CFIl and Malware

With material from Michelle Mazurek,
Dave Levin, Vern Paxson, Dawn Song

Control-flow Integrity (CFI)

* Define “expected behavior”:
Control flow graph (CFG)

e Detect deviations from expectation efficiently

* Avoid compromise of the detector

Call Graph

bool It(int X, int y) {

sort2(int a[], int b[], int len) return x<y:

{
sort(a, len, It); ; . .
sort(b, len, gt); bool gt(int x, int y) {

return x>y;
}

}

ort e

Which functions call other functions

Control Flow Graph

bool It(int X, int y) {

sort2(int a[], int b[], int len) return x<y:

{
sort(a, len, It); ; | |
sort(b, len, gt); bool gt(int x, int y) {

return x>y;
}

}

Sort2 z

Break into basic blocks
Distinguish calls from returns

CFl: Compliance with CFG

Compute the call/return CFG in advance
 During compilation, or from the binary

Monitor the control flow of the program and ensure that it
only follows paths allowed by the CFG

Observation: Direct calls need not be monitored

 Assuming the code is immutable, the target address
cannot be changed

Theretore: monitor only indirect calls
* jmp, call, ret with non-constant targets

Control Flow Graph

sort2(int a[], int b[], int len)
{

sort(a, len, It);
sort(b, len, gt);

}

SOrt2 B

/V

~

bool It(int X, int y) {
return x<y;

}

bool gt(int x, int y) {
return x>vy;

}

Sort

Direct calls (always the same target)

Control Flow Graph

bool It(int X, int y) {

sort2(int a[], int b[], int len) return x<y:

{
sort(a, len, It); ; . .
sort(b, len, gt); bool gt(int x, int y) {

return x>y;
}

}

sort2 sort
-lx
e NG

Indirect transfer (call via register, or ret)

Control-flow Integrity (CFI)

e Define “expected behavior”:
Control flow graph (CFG)

* Detect deviations from expectation efficiently
In-line reference monitor (IRM)

* Avoid compromise of the detector

IN-llne Monitor

Implement the monitor in-line, as a program
transformation

Insert a label just before the target address of an
indirect transfer

Insert code to check the label of the target at
each indirect transfer

e Abort if the label does not match

The labels are determined by the CFG

Simplest labeling

sort2

label L
SOrt
label L
bIL IbIL

Use the same label at all targets:
label just means it's OK to jump here.

What could go wrong?

Simplest labeling

label L
Sort
label L
label L

a N
-l‘ 4’
)

.- _h

’ . '/'

e Can't return to functions that aren’t in the graph

 Can return to the right function in the wrong order

Detalled labeling

ﬁ
label N

SOrt2

label M

e All potential destinations of same source must match
* Return sites from calls to sort must share a label (L)
» Call targets gt and 1t must share a label (M)
 Remaining label unconstrained (N)

Prevents more abuse than simple labels,
but still permits call from site A to return to site B

Classic CFIl instrumentation

Before p~—-

CFI

After
CFI

81 7€ 04 78 56 34 12
13
DO

OF 18 05 DD CC BB AA

[ebxis]

mov eax,

cmp leax+4],
jne error_label
call eax

prefetchnta [AABBCCDDh] -

x86 assembly code

12345€78h ;

label ID,

load pointer into register
compare opccdes at destination
if not ID value, then fail
call function pointer

used upcn the return

ret 1Ch

8B OC 24

83 C4 14

3E B1 7¢ 04 DD CC BB AA
76 13

FF E1

ecx, [ebp]
esp, 14h
[ecx+4],
error_label

load addlebs 1nto reglstez
; pop 20 bytee off the stack
AAEBCCDDh

compare opcodes at destination
if not ID value, then fail
jump to return address

Classic CFl instrumentation

FF 53 08 call [ebx+8] ; call a function pointer
is instrumented using prefetchnla destination 1Ds, to become:
8B 43 08 mov eax, [ebxt8] ; load pointer into register «
3E 81 78 04 78 56 34 12 cmp leax+4],| 12345678h |; compare opccdes at destination
75 13 jne error_label : if not ID value, then fail

call eax ; call functicn pointer
3E OF 18 05 |DD CC BB AA prefetchnta [AABECCDDh] ; label ID, used upcn the return

Fig. 4. OQOur CFI implemenlalion of a call through a [unction pointer.

