
•Thursday: VP of Engineering @ GrammaTech
•Moodle Grades: will happen by Thursday
•Project 2G: Released this afternoon

Digital certificates
TLS, HTTPS, Revocation

https://s-media-cache-ak0.pinimg.com/originals/ed/af/55/edaf5554d92824ef3555d8b9fbff60c5.jpg

https://s-media-cache-ak0.pinimg.com/originals/ed/af/55/edaf5554d92824ef3555d8b9fbff60c5.jpg

• For convenience, we will use PKA and SKA to
denote public and secret keys for Alice

TTP

Trusted third party, revisited (1)

• TTP is a bottleneck for every conversation
• TTP must be online to start a new conversation
• TTP can read every message
• TTP must be trusted to tell the truth!
• Does not solve bootstrapping problem

U1 U2

PK1

PK2

Trusted directory service

PK2

PK1

Trusted 3rd party, revisited (2)

Alice

TTP

Bob

PKT

PKT
PKA plus verification

Alice owns PKA. Signed, PKT

S(SKA, E(PKB, m)) + cert

Bob: Verify cert with PKT, verify message with PKA

Some Observations

• Doesn’t that mean you’re always talking to CA?

• That’s a ton of communication with them!!

• No! Turns out your browser caches public keys from CAs

Some Observations

• Let’s say foo.com has a valid cert, why should I trust that they’re
really foo.com, and not some random person with a valid cert?

• Certificate specifies the domain

• Careful: Worry about things like DNS attacks!

• We’ll cover some, e.g., cache poisoning

http://foo.com
http://foo.com

With certificates

• TTP is a bottleneck for every conversation
• TTP must be online to start a new conversation
• TTP can read every message
• TTP must be trusted to tell the truth!
• Does not solve bootstrapping problem

Security is moot if Symantec gives a cert for foo.com to evil.com

http://foo.com
http://evil.com

Certificates in practice
• TTP = Certificate Authority

• Verisign, Comodo, Thawt, etc.

• Alice = web server

• Bob = user who visits alice.com
• Validate talking to the real alice.com
• Set up encrypted session for HTTPS

• This is a hierarchical public key infrastructure (PKI)

http://alice.com
http://alice.com

Certificate types

This is an EV (extended validation)
certificate; browsers show the  

full name for these kinds of certs

EV cert = legal vetting process

Where do CAs come from?

• CA public keys shipped with browsers, OS
• iOS9 ships with >50 that start with A-C

• see here for full list

https://support.apple.com/en-us/HT205205

Networking Intro
(Most slides generously borrowed

from Dave Levin)

This time
Starting with

Networking
Basics

• A whirlwind tour of networking

• What is a protocol?

• What are the abstractions / mental models?

• Network stack

(1) Protocols

• Syntax:
• How the communication is specified and structured
• Format, order of messages

• Semantics:
• What the communication means
• Actions that should be taken when transmitting,

receiving, or when a timer expires.

Agreement on how to communicate

An algorithm for communicating. 
And a “language” to speak.

IP packet “header”
4-bit 

Version
4-bit 

Header len
8-bit 

Type of service (TOS)
16-bit 

Total length (bytes)

16-bit 
Identification

3-bit 
Flags

13-bit 
Fragment offset

8-bit 
Time-to-live (TTL)

8-bit 
Protocol

16-bit 
Header checksum

32-bit 
Source IP address

32-bit 
Destination IP address

Payload

20-byte  
header

The payload is the “data” that IP is delivering:
May contain another protocol’s header & payload, and so on

(2) The network is “dumb”
• End-hosts are on the periphery of the network

• They can connect to one another, even though they are
not physically connected to one another

• Routers are the interior nodes that
• “Route”: determine how to get to B
• “Forward”: actually forward traffic from A to B

• Principle: the routers have no knowledge of ongoing
connections through them
• They do “destination-based” routing and forwarding

- Given the destination in the packet, send it to the “next hop” that
is best suited to help ultimately get the packet there

Mental model: The postal system

Postal system analogy
• Messages are self-contained

• Post: a message in an envelope
• Internet: data in a packet

• Interior routers forward based on destination address
• Post: zip code, then street, then building, then

apartment number (then the right individual)
• Internet: progressively smaller blocks of IP addresses,

then your computer (then the right application)

• Simple, robust.
• More sophisticated things go at the ends of the network

(3) Layers
• The design of the Internet is strongly partitioned

into layers
• Each layer relies on the services provided by the

layer immediately below it…
• … and provides service to the layer immediately

above it

Code you write

Run-time library

System calls

Device drivers

Voltage levels, etc.

