
CFI and Malware
With material from Michelle Mazurek,
Dave Levin, Vern Paxson, Dawn Song

Control-flow Integrity (CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

Call Graph

sort2
sort

lt

gt

Which functions call other functions

bool lt(int x, int y) {
 return x<y;
}
bool gt(int x, int y) {
 return x>y;
}

sort2(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

Control Flow Graph
bool lt(int x, int y) {
 return x<y;
}
bool gt(int x, int y) {
 return x>y;
}

sort2(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

sort2
sort

lt

gt

Break into basic blocks
Distinguish calls from returns

CFI: Compliance with CFG
• Compute the call/return CFG in advance

• During compilation, or from the binary

• Monitor the control flow of the program and ensure that it
only follows paths allowed by the CFG

• Observation: Direct calls need not be monitored
• Assuming the code is immutable, the target address

cannot be changed

• Therefore: monitor only indirect calls
• jmp, call, ret with non-constant targets

bool lt(int x, int y) {
 return x<y;
}
bool gt(int x, int y) {
 return x>y;
}

sort2(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

Control Flow Graph

sort2
sort

lt

gt

Direct calls (always the same target)

Control Flow Graph

sort2
sort

lt

gt

Indirect transfer (call via register, or ret)

bool lt(int x, int y) {
 return x<y;
}
bool gt(int x, int y) {
 return x>y;
}

sort2(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

Control-flow Integrity (CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)

In-line Monitor
• Implement the monitor in-line, as a program

transformation

• Insert a label just before the target address of an
indirect transfer

• Insert code to check the label of the target at
each indirect transfer
• Abort if the label does not match

• The labels are determined by the CFG

Simplest labeling

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

Use the same label at all targets:
label just means it’s OK to jump here.

What could go wrong?

Simplest labeling

• Can’t return to functions that aren’t in the graph

• Can return to the right function in the wrong order

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

system
ok…

Detailed labeling
sort2

sort
lt

gtlabel L

label L

label M
label N

label M

• All potential destinations of same source must match
• Return sites from calls to sort must share a label (L)
• Call targets gt and lt must share a label (M)
• Remaining label unconstrained (N)

Prevents more abuse than simple labels,
but still permits call from site A to return to site B

ok…

Classic CFI instrumentation
Before

CFI

After
CFI

Classic CFI instrumentation

Efficient?
• Classic CFI (2005) imposes 16% overhead on

average, 45% in the worst case
• Works on arbitrary executables
• Not modular (no dynamically linked libraries)

• Modular CFI (2014) imposes 5% overhead on
average, 12% in the worst case
• C only (part of LLVM)
• Modular, with separate compilation
• http://www.cse.lehigh.edu/~gtan/projects/upro/

http://www.cse.lehigh.edu/~gtan/projects/upro/

Control-flow Integrity (CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)

Sufficient randomness, immutability

Can we defeat CFI?
• Inject code that has a legal label

• Won’t work because we assume non-executable data

• Modify code labels to allow the desired control flow
• Won’t work because the code is immutable

• Modify stack during a check, to make it seem to
succeed
• Won’t work because adversary cannot change

registers into which we load relevant data
• No time-of-check, time-of-use bug (TOCTOU)

CFI Assurances
• CFI defeats control flow-modifying attacks

• Remote code injection, ROP/return-to-libc, etc.

• But not manipulation of control-flow that is allowed by the
labels/graph
• Called mimicry attacks
• The simple, single-label CFG is susceptible to these

• Nor data leaks or corruptions
• Heartbleed would not be prevented
• Nor the authenticated overflow

• Which is allowed by the graph

void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, str);
 if(authenticated) { …
}

Secure?

• MCFI can eliminate 95.75% of ROP gadgets on
x86-64 versions of SPEC2006 benchmark suite
• By ruling their use non-compliant with the CFG

• Average Indirect-target Reduction (AIR) > 99%
• Essentially, the percentage of possible targets of

indirect jumps that CFI rules out

Malware: Malicious code that
runs on the victim’s system

How does malware run?
• Attacks a user- or network-facing vulnerable service

• e.g., using techniques from prior lectures

• Backdoor: Added by a malicious developer

• Social engineering: Trick user into running/clicking

• Trojan horse: Offer a good service, add in the bad

• Attacker with physical access installs & runs it

What does malware do?
• Potentially nearly anything (subject to permissions)
• Brag: “APRIL 1st HA HA HA HA YOU HAVE A VIRUS!”
• Destroy: files, hardware
• Crash the machine, e.g., by over-consuming resource