Bytes (opcodes) x86 assembly code Comment

c2 10 00 ret 1Ch ; return, and pop 1€ extra bytes

1s instrumented using prefetchnta destination 1Ds, to become:

8B 0C 24 mov ecx, [esp] ; load address into register
83 C4 14 add esp, 14h ; pop 20 bytee off the stack
3E B1 7S 04 DD CC BB AA cmp [eck+4],| AABBCCDDh |; compare opcodes at destination
78 13 jne error_label ; if not ID value, then fail

FF E1 jmp ecx ; Jump to return address

Efficient”

* Classic CFl (2005) imposes 16% overhead on
average, 45% in the worst case

 Works on arbitrary executables
 Not modular (no dynamically linked libraries)

 Modular CFl (2014) imposes 5% overhead on
average, 12% in the worst case

 Conly (part of LLVM)
 Modular, with separate compilation

* http://www.cse.lehigh.edu/~gtan/projects/upro/

http://www.cse.lehigh.edu/~gtan/projects/upro/

Control-flow Integrity (CFI)

e Define “expected behavior”:
Control flow graph (CFG)

* Detect deviations from expectation efficiently
In-line reference monitor (IRM)

* Avoid compromise of the detector
Sufficient randomness, immutability

Can we defeat CFI?

* Inject code that has a legal label
e Won't work because we assume non-executable data

* Modify code labels to allow the desired control flow
» Won't work because the code is immutable

 Modify stack during a check, to make it seem to
succeed

 Won't work because adversary cannot change
registers into which we load relevant data

* No time-of-check, time-of-use bug (TOCTOU)

CFl Assurances

* CFI defeats control flow-modifying attacks

 Remote code injection, ROP/return-to-libc, etc.

* But not manipulation of control-flow that is allowed by the

labels/graph
e Called mimicry attacks

e The simple, single-label CFG is susceptible to these

* Nor data leaks or corruptions
* Heartbleed would not be prevented
* Nor the authenticatea OVErflow
* Which is allowed by the graph

void func(char *argl)

{

int authenticated = 0;
char buffer([4];
strcpy(buffer, str);
if (authenticated) { ..

Secure”

* MCFI can eliminate 95.75% of ROP gadgets on
x86-64 versions of SPEC2006 benchmark suite

* By ruling their use non-compliant with the CFG

* Average Indirect-target Reduction (AlIR) > 99%

e Essentially, the percentage of possible targets of
indirect jJumps that CFl rules out

Malware: Malicious code that
runs on the victim's system

How does malware run?

Attacks a user- or network-facing vulnerable service

* e.g., using technigues from prior lectures
Backdoor: Added by a malicious developer
Social engineering: Trick user into running/clicking
Trojan horse: Ofter a good service, add in the bad

Attacker with physical access installs & runs it

What does malware do”?

« Potentially nearly anything (subject to permissions)

« Brag: “APRIL 1st HA HA HA HA YOU HAVE A VIRUS!”

* Destroy: files, hardware

« Crash the machine, e.qg., by over-consuming resource
* Fork bombing or “rabbits”: while(1) { fork();

o Steal information (“exfiltrate”)

e Launch external attacks: spam, click fraud, DoS

* Ransomware: e.qg., by encrypting files

e Rootkits: Hide from user or software-based detection
* Often by modifying the kernel

 Man-in-the-middle attacks to sit between Ul and reality

Viruses vs. worms

* Virus: Run when user initiates something

* Run program open attachment, boot machine
* Jypically infects by altering stored code
* Selt-propagating: Create new instance elsewhere

* Worm: Runs while another program is running

* No user intervention required

* Typically infects by altering running code
e Self-propagating: infect running code elsewhere

The line between these is thin and blurry; some are both

lechnical challenges

e \iruses: Detection
- Antivirus software wants to detect
* Virus writers want to avoid detection as long as possible
- Evade human response

* \Worms: Spreading

- The goal is to hit as many machines and as quickly as
possible

Outpace human response

Viruses

Viruses

They are opportunistic: they will eventually be run due to user
action

Two orthogonal aspects define a virus:
1. How does it propagate”
2. What else does it do (what is the “payload”)?