Analogy: Each layer has a  
well-defined role  
that builds off of 
the layer below it

Between each layer  
is a well-defined 
interface

Isolated from  
user programs

Internet layering = “Protocol stack”

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

Layer 1: Physical layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• Encoding of bits to send
over a single physical link

• Examples:
• Voltage levels
• RF modulation
• Photon intensities

End-host C

Physical layer:
transmitting a single bit  

over a physical link 
(though not necessarily wired link)

Layer 2: Link layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• Framing and transmission of a
collection of bits into individual
messages sent across a single
subnetwork (one physical topology)

• Provides local addressing (MAC)

• May involve multiple physical links

• Often the technology supports
broadcast: every “node” connected
to the subnet receives

• Examples:
• Modern Ethernet
• WiFi (802.11a/b/g/n/etc)

End-host C End-host D

Router 6

Link layer
- transmitting messages  
- over a subnet  
- src/dst identified by globally 
 unique MAC addrs

Because you need to be able to join any  
subnet and be uniquely distinguishable

Layer 3: (Inter)network layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

• Provides global addressing (IP
addresses)

• Only provides best-effort delivery
of data (i.e., no retransmissions,
etc.)

• Works across different link
technologiesDifferent for each 

Internet “hop”

Lowercase-i “internet” = network of networks. 
Uppercase-i Internet = “the Internet”

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Network layer
- transmitting packets  
- within or across subnets  
- src/dst identified by locally unique IP addrs

63.14.2.33

192.168.1.1

192.168.1.100 192.168.1.101

Routers connect 
multiple subnets

Local uniqueness is often enough

End-host C End-host D

Router 663.14.2.33

192.168.1.1

192.168.1.100 192.168.1.101

Rest of the  
Internet

There are only 2^32 IP addrs

Many machines don’t need  
to be publicly reachable

Some addresses are  
“private” addresses

The router performs “Network  
Address Translation”: 

changes outgoing packets’  
src from 192.168.1.100 

to 63.14.2.33, and vice versa  
for incoming packets

Layer 4: Transport layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• End-to-end communication
between processes

• Different types of services
provided:

• UDP: unreliable datagrams

• TCP: reliable byte stream

• “Reliable” = keeps track of what
data were received properly
and retransmits as necessary

Layer 7: Application layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• Communication of whatever you
want

• Can use whatever transport(s)
is(are) convenient/appropriate

• Freely structured

• Examples:
• Skype (UDP)
• SMTP = email (TCP)
• HTTP = web (TCP)
• Online games (TCP and/or UDP)

Internet layering = “Protocol stack”

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

Implemented only at end hosts, 
not at interior routers
(this is our “dumb network”)

Internet layering = “Protocol stack”

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

Implemented everywhere  
 

The network is “dumb” but it 
needs to know precisely this  

much to do its job.

Internet layering = “Protocol stack”

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1
Can be different for each 
Internet “hop”

~Same for each Internet “hop”

Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Host C communicates with host A

Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Different physical & link layers

WiFi

Ethernet

Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Same network, transport, and application layers (3/4/7) 
Routers ignore transport & application

E.g., HTTP over  
TCP over IP

Layer 3: (Inter)network layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

• Provides global addressing (IP
addresses)

• Only provides best-effort delivery
of data (i.e., no retransmissions,
etc.)

• Works across different link
technologies

IP packet “header”
4-bit 

Version
4-bit 

Header len
8-bit 

Type of service (TOS)
16-bit 

Total length (bytes)

16-bit 
Identification

3-bit 
Flags

13-bit 
Fragment offset

8-bit 
Time-to-live (TTL)

8-bit 
Protocol

16-bit 
Header checksum

32-bit 
Source IP address

32-bit 
Destination IP address

Payload

20-byte  
header

IP Packet Header Fields (1)
• Version number (4 bits)

• Indicates the version of the IP protocol
• Necessary for knowing what fields follow
• “4” (for IPv4) or “6” (for IPv6)

• Header length (4 bits)
• How many 32-bit words (rows) in the header
• Typically 5
• Can provide IP options, too

• Type-of-service (8 bits)
• Allow packets to be treated differently based on different needs
• Low delay for audio, high bandwidth for bulk transfer, etc.

