (match e 
    [(? symbol? var) #t] 
    [(? lit?) #t] 
    [`(lambda (,x) ,body) #t] 
    [`(,(? expr? e0) ,(? expr? e1)) #t] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse)) #t] 
    [`(let* ([,(? xs) ,(? expr?)] ...) 
        ,(? expr? body))] 
    [`(letrec ([,(? symbol?) ,(? expr?)]) 
        ,(? expr? body)) #t])) 

(define (lit? e) 
  [(? number?) #t] 
  [(? string?) #t] 
  [(? boolean?) #t] 
  [else #f]) 



Core Scheme
(define (expr? e) 
  (match e 
    [(? symbol? var) #t] 
    [(? lit?) #t] 
    [`(lambda (,x) ,body) #t] 
    [`(,(? expr? e0) ,(? expr? e1)) #t] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse)) #t] 
    [`(let* ([,(? xs) ,(? expr?)] ...) 
        ,(? expr? body))] 
    [`(letrec ([,(? symbol?) ,(? expr?)]) 
        ,(? expr? body)) #t])) 

(define (lit? e) 
  [(? number?) #t] 
  [(? string?) #t] 
  [(? boolean?) #t] 
  [else #f]) 

In this lecture, we will cover the 
implementation of these

It includes…

• Variables (e.g., x) 
• Literals (e.g., 5, “hello”) 
• Lambda expressions 
• Function application 
• If statements 
• Let* (sequenced let)

• Letrec (recursive definitions)



It’s worth pointing out that—especially once we add some 
builtin functions (like car, +, etc…)—core Scheme is really 
expressive enough for very general programming…

(letrec 
    ([foldl 
      (lambda (fun default lst) 
        (if (empty? lst) 
            default 
            (fun (car lst) 
                 (foldl fun default (cdr lst)))))]) 
  (foldl (lambda (x y) (+ x y)) 0 (list 1 2 3)))



It’s worth pointing out that—especially once we add some 
builtin functions (like car, +, etc…)—core Scheme is really 
expressive enough for very general programming…

(letrec 
    ([foldl 
      (lambda (fun default lst) 
        (if (empty? lst) 
            default 
            (fun (car lst) 
                 (foldl fun default (cdr lst)))))]) 
  (foldl (lambda (x y) (+ x y)) 0 (list 1 2 3)))

Missing set! and continuations, but can already write real code!



First Coding Session: Figuring out 
what expr? actually means…



Why build Core Scheme in Racket?

Even though it seems kind of pointless to build an 
interpreter for a language in the same language, it’s 
going to help us build intuition for interpreter design.


This will build up to allowing us to build abstract 
versions of these interpreters, which are exactly 
program analyses.



Definitional Interpreters

Use as much of the metalanguage (defining language) as 
possible when building an interpreter.


We will currently define Core Scheme in Racket (easy, as Core 
Scheme is a subset of Racket).


So, how do we do it?


Idea: write a function, interp(e) that interprets a program and 
returns a resulting value (as a Scheme value)



;; Attempt 0 
(define (interp e) 
  (match e 
    [(? symbol? var) 'undefined] 
    [(? lit?) 'undefined] 
    [`(lambda (,var) ,body) 'undefined] 
    [`(,(? expr? e0) ,(? expr? e1)) 'undefined] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse)) 'undefined] 
    [`(let* ([,(? symbol?) ,(? expr?)] ...) 
        ,(? expr? body)) 
     'undefined] 
    [`(letrec ([,(? symbol?) ,(? expr?)]) 
        ,(? expr? body)) 
     'undefined])) 

Everything just returns ‘undefined…



Next attempt…

;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 



;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 

First idea:  to interpret variables, use a hash 
table from Racket.



If we’re really being true to the spirit of definitional 
interpreters, we might be tempted to reuse variables from 

the metalanguage. 


However, this is hard!



If we’re really being true to the spirit of definitional 
interpreters, we might be tempted to reuse variables from 

the metalanguage. 


However, this is hard!

;; Attempt 1 
(define (interp e env) 
  (match e 
    ;; Say we did this 
    [(? symbol? var) var] 
  … ;; Undefined other cases)) 

There’s no way to make this work, because var is not in the 
lexical scope here.