General infection strategy:
* Alter some existing code to include the virus

e Share it, expect users to (unwittingly, possibly automatically) re-
share

Viruses have been around since at least the 70s

Classified by what they infect

 Document viruses
* Implemented within a formatted document (Word, PDF, etc.)
 Enabled by macros, javascript
e (Why you shouldn’t open random attachments)

e Boot sector viruses

e Boot sector: small disk partition at fixed location; loaded by firmware
at boot

 What's supposed to happen: this code loads the OS
o Similar: AutoRun on music/video disks
e (Why you shouldn’t plug random USB drives into your computer)

e EtcC.

Viruses have resulted in a technological arms race

The key Is evasion

Mechanisms for

evasive detection and
propagation prevention

Want to be able to Want to be able to

claim wide coverage claim the ability to

for a long time detect many viruses

HOW VIruses propagate

* Opportunity to run: attach to something likely

* autorun.exe on storage devices
* Emall attachments

* Opportunity to infect:
e See a USB drive: overwrite auto

* User is sending an email: alter t

‘un.exe

ne attachment

* Proactively create emails (‘| Love You")

Detecting viruses: Signatures

* |dentify bytes corresponding to known virus

* Install recognizer to check all files
* |n practice, requires fast scanning

* Drives multi-million$ antivirus market
* Marketing via # signatures recognized

e |s this a useful metric?

JSymantec. l Enterprise United States Shopping w

Products & Solutions v Support & Communities v Security Response v Try & Buy v

#f Security Response Virus Definitions & Security Updates

Virus Definitions & Security Updates

To stay secure you should be running the most recent version of your licensed
product and have the most up-to-date security content. Use this page to make sure l Norton
your security content is current.

Need to update your
Norton products?

Select product:
Go to Norton.com

Symantec Endpoint Protection 12.1.3

A valid support contract is required to obtain the latest content. To renew your product license, see the License Renewal Center.

B File-Based Protection (Traditional Antivirus) ©

Definitions Created: 2/10/2014 Details: Release History
Definitions Released: 2/10/2014 Download: Definitions , Content is downloaded by your product
Extended Version: 2/10/2014 rev. 16 via LiveUpdate.

Definitions Version: 160210p

Sequence Number: 15
Number of Signatures] 23,927,535

Um.. thanks?

FEATURE

Antivirus vendors go beyond
signature-based antivirus

e — e
’ =N Al Aln Bl 1R+ 1=

SLCURITY . _ _ _ o]
™ This article can also be found in the Premium Editorial Download "Information

» Yulsap

J=Y Security magazine: Successful cloud migrations require careful planning.”

e W

Download it now to read this article plus other related content.

Security experts and executives at security vendors are in agreement that signature-
based antivirus isn't able to keep up with the explosion of malware. For example, in
2009, Symantec says it wrote about 15,000 antivirus signatures a day; that number
has increased to 25,000 antivirus signatures every day.

"Signatures have been dying for quite a while," says Mikko H. Hypponen, chief

research officer of Finnish-based antivirus vendor, F-Secure. "The sheer number of
malware samples we see every day completely overwhelms our ability to keep up
with them."

Security vendors have responded by updating their products with additional
capabilities, such as file reputation and heuristics-based engines. They're also
making upgrades to keep up with the latest technology trends, such as virtualization
and cloud computing.

YOou are a virus writer

e Your goal Is for your virus to spread far and wide

 How do you avoid detection by antivirus software
that uses signatures?

1. Make signature harder to find

How viruses infect other programs
"

Entry

point Original program

Entry

point Virus Original program "Appending”

Entry .
point “Surrounding”

\ Confuse
point Ori jinal progl am

Overwrite uncommonly
used parts of the program

YOou are a virus writer

e Your goal is for your virus to spread far and wide

 How do you avoid detection by antivirus software
that uses signatures?