• Two IP addresses
• Source (32 bits)
• Destination (32 bits)

• Destination address
• Unique identifier/locator for the receiving host
• Allows each node (end-host and router) to make

forwarding decisions

• Source address
• Unique identifier/locator for the sending host
• Recipient can decide whether to accept the packet
• Allows destination to reply to the source

IP Packet Header Fields (2)

IP: “Best effort” packet delivery
• Routers inspect destination address, determine

“next hop” in the forwarding table

• Best effort = “I’ll give it a try”
• Packets may be lost
• Packets may be corrupted
• Packets may be delivered out of order

Fixing these is the job of the transport layer!

Attacks on IP

Source-spoof
There is nothing in IP that  
enforces that your source  

IP address is really “yours”

Eavesdrop / Tamper

IP provides no protection  
of the payload or header

Source-spoofing
• Why source-spoof?

• Consider spam: send many emails from one
computer

• Easy defense: block many emails from a given
(source) IP address

• Easy countermeasure: spoof the source IP address
• Counter-countermeasure?

• How do you know if a packet you receive has a
spoofed source?

Salient network features
• Recall: The Internet operates via destination-based

routing

• attacker: pkt (spoofed source) -> destination  
destination: pkt -> spoofed source

• In other words, the response goes to the spoofed
source, not the attacker

Defending against source-spoofing

• How do you know if a packet you receive has a
spoofed source?
• Send a challenge packet to the (possibly spoofed)

source (e.g., a difficult to guess, random nonce)
• If the recipient can answer the challenge, then likely

that the source was not spoofed

• So do you have to do this with every packet??
• Every packet should have something that’s difficult to

guess
• Recall the query ID in the DNS queries! Easy to

predict => Kaminsky attack

Source spoofing
• Why source-spoof?

• Consider DoS attacks: generate as much traffic as
possible to congest the victim’s network

• Easy defense: block all traffic from a given source
near the edge of your network

• Easy countermeasure: spoof the source address

• Challenges won’t help here; the damage has been
done by the time the packets reach the core of our
network

• Ideally, detect such spoofing near the source

Eavesdropping / Tampering

• No security built into IP

• => Deploy secure IP over IP

Virtual Private Networks (VPNs)
Trusted network

Trusted Client

Untrusted network

C

Goal: Allow the client to connect to the trusted network  
from within an untrusted network

Example: Connect to your company’s network (for payroll,
file access, etc.) while visiting a competitor’s office

servers

Virtual Private Networks (VPNs)
Trusted network

Trusted Client

Untrusted network

C S

Idea: A VPN “client” and “server” together create
end-to-end encryption/authentication

serversEncrypted

Not necessarily 
encrypted

Predominate way of doing this: IPSec

IPSec
• Operates in a few different modes

• Transport mode: Simply encrypt the payload but not
the headers

• Tunnel mode: Encrypt the payload and the headers

• But how do you encrypt the headers? How does
routing work?
• Encrypt the entire IP packet and make that the

payload of another IP packet

Tunnel mode

Trusted Client

C S serversEncrypted

Not necessarily 
encrypted

Packet {E(P)}
P

The VPN server decrypts and then sends the
payload (itself a full IP packet) as if it had just  

received it from the network

From the client/servers’ perspective:  
Looks like the client is physically connected to the network!

Layer 4: Transport layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• End-to-end communication
between processes

• Different types of services
provided:

• UDP: unreliable datagrams

• TCP: reliable byte stream

• “Reliable” = keeps track of what
data were received properly
and retransmits as necessary

TCP: reliability
• Given best-effort deliver, the goal is to ensure

reliability
• All packets are delivered to applications
• … in order
• … unmodified (with reasonably high probability)

• Must robustly detect and retransmit lost data

TCP’s bytestream service
• Process A on host 1:

• Send byte 0, byte 1, byte 2, byte 3, …

• Process B on host 2:
• Receive byte 0, byte 1, byte 2, byte 3, …

• The applications do not see:
• packet boundaries (looks like a stream of bytes)
• lost or corrupted packets (they’re all correct)
• retransmissions (they all only appear once)

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Process A on host H1

Process B on host H2

Abstraction: Each byte reliably delivered in order

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered
TCP’s first job: achieve the abstraction while  

hiding the reality from the application

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram ACK 1501

Reliability through acknowledgments  
to determine whether something was received.

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

ACK 3001

Buffer these until

TCP congestion control

• Try to use as much of the network as is safe (does
not adversely affect others’ performance) and
efficient (makes use of network capacity)

• Dynamically adapt how quickly you send based on
the network path’s capacity

• When an ACK doesn’t come back, the network may
be beyond capacity: slow down.