If we’re really being true to the spirit of definitional 
interpreters, we might be tempted to reuse variables from 

the metalanguage. 


However, this is hard!

;; Attempt 1 
(define (interp e env) 
  (match e 
    ;; Say we did this 
    [(? symbol? var) var] 
  … ;; Undefined other cases)) 

However, our interpreter uses 
env in such a way as to recover 

static scope!

There’s no way to make this work, because var is not in the 
lexical scope here.


Instead, it is in an (effectively) dynamic scope implemented 
via the hash table env 



This is one way in which our interpreter has to compromise.


Variables are hard to implement via the defining language, but we can 
use a hash table (also in the defining language) to implement them.


This is important because we will do this with other language features


In fact, we must do it for features that are not default in the 
metalanguage


(For example, say we wanted lazy evaluation, as in Haskell!)



;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 

Next: literals are just themselves..



;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 

Next: interpret the lambda expression as a Racket 
lambda



;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 

Next: interpret the lambda expression as a Racket 
lambda

IMPORTANT: 
Make sure that you 
understand that we are 
matching a source lambda 
and turning it into a lambda 
in the metalanguage!



Recall our recap of closures! Technically the “Racket 
lambda” is actually a #<procedure> (aka: closure!)



;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 

Assuming lambdas evaluate to Racket lambdas, we 
can then simply apply them to perform function 
application!

Note: 
Think about why this is—at 
runtime the left hand side of 
he application (e0 e1) must 
evaluate to a lambda (or 
else an error arises).



;; Attempt 1 
(define (interp e env) 
  (match e 
    [(? symbol? var) (hash-ref env var)] 
    [(? lit?) e] 
    [`(lambda (,var) ,body) 
     (lambda (x) (interp body (hash-set env var x)))] 
    [`(,(? expr? e0) ,(? expr? e1))  
     ((interp e0 env) (interp e1 env))] 
    [`(if ,(? expr? guard) 
          ,(? expr? etrue) 
          ,(? expr? efalse))  
     (if (interp guard env) 
         (interp etrue env) 
         (interp efalse env))] 
   … ;; Undefined other cases)) 

Similarly, if can be interpreted by simply by 
evaluating the guard and then the appropriate 
expression.



(interp '((lambda (x) x) "Hello, World!") (hash)) 

(interp '(((lambda (x) (x x)) (lambda (x) x)) 1) (hash))

Two small examples for Core Scheme



Adding builtins…
(Because our language is boring without them.)

(define (builtin? x) 
  (set-member? (set '+ '- '* '/ 'cons 'car 'cdr 'list '=) x)) 

(define builtins  
  (hash '+ + '- - '* * '/ / 'cons cons 'car cdr 'list list '= equal?)) 

(define (interp e env) 
  (match e 
    ;; Builtins! 
    [`(,(? builtin? op) ,(? expr? builtin-args) ...)  
     ;; Evaluate each argument and then apply the builtin denotation 
     ;; of the function. 
     (let ([evaluated-args (map 
                            (lambda (arg) (interp arg env)) 
                            builtin-args)]) 
       ;; Take care to undersand this one! 
       (apply (hash-ref builtins op) evaluated-args))])) 

Idea: add them to a hash map to give their implementation

Notice: if I had multi-argument application, this would be unnecessary…

(As I could just make builtins the initial environment!)



Adding builtins…
(Because our language is boring without them.)

(define (builtin? x) 
  (set-member? (set '+ '- '* '/ 'cons 'car 'cdr 'list '=) x)) 

(define builtins  
  (hash '+ + '- - '* * '/ / 'cons cons 'car cdr 'list list '= equal?)) 

(define (interp e env) 
  (match e 
    ;; Builtins! 
    [`(,(? builtin? op) ,(? expr? builtin-args) ...)  
     ;; Evaluate each argument and then apply the builtin denotation 
     ;; of the function. 
     (let ([evaluated-args (map 
                            (lambda (arg) (interp arg env)) 
                            builtin-args)]) 
       ;; Take care to undersand this one! 
       (apply (hash-ref builtins op) evaluated-args))])) 

Idea: add them to a hash map to give their implementation

Notice: if I had multi-argument application, this would be unnecessary…

(As I could just make builtins the initial environment!)

(Could also do this via currying..)