1. Make signature harder to find

2. Change code to prevent defining a signature

S T - - A —
— - - P = _ >
p AP * AT d o

| Mechamze code changes
Goal every t|me you |nject your code |t Iooks dlfferent '.

Polymorphic ano
metamorpnic Viruses

Polymorphic using encryption

Entry
point Virus Original program

Take over the
entry point

Encrypted virus code

A -
O
[e)
>3
L
O X
D)
O

Virus code

Decrypter
Key

Making It automatic

Encrypted virus code

jmp *

Virus code

A -
DO
Q=
> O
O X
O
O

Decrypter
Key
Encryptor

When used properly,
encryption will yield
a different, random
output upon each
invocation

Q\
>
)

NC

Decrypter

you encrypt it looks different)

Polymorphic viruses: Arms race

Now you are the antivirus writer: how do you detect?

* |dea #1: Narrow signature to catch the decrypter
- Often very small: can result in many false positives
 Attacker can spread this small code around and jmp

* |dea #2: Execute or statically analyze the suspect
code to see It it decrypts.

- How do you distinguish from common “packers”
which do something similar (decompression)?

- How long do you execute the code”??

Now you are the virus writer again: how do you evade?

Polymorphic countermeasures

* Change the decrypter

* Oligomorphic viruses: assemble decrypter from
several interchangeable alternative pieces

* [rue polymorphic viruses: can generate an
endless number of decrypters

* Different encryption methods

 Random generation of confounds
* Downside: inefticient

Metamorphic viruses

* Every time the virus propagates, generate a
semantically different version of the code
Higher-level semantics remain the same

But the way it does it differs

Different machine code instructions

Different algorithms to achieve the same thing
Different use of registers

Different constants....

* How would you do this”
Include a code rewriter with your virus

- Add a bunch of complex code to throw others off (then
just never run it)

Symantec HUNTING FOR METAMORPHIC

SA
BF04000000 mov edi,0004h
8BF5 mov esi,ebp
B80C000000 mov eax,000Ch
810288000000
8B1A mov ebx, [edx]

899C8618110000mov [esi+eax*4+00001118],ebx

s

BB04000000 mov ebx,0004h
8BDS mov edx,ebp
BF0C000000 mov edi,000Ch

81088000000
8B30 mov esl, [eaX

89B4BA18110000mov [edx+edi*4+00001118],esi

Figure 4: Win95/Regswap using different registers in new generations

Instruction
Instruction
jmp

garbage
start:
Instruction
Instruction
jmp

garbage
Instruction
Jmp
garbage

O s

1
2

B

Instruction
Jmp
garbage
Instruction
Jmp

garbage
Instruction
Jmp

start:
Instruction
Jmp ‘
Instructlon
Jmp

Figure 7 serts JMP instruction into its code

-

N

—

N

Instruction
Instruction
Jmp

garbage
tnstruction
Jmp

start:
Instruction
imp

garbage
;nstruction
np
garbage

B QD

ZPerm can directly reorder the instructions in its own code

i

<

a. An early generation:

C7060F000055 mowv dword ptr [esi] ,5500000Fh
C746048BEC5151 mov dword ptr [esi+0004],5151EC8Bh

b. And one of its later generations:

BFOFO00055 mov edi,5500000Fh
893E mov [esi] ,edi

5F pop edi

52 push edx

B640 mov dh, 40
BASBECS5151 mov edx,5151EC8Bh
53 pus ebx

8BDA mov ebx, edx

895E04 mov [esi+0004] ,ebx

c. And yet another generation with recalculated (“encrypted”) “con-
stant” data.

BBOFOO00O0OS55 mov ebx,5500000Fh

891E mov [esi] , ebx

5B PopP ebx

51 push ecx

BOCBOOCOSF mov ecx, 5FCO000CBh

81C1COEBY91F1 ; ecx=5151EC8Bh
894E04 mov es1+0004] ,ecx

Figure 6: Example of code metamorphosis of Win32/Evol

Polymorphic

FAaAWmIAE aETEsawm M.