TCP’s second job: don’t break the network!

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP ports
• Ports are associated with OS processes

• Sandwiched between IP header and the
application data

• {src IP/port, dst IP/port} : this 4-tuple uniquely
identifies a TCP connection

• Some port numbers are well-known
• 80 = HTTP
• 53 = DNS

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP seqno
• Each byte in the byte stream has a unique

“sequence number”
• Unique for both directions

• “Sequence number” in the header = sequence
number of the first byte in the packet’s data

• Next sequence number = previous seqno +
previous packet’s data size

• “Acknowledgment” in the header = the next seqno
you expect from the other end-host

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP flags
• SYN

• Used for setting up a connection

• ACK
• Acknowledgments, for data and “control” packets

• FIN

• RST

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data
Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN seqno=x

Ti
m

e

Waterfall 
diagram SYN seqno=y  

+ACK x+1

ACK y+1

Data
Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

TCP flags
• SYN

• ACK

• FIN: Let’s shut this down (two-way)
• FIN
• FIN+ACK

• RST: I’m shutting you down
• Says “delete all your local state, because I don’t know

what you’re talking about

Attacks
• SYN flooding

• Injection attacks

• Opt-ack attack

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

B will hold onto this local state and retransmit SYN+ACK’s  
until it hears back or times out (up to 63 sec).

SYN + ACK

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN

New connections 
will fail (insufficient 
memory)

SYN flooding details
• Easy to detect many incomplete handshakes from a

single IP address

• Spoof the source IP address
• It’s just a field in a header: set it to whatever you like

• Problem: the host who really owns that spoofed IP
address may respond to the SYN+ACK with a RST,
deleting the local state at the victim

• Ideally, spoof an IP address of a host you know won’t
respond

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1
Check that f(data) is valid
for this connection. Only
at that point do you
allocate state.IP/port,

MSS,…

SYN cookie format
A B

SYN

SYN + ACK  

seqno = f(data)

ACK f(data)+1

IP/port,
MSS,…

The secure hash makes  
it difficult for the attacker  
to guess what f() will be,
and therefore the attacker  
cannot guess a correct ACK 
if he spoofs.

f(.) =
Slow-moving
timestamp MSS Secure hash

Prevents 
replay 
attacks

The info we 
need for this 
connection

Includes: 
IPs/ports, MSS, 

timestamp

32-bit seqno

Injection attacks
• Suppose you are on the path between src and dst;

what can you do?
• Trivial to inject packets with the correct sequence

number

• What if you are not on the path?
• Need to guess the sequence number
• Is this difficult to do?

Initial sequence numbers
• Initial sequence numbers used to be deterministic

• What havoc can we wreak?
• Send RSTs
• Inject data packets into an existing connection (TCP

veto attacks)
• Initiate and use an entire connection without ever

hearing the other end

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

6. RSTs to trusted server (cleanup)

Defenses
• Initial sequence number must be difficult to predict!

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Bytes 1501-2001Bytes 2002-2502

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

But to get you to send faster, I need  
to get data in order to ACK, so I  
need to receive quickly …or do I?

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

But so long as I keep ACKing correctly, it  
doesn’t matter.

Amplification
• The big deal with this attack is its Amplification

Factor
• Attacker sends x bytes of data, causing the victim to

send many more bytes of data in response
• Recent examples: NTP, DNSSEC

• Amplified in TCP due to cumulative ACKs
• “ACK x” says “I’ve seen all bytes up to but not

including x”

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

Max window size
MSS

x (14 + 40 + MSS)

Packets sent per ACK Bytes per packet

Ethe
rne

t

TC
P/IP

Pay
loa

d

• Max ACKs attacker can send per second:

Attacker bandwidth (bytes/sec)
(14 + 40)

Size of ACK packet

Opt-ack’s amplification factor
• Boils down to max window size and MSS

• Default max window size: 65,536
• Default MSS: 536

• Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x

• Window scaling lets you increase this by a factor of 2^14

• Window scaling amp factor: ~1336 * 2^14 ~ 22M

• Using minimum MSS of 88: ~ 32M

Opt-ack defenses
• Is there a way we could defend against opt-ack in

a way that is still compatible with existing
implementations of TCP?

• An important goal in networking is incremental
deployment: ideally, we should be able to benefit
from a system/modification when even a subset of
hosts deploy it.