• Fork bombing or “rabbits”: while(1) { fork();
• Steal information (“exfiltrate”)
• Launch external attacks: spam, click fraud, DoS
• Ransomware: e.g., by encrypting files
• Rootkits: Hide from user or software-based detection

• Often by modifying the kernel
• Man-in-the-middle attacks to sit between UI and reality

Viruses vs. worms
• Virus: Run when user initiates something

• Run program open attachment, boot machine
• Typically infects by altering stored code
• Self-propagating: Create new instance elsewhere

• Worm: Runs while another program is running
• No user intervention required
• Typically infects by altering running code
• Self-propagating: infect running code elsewhere

The line between these is thin and blurry; some are both

Technical challenges
• Viruses: Detection

• Antivirus software wants to detect
• Virus writers want to avoid detection as long as possible
• Evade human response

• Worms: Spreading
• The goal is to hit as many machines and as quickly as

possible
• Outpace human response

Viruses

Viruses
• They are opportunistic: they will eventually be run due to user

action

• Two orthogonal aspects define a virus:
1. How does it propagate?
2. What else does it do (what is the “payload”)?

• General infection strategy:
• Alter some existing code to include the virus
• Share it, expect users to (unwittingly, possibly automatically) re-

share

• Viruses have been around since at least the 70s

Classified by what they infect
• Document viruses

• Implemented within a formatted document (Word, PDF, etc.)
• Enabled by macros, javascript
• (Why you shouldn’t open random attachments)

• Boot sector viruses
• Boot sector: small disk partition at fixed location; loaded by firmware

at boot
• What’s supposed to happen: this code loads the OS
• Similar: AutoRun on music/video disks
• (Why you shouldn’t plug random USB drives into your computer)

• Etc.

Viruses have resulted in a technological arms race

The key is evasion

Mechanisms for 
evasive  

propagation

Mechanisms for 
detection and 

prevention

Want to be able to  
claim wide coverage 

for a long time

Want to be able to  
claim the ability to 

detect many viruses

How viruses propagate
• Opportunity to run: attach to something likely

• autorun.exe on storage devices
• Email attachments

• Opportunity to infect:
• See a USB drive: overwrite autorun.exe
• User is sending an email: alter the attachment
• Proactively create emails (“I Love You”)

Detecting viruses: Signatures

• Identify bytes corresponding to known virus

• Install recognizer to check all files
• In practice, requires fast scanning

• Drives multi-million$ antivirus market
• Marketing via # signatures recognized
• Is this a useful metric?

Um.. thanks?

You are a virus writer
• Your goal is for your virus to spread far and wide

• How do you avoid detection by antivirus software
that uses signatures?

1. Make signature harder to find

Original program
Entry
point

etc.

How viruses infect other programs

Original program
Entry
point

Original program
Entry
point

jmp

jmp

Original programVirus
Entry
point “Appending”

Confuse 
scanners

“Surrounding”

Overwrite uncommonly  
used parts of the program

You are a virus writer
• Your goal is for your virus to spread far and wide

• How do you avoid detection by antivirus software
that uses signatures?

1. Make signature harder to find

2. Change code to prevent defining a signature

Mechanize code changes:
Goal: every time you inject your code, it looks different

Polymorphic and
metamorphic viruses

Polymorphic using encryption
Virus

Encrypted virus codeKe
y

D
ec

ry
pt

er

Original program
Entry
point Take over the 

entry pointVirus
Ke

y
D

ec
ry

pt
er

jmp

Virus code

Ke
y

Encrypted virus code
D

ec
ry

pt
er

Virus codeKe
y

D
ec

ry
pt

er

En
cr

yp
to

r

Ke
y

2 Encrypted virus code
(same code, but each time

you encrypt it looks different)D
ec

ry
pt

er

When used properly,
encryption will yield
a different, random
output upon each

invocation

jmp

Making it automatic

Polymorphic viruses: Arms race

• Idea #1: Narrow signature to catch the decrypter
• Often very small: can result in many false positives
• Attacker can spread this small code around and jmp

• Idea #2: Execute or statically analyze the suspect
code to see if it decrypts.
• How do you distinguish from common “packers”

which do something similar (decompression)?
• How long do you execute the code??

Now you are the antivirus writer: how do you detect?

Now you are the virus writer again: how do you evade?

Polymorphic countermeasures

• Change the decrypter
• Oligomorphic viruses: assemble decrypter from

several interchangeable alternative pieces
• True polymorphic viruses: can generate an

endless number of decrypters
• Different encryption methods
• Random generation of confounds
• Downside: inefficient

Metamorphic viruses
• Every time the virus propagates, generate a

semantically different version of the code
• Higher-level semantics remain the same
• But the way it does it differs

- Different machine code instructions
- Different algorithms to achieve the same thing
- Different use of registers
- Different constants….