Lapamriim Ltm, ALl PISIITE BESRESR L=

When can AV software successfully scan?

Figure 8: A partial or complete snapshot of polymorphic virus during execution cycle

Metamorphic

When can AV software successfully scan?

Figure 10: T-1000 of Terminator 2

Detecting
metamorphic viruses?

Scanning

SNt enougn

* Need to analyze execution behavior

* [wo broad stages in p
safe environment, like

ractice (both take place in a
gdb or a virtual machine)

1. AV company analyzes new virus to find

behavioral signatu

re

2. AV system at end

nost analyzes suspect code

to see If it matches the signature

Detecting metamorphic viruses

 Countermeasures
* Change slowly (hard to observe pattern)

* Detect if you are in a safe execution environment
(e.g., gdb) and act ditferently

e Counter-countermeasures
* Detect detection and skip those parts

e Counter-counter-counter.... Arms race

Attackers have the upper hand:
AV systems hand out signature oracles

v

.

Fait

T ’
AN
y 1,
y oY
y 3
not
y i\r
:
y 1\
:
y M
|
’ i\
:
y i\
|
’ M
|
y '
:
y M
|
’ M
,
4
:
| |
:
|

\/ _ t:) ‘\“’

‘I A
Wl o
e |
va
=1,
| .
"o
*1Nn
AN
Tals
AW AY
|
:
- |
|
|
|
|
|
- |
A
|
i
|
|
411
i
¥
111
|
|
| v

Termina

. 4 » |
Wil
L
v G
"4!
) . 1)
hind
Ul)
e =
v
ht 1nant
JU\
(=2 |
)
- +
e
S ;e ard
e
T ryre
e
o
- >
'
1€
rY +
rY -
e
.
e
4 - 'D‘-
i d
+
e

t+ ’
5
+ ’
e
o)
1nn 11
A) i)
1A 1
i)
inAd ¢
A)

pye £
v
[t (=3 | >
v
r (=3 | IS
v
+ 4
=] £
AN
— 28",
v
W -

=]
1~
-
At
y
“ai
-
-4

o

L

-
nart
+

-

.
105
s +
" .
\ [e
-+
/ L
+ o
'
e
’ o
’ e
y e

+
) |
+
- -
' A
va
+

.

.a
yay
va
=7
|
- +
.
AT N
i
’
+
o
L

y
[
: A
< &

$
via
s 4
2 N
a L
abD

(-]

el
+

(T

-
“v
ol |
Y
o1

Crypting services

Many different
vendors
CoOe
Crypting service
——
"FUD" code

s

lteratively obfuscate the
code (encrypt + mp + ...)

Until the obfuscated code
s “fully undetectable”

So how much malware is out there?

 Polymorphic and metamorphic viruses can make it
easy to miscount viruses

e [ake numbers with a grain of salt
_arge numbers are in the AV vendors’ best interest

* Previously, most malware was showy
- Now primary goal is frequently to not get noticed

200,000,000

o Totol Maware | [{ o[ol o) b 110]110}110}00 |
180,000,000 Jafanfuinliaskaadhaagg ~l~l-L-L4pxi‘il,l‘ik4* Lo PP P v e

160,000,000 ‘ — |
0,
11
1101 X
140,000,000 T T | S—
‘ ! ! | ‘ ' 1 ; ‘ ‘
[011}101] | | | | |
i ; ! ‘
i
120,000,000

Ju%ll JIP]!!'HII“JII'IH UII'J "JI‘J MU0

1 | 1

o lllllllll lllll'llllllll
80,000,000 | ‘

60,000,000 U%mwmrmmﬁnmmm ”;ﬁ’ﬁ'm} 00DOgIIONIoIbIIG OOt

JINONINIONIOIMMIOIMMoNMMoOmMmMmmwon YOO 11101

01
J
o

40,000,000

20,000,000

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
20M
2012
2013
2014

Latupdate 01-21-2014 17:53 Copyright © AV-TEST GmbH, www.av-test.org

How do we clean up an infection”

 Depends what the virus did, but..