Transport layer security (TLS)

• Runs on top of TCP/IP

• Protocols for secure comms
• Confidentiality with block and stream ciphers
• Integrity with MACs
• Authenticity with certificates

• Replacement for SSL (secure sockets layer)
• Several problems including padding attacks

TLS protocol overview
browser

(initiates connection)
server

(authenticates itself)

~~~~~~~Switch to negotiated cipher~~~~~~~
Data transmission

Version, crypto options, nonce
Client hello

Version, crypto options, nonce, 
signed PK certificate

Server hello + server cert (PKs)

Server key exchange (if using DH)

PreMaster secret encrypted with server’s PK
Client key exchangeCompute 

K based 
on nonces & 
PreMaster

Compute 
K based 

on nonces & 
PreMaster



HTTPS
• HTTP “on top of” TLS 

• Pros: Avoid MITM
• Includes e.g. reducing video quality, inserting ads 

• Cons 
• Takes more time 
• Network service/ISP can’t compress or cache it 
• Network service/ISP wants to insert ads

https://www.eff.org/https-everywhere

https://www.eff.org/https-everywhere


Revoking certificates

• When you detect compromise or change keys, you 
have to notify the CA 

• CA then revokes the certificate 
• Revocation list  
• Online cert status protocol 
• Short expiry times



Revocation list
• CA publishes list of revoked certs 

• User (in practice, browser) must periodically 
download the newest list 
• Check when validating a certificate 

• Vulnerability window since last list update 
• Or until certificate expires 

• Can be beaten via DOS (why?)



Online certificate status

• During validation, ask CA whether cert is revoked 

• Gets rid of vulnerability window 
• But can’t accept any cert if CA is not online! 

• And, the CA gets to know where you browse



Short expiration

• Make all certificates have very short expirations 
(e.g. 10 min or less) 
• For the most part, renew automatically 

• Revocation == decline to renew 

• Expensive, not implemented that I’m aware of 
• Also some browsers accept expired certs



Trusting the Trusted 
Third Party

http://randomrock.com.br/randomrock/rock-n-movies-20-watchmen/



CA compromise
• 2001: Verisign issued two code-signing certificates for 

Microsoft Corporation 
• To someone who didn’t actually work at MS 
• No functional revocation paradigm 

• 2011: Signing keys compromised at Comodo and 
DigiNotar 
• Bad certs for Google, Yahoo!, Tor, others 
• Seem to have been used mostly in Iran 

• Some CAs are less picky than others



Case study: Superfish (Feb 2015)

• Lenovo laptops shipped with “Superfish” adware 

• Installs self-signed root cert into browsers 
• MITM on every HTTPS site to inject ads 

• Worse: Same private key for every laptop 
• Password = “komodia” (company 

• Lenovo“did not find any evidence to 
substantiate security concerns”

http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/

ht
tp

://
w

w
w.

sa
in

te
ld

ai
ly.

co
m

/a
rc

hi
ve

s/
11

40
0

http://www.sainteldaily.com/archives/11400


Fixing rogue CA problems

• Limit which CAs can issue for which domains 

• Certificate pinning 
• Browser, apps fix certain CA or cert for a server 
• Shipped with product, or on first use 
• Not always appropriate, hard to maintain



Fixing rogue CA problems (2)
• Broad surveillance 

• People on many networks report certs to Notaries 
• Check that others saw the same cert you did 
• Privacy implications 

• Public unforgeable audit log 
• Uses crypto, Merkle hash trees 

• Only accept certs published in log 
• Same idea: Non-equivocation 
• Being implemented now

https://www.eff.org/observatory https://www.eff.org/sovereign-keys

https://www.eff.org/observatory
https://www.eff.org/sovereign-keys


Web of trust



Web of trust

• Alternative PKI — not hierarchical 
• Pioneered by PGP  

• Don’t rely on centralized authorities 

• Everyone issues certificates for people they know



Trust chains in web of trust

Alice

Bob

Cookie

Donald

trusts

vouches for

vouches for

sends message to



A matter of trust
• Context: 

• Alice trusts Bob to diligently check identity 
• But Bob is only signing identity, not necessarily 

belief that Cookie is equally vigilant  

• Transitivity: Alice trusts Bob, and Bob trusts Cookie. 
• But does that mean Alice should trust Cookie? 
• Trust for honesty == trust for good judgment?



Web-of-trust in practice

• Automatically find many such paths 
• More, shorter paths = higher confidence? 

• Difficult to use 
• Still have bootstrapping problems 
• When should I agree to sign what? 
• Historically, serious UX problems as well