• How would you do this?
• Include a code rewriter with your virus
• Add a bunch of complex code to throw others off (then

just never run it)

Polymorphic

When can AV software successfully scan?

Metamorphic

When can AV software successfully scan?

Detecting
metamorphic viruses?

Scanning isn’t enough

• Need to analyze execution behavior

• Two broad stages in practice (both take place in a
safe environment, like gdb or a virtual machine)
1. AV company analyzes new virus to find

behavioral signature
2. AV system at end host analyzes suspect code

to see if it matches the signature

Detecting metamorphic viruses
• Countermeasures

• Change slowly (hard to observe pattern)
• Detect if you are in a safe execution environment

(e.g., gdb) and act differently

• Counter-countermeasures
• Detect detection and skip those parts

• Counter-counter-counter…. Arms race

Attackers have the upper hand:
AV systems hand out signature oracles

Putting it all together sounds hard
• Creating a virus can be really difficult

• Historically error prone

• But using them is easy: any scriptkiddy can use metasploit
• Good news: so can any white hat pen tester

Crypting services

code

Crypting service
AV

AV

AV

AV

AV

AV

Many different 
vendors

“FUD” code
Iteratively obfuscate the

code (encrypt + jmp + …)

detected

code

Until the obfuscated code  
is “fully undetectable”

CoDe

clear

So how much malware is out there?

• Polymorphic and metamorphic viruses can make it
easy to miscount viruses

• Take numbers with a grain of salt
• Large numbers are in the AV vendors’ best interest

• Previously, most malware was showy
• Now primary goal is frequently to not get noticed

How do we clean up an infection?
• Depends what the virus did, but..

• May require restoring / repairing files
• A service that antivirus companies sell

• What if the virus ran as root?
• May need to rebuild the entire system

• So what, just recompile it?
• What if the malware left a backdoor in your compiler?

- Compile the malware back into the compiler
• May need to use original media and data backups

Virus case studies

Brain
• Propagation method

• Copies itself into the boot sector
• Tells the OS that all of the boot sector is “faulty” (so

that it won’t list contents to the user)
- Thus also one of the first examples of a stealth virus

• Intercepts disk read requests for 5.25” floppy drives
- Sees if the 5th and 6th bytes of the boot sector are 0x1234
- If so, then it’s already infected, otherwise, infect it

• Payload:
• Nothing really; goal was just to spread (to show off?)
• However, it served as the template for future viruses

First IBM PC virus (1987)

Downloaded from wikipedia.org

http://wikipedia.org

Rootkits
• Recall: a rootkit is malicious code that takes steps

to go undiscovered
• By intercepting system calls, patching the kernel, etc.
• Often effectively done by a man in the middle attack

• Rootkit revealer: analyzes the disk offline and
through the online system calls, and compares

• Mark Russinovich ran a rootkit revealer and found a
rootkit in 2005… installed by a CD he had bought.

Sony XCP rootkit
• Goal: keep users from copying copyrighted material

• How it worked:
• Loaded thanks to autorun.exe on the CD
• Intercepted read requests for its music files
• If anyone but Sony’s music player is accessing them,

then garble the data
• Hid itself from the user (to avoid deletion)

• How it messed up
• Morally: violated trust
• Technically: Hid all files that started with “sys”
• Seriously?: Uninstaller did not actually uninstall;

introduced additional vulnerability instead

Detected 2005

Worms

Controlling millions of hosts: Why?
• Distributed Denial of Service (DDoS)

• Generate network traffic from many sources..
• .. to a single destination
• .. with the intention of overloading their network

• Consume too many resources for legitimate users to
also use

• Steal sensitive information from millions of others
• Even a small fraction of unprotected people ⇒ $

• Confuse and disrupt

Controlling millions of hosts: How?

• Worm: self-propagates by arranging to have itself
immediately executed
• At which point it creates a new, additional instance of itself

• Typically infects by altering running code
• No user intervention required

• Like viruses, propagation and payload are orthogonal

Self-propagation
• Goal: spread as quickly as possible

• The key is parallelization
• Without being triggered by human interaction!

Propagation
(1) Targeting: how does the worm find 

new prospective victims?
(2) Exploit: how does the worm get  

code to automatically run?

Morris worm — 1988

• Accidentally more agressive than intended
• 6-10% of all internet hosts infected

• Scan local subnet; exploit fingerd overflow
• Crack passwords
• Phone home

Code Red — 2001
• Exploited overflow in MS-IIS server

• At peak, more than 2000 new infections/minute
• Before 20th of month, propagate

• After 20th, attack whitehouse.gov

Example: Code Red
• Released July 13, 2001
• Exploits buffer overflow vulnerability inside IIS
• More than 2000 new hosts were infected each minute at peak

propagation

Copyright UC Regents, Jeff Brown for CAIDA, UCSD.