Currying

Let’s say my language only has single-argument lambdas

I can get multi-argument lambdas by using a trick

(lambda (x y z) (+ x y z))



Currying

Let’s say my language only has single-argument lambdas

I can get multi-argument lambdas by using a trick

(lambda (x y z) (+ x y z))

(lambda (x) (lambda (y) (lambda (z) (+ x y z))))
Curry!

Replace multi-argument lambdas by sequences of lambdas!



Currying

Let’s say my language only has single-argument lambdas

I can get multi-argument lambdas by using a trick

(lambda (x y z) (+ x y z))

(lambda (x) (lambda (y) (lambda (z) (+ x y z))))
Curry!

Replace multi-argument lambdas by sequences of lambdas!

((lambda (x y z) (+ x y z)) 1 2 3)

((((lambda (x) (lambda (y) (lambda (z) (+ x y z)))) 1) 2) 3)

Uses must be rewritten, too…



Adding builtins…
(Because our language is boring without them.)

(define (builtin? x) 
  (set-member? (set '+ '- '* '/ 'cons 'car 'cdr 'list '=) x)) 

(define builtins  
  (hash '+ + '- - '* * '/ / 'cons cons 'car cdr 'list list '= equal?)) 

(define (interp e env) 
  (match e 
    ;; Builtins! 
    [`(,(? builtin? op) ,(? expr? builtin-args) ...)  
     ;; Evaluate each argument and then apply the builtin denotation 
     ;; of the function. 
     (let ([evaluated-args (map 
                            (lambda (arg) (interp arg env)) 
                            builtin-args)]) 
       ;; Take care to undersand this one! 
       (apply (hash-ref builtins op) evaluated-args))])) 

Idea: add them to a hash map to give their implementation

Notice: if I had multi-argument application, this would be unnecessary…

(As I could just make builtins the initial environment!)



(interp '((lambda (x) (if (= x 0) 1 
                          (+ ((lambda (y) (if (= y 3) 1 2)) x) x))) 
          (* 1 (if #f 1 4))) 
        (hash)) 

An example using builtins…



This leaves only a few cases left undone:

• Multi-argument lambdas

• Let* (sequenced let)

• Letrec

You will do the first two for your project, along with 
an extension to core scheme where you add a 
minimal form of pattern matching.

However, letrec is generally quite interesting and 
presents some challenging questions about how to 
implement it.



Implementing Let

Intuition from last week (and Peter Landin): 
let is just lambda by another name

(let ([x x-defn]) body)

((lambda (x) body) x-defn)

This pattern (immediately apply a lambda) is sometimes 
called the “left-left-lambda” pattern



Implementing Let

Intuition from last week (and Peter Landin): 
let is just lambda by another name

(let ([x x-defn]) body)

((lambda (x) body) x-defn)

This pattern (immediately apply a lambda) is sometimes 
called the “left-left-lambda” pattern

An optimizing compiler will (probably) inline this.



Implementing Let*

Let transformation easily generalizes

(let* ([x 1] 
       [y (+ x 1)]) 
  body)

((lambda (x) 
   ((lambda (y) body) 
    (+ x 1))) 
 1)

Similar idea to currying

Chain of left-left-lambdas



Letrec is the fundamental way that our language forms loops!

This allows us to go from the finite to the infinite!  
Thus this is (imo) most important form!

(letrec ([f 
          (lambda (x) (if (= x 0) 
                          1 
                          (* x (f (- x 1)))))]) 
  (f 10))

Letrec



Here’s the simple way to implement letrec

(define f (lambda (x) x)) 
(set! f (lambda (x) (if (= x 0) 
                        1 
                        (* x (f (- x 1)))))) 
(f 10)

This is a huge hack.

It relies on set!


However, it works and is a simple way to 
understand how to implement recursion.



Why does it work?

(define f (lambda (x) x)) 
(set! f (lambda (x) (if (= x 0) 
                        1 
                        (* x (f (- x 1)))))) 
(f 10)

f

At this point, f becomes a box on the heap, initialized to the closure (lambda (x) x)



Why does it work?

(define f (lambda (x) x)) 
(set! f (lambda (x) (if (= x 0) 
                        1 
                        (* x (f (- x 1)))))) 
(f 10)

f

At this point, f becomes a box on the heap, initialized to the closure (lambda (x) x)

(lambda (x) x), {…}

Which is really a pointer to some underlying address a

Heap address a



Why does it work?

(define f (lambda (x) x)) 
(set! f (lambda (x) (if (= x 0) 
                        1 
                        (* x (f (- x 1)))))) 
(f 10)

f

Then we change it to a lambda that mentions f, but in an environment that includes f!

(lambda (x) …), {f |-> a}
Heap address a



We have leveraged the linked structure of the 
metalanguage’s heap to implement the looping 

structure inherent to recursion.

This is the insight of definitional interpreters: use as much of 
the metalanguage as you can.



How can we implement it in our interpreter?

(define (interp-letrec e env) 
  (match e 
    [`(letrec ([,(? symbol? f) (lambda (,f-arg) ,f-body)]) 
        ,(? expr? body)) 
     ;; Make a mutable copy of the hash table 
     (let ([env-copy (apply make-hash 
                            (hash-map env 
                                      (lambda (x y) (cons x y))))]) 
       ;; Mutably set f to be a lambda that points at itself 
       (hash-set! env-copy 
                  f 
                  (lambda (x) (interp 
                               f-body 
                               (begin 
                                 (hash-set! env-copy f-arg x) 
                                 env-copy)))) 
       ;; Now interpret the body with this updated (mutable) env 
       (interp body env-copy))])) 



There are other ways we could have gotten this result


The effectual map is not intrinsic to the semantics

(which is important, since we would like a purely applicative semantics!)


We will see how to do this by using the Y combinator (next week)



I will also say that Reynolds takes a slightly different 
approach in his paper…

He uses a purely functional environment, which allows 
us to exploit the naturally linked structure of closures!

This is the reading for next week



Homework 1

• Extend the interpreter from class w/


• Multi-argument lambdas, applications, and letrecs 

• Let* (sequencing let) 

• Simple pattern matching 

• Bonus points will be given for more complex pattern 
matching



Multi-argument lambdas

First task: make lambdas accept multiple arguments.

(lambda (x y) (+ x y))

Two possible ways to do this:

- Interpret directly using “apply”


- Create (Racket) lambda that accepts list as argument

- (lambda l …) <— l is treated as a list inside …

-((lambda l l) 1 2 3) = ‘(1 2 3) 

- Allows you to apply a function to a list

- Generate new nested lambda forms and use currying


- (lambda (x y …) …) -> (lambda (x) (lambda (y) …))..)

- (f x y z) -> (((f x) y) z)


- Your choice as to which one you use!



Multi-argument letrec

Also need to do this with letrec.


Follows the same trick as multi-argument lambdas,

When you figure that out, letrec will immediately follow



Let*

You have two options for how to do this:

- Either implement as desugaring (recall let* slide)

- Or implement directly, make sure you allow sequencing



Pattern Matching

This one should be fun / creative.

Three types of patterns:

- Flat patterns (i.e., match a predicate)

- Cons patterns (i.e., match car / cdr)

- List patterns (match lists of finite 

length k, each w/ predicates applied)



Today’s insight
If you want to build an interpreter for a language, 
you can leverage features of the metalanguage.


(These interpreters are called metacircular (or definitional) 
interpreters.)

Ear
lie
r…



Ways to Build Languages

• Write a definitional interpreter


• Desugar more complex forms into simpler ones


• Then, use the definitional interpreter on those

In this lecture, we talked about two main “ways” to build languages:

We will cover many other ways as we continue on through lectures

Which will set the stage for being able to easily step to analyses!



We want the metalanguage to be small and have a 
mathematically-simple structure.


Because if we don’t understand the metalanguage, how 
can we possibly understand our implementations using it?



https://www.youtube.com/watch?v=Ow9AtuIuMLw



• Today—metacircular interpreters: interpreters that use features 
of metalanguage to implement source language.


• This is good: quickly build interpreter that is easy to write


• This is bad: if we want to be fully-precise, we want the 
metalanguage to be as close to math as possible.


• If we use a definitional interpreter, the semantics of the 
metalanguage is implicitly tied up in the language’s model


• Mutability, order-of-eval, etc…! (This is Reynolds’ point!)


• We will next ask: how can we make the metalanguage even 
simpler? Goal: want smaller metalanguage.