WORMS: PROPOGATION DETECTION DEFENSE

http://whitehouse.gov

CodeRed Propagation
• Spread by randomly scanning the entire 32-bit IP

address space
• Pick a pseudorandom 32-bit number = IP addr
• Send exploit packet to that address
• Repeat

• This is a very common worm technique

• Each instance used the same random seed
• What does this mean in practice?

More CodeRed
• If found c:\notworm then do nothing

• Whitehouse.gov changed its IP address
• Made the attack portion useless

• Revision one week later: random number generator
was seeded properly
• No attack function, installs backdoor instead
• By then many but not all hosts patched

Credit: Vern Paxson’s CS 161 at Berkeley

Modeling worm spread

S(t) = Susc. hosts at time t
I(t) = Infected hosts at time t
N = size of vuln. population = S(t) + I(t)
β = contact rate

• Classic epidemic model: Susceptible-Infectable

Change in
#infected
over time

Modeling worm spread
• Classic epidemic model: Susceptible-Infectable

Rewriting using i(t) = I(t) / N and S = N - I:
di
dt

= β · i · (1-i) ⇒ i(t) =
eβt

1+eβt

Fraction 
infected grows 

as a logistic

Change in
#infected
over time

Fitting the model to Code Red

Credit: Vern Paxson’s CS 161 at Berkeley

SQL Slammer (2003)
• Exploited overflow in MS SQL Server

• Patch had been available for > 6 months

• Connectionless UDP rather than TCP
• Entire worm fit in a single packet!

• When scanning, the worm could “fire and forget”
• Stateless!

• Infected 75k machines in 10 minutes
• At its peak, doubled every 8.5 seconds

Life just before Slammer

Credit: Vern Paxson’s CS 161 at Berkeley

Life just after Slammer

Credit: Vern Paxson’s CS 161 at Berkeley

Slammer’s growth

Credit: Vern Paxson’s CS 161 at Berkeley

• Heavy traffic caused routers to collapse
• Caused flood of routing table updates
• More updates on router restart
• Hence, β decreased! (Carrying capacity)

“Modern”
Malware

• Note that most of these examples are old, why?
• Maybe the problem is solved? (Hint: no)

• Instead, new era of malware
• Old: Pride, anger, destruction, low-level politics
• New: Economics, governments, espionage
• How does this change the game?

• Didn’t change: Spread fast, avoid detection

• New goals:
• Avoid detection longer; persistence
• Exfil key data
• Maintain command-control (remote admin)

• New infection vectors
• Web security, coming next week

Botnets (More later)

• Infect many hosts; maintain control

• Sell these hosts as resources
• To send spam, mine bitcoin, turn on webcams,

install keyloggers

Stuxnet: Propagation
• Virus: initially spread by infected USB stick

• Once inside network, acted as a worm, spreading quickly

• Exploited four zero-day exploits
• Zero-day: Known to only the attacker until the attack
• Typically, one zero-day is enough to profit
• Four was unprecedented

- Immense cost and sophistication on behalf of the attacker

• Rootkit: Installed signed device drivers
• Thereby avoiding user alert when installing
• Signed with certificates stolen from two Taiwanese CAs

June 2010

Stuxnet: Payload
• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

• In which case, slowly increase the freq to 1410Hz
• You know, enough to break the centrifuge
• .. all the while sending “looks good to me” readings to the

user
• .. then drop back to normal range

Stuxnet: Payload
• Target industrial control systems: overwrite programmable

logic boards

• Man-in-the-middle between Windows and Siemens control
systems; looked like it was working properly to the operator

WinCC PLC

Motors

Stuxnet

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

Stuxnet: Fallout
• Iran denied they had been hit by Stuxnet

• Then claimed they were, but had contained it

• Now believed it took out 1k of Iran’s 5k centrifuges

• Security experts believe the U.S. did it (possibly
along with Israel) due to its sophistication and cost

• Legitimized cyber warfare

Detecting modern malware

• Connection to known C&C server
• Counter: Cycle domain and use dynamic DNS
• Re-counter: Block connections to new domains

• “Custom” TCP and UDP

• Generating direct email (vs. traversing mail server)

• Anomaly detection
All subject to arms race!
Detection, not prevention

Malware summary
• Technological arms race between those who wish

to detect and those who wish to evade detection

• Started off innocuously

• Became professional, commoditized
• Economics, cyber warfare, corporate espionage

• Advanced detection: based on behavior, anomalies
• Must react to attacker responses