 May require restoring / repairing files
- A service that antivirus companies sell

 What if the virus ran as root?
- May need to rebuild the entire system

* SO what, just recompile it?

- What if the malware left a backdoor in your compiler?
- Compile the malware back into the compiler

- May need to use original media and data backups

Virus case stuadies

Brain

First IBM PC virus (1987)

* Propagation method
» Copies itself into the boot sector

- Tells the OS that all of the boot sector is “taulty” (so

that it won't list contents to the user)
Thus also one of the first examples of a stealth virus

- Intercepts disk read requests for 5.25" floppy drives
Sees if the bth and 6th bytes of the boot sector are 0x1234
It sO, then it's already infected, otherwise, infect it

* Payload:
- Nothing really; goal was just to spread (to show off?)
- However, it served as the template for future viruses

e
;m.
i) D
. . -~
$ m
..—.l ..
N .
@
-
=
M

} e r S 4 T
’ & i — L -
ey i b o -
NG AN s —
»
»

S

fnjad (put) 1t

uw%«uum&abm oS

.mmmummmmmmm
gessmennzs |

m:n

Downloaded from wikipedia.org

http://wikipedia.org

ROOtKItS

 Recall: a rootkit is malicious code that takes steps
to go undiscovered

- By intercepting system calls, patching the kernel, etc.
- Often effectively done by a man in the middle attack

* Rootkit revealer: analyzes the disk offline and
through the online system calls, and compares

e Mark Russinovich ran a rootkit revealer and found a
rootkit in 2005... installed by a CD he had bought.

Sony XCP rootkit

Detected 2005
* (Goal: keep users from copying copyrighted material

* How It worked:
_oaded thanks to autorun.exe on the CD
ntercepted read requests for its music files

f anyone but Sony’s music player is accessing them,
then garble the data

Hid itself from the user (to avoid deletion)

 How It messed up
- Morally: violated trust
- Technically: Hid all files that started with “sys”

- Seriously?: Uninstaller did not actually uninstall;
introduced additional vulnerability instead

worms

Controlling millions of hosts: Why?

e Distributed Denial of Service (DDoS)
e (Generate network traffic from many sources..

e .. to a single destination
* .. with the intention of overloading their network

e Consume too many resources for legitimate users to
also use

e Steal sensitive information from millions of others
* Even a small fraction of unprotected people = $

e Confuse and disrupt

Controlling millions of hosts: How?

* Worm: self-propagates by arranging to have itselt
Immediately executed
« At which point it creates a new, additional instance of itselt

- Typically infects by altering running code
* No user intervention required

- Like viruses, propagation and payload are orthogonal

Selt-propagation

* (Goal: spread as quickly as possible

* The key Is parallelization
* Without being triggered by human interaction!

Propagation
(1) Targeting: how does the worm find
new prospective victims?

(2) Exploit: how does the worm get
code to automatically run?

Morris worm — 1988

* Accidentally more agressive than intended

e 6-10% of all internet hosts infected

* Scan local subnet; exploit fingerd overflow
* Crack passwords
* Phone home

Code Red — 2001

* Exploited overflow in MS-I1S server
* At peak, more than 2000 new infections/minute

* Before 20th of month, propagate
o After 20th, attack whitehouse.gov

Copyright UC Regents, Jeff Brown for CAIDA, UCSD.

http://whitehouse.gov

CodeRed Propagation

» Spread by randomly scanning the entire 32-bit IP
address space

 Pick a pseudorandom 32-bit number = IP addr
» Send exploit packet to that address
 Repeat

 Thisis avery common worm technigque

e Fach instance used the same random seed
 \What does this mean in practice”

More CodeRed

* |f found c:\notworm then do nothing

 Whitehouse.gov changed its [P address
- Made the attack portion useless

* Revision one week later: random number generator
was seeded properly

« No attack function, installs backdoor instead
- By then many but not all hosts patched

1000 1500

New hosts per minute
500

Growth of Code Red Worm

Number of new hosts
probing 80/tcp as seen
at LBNL monitor of
130K Internet addresses

Veasurement
artifacts

\
/ﬁ&f / The worm
™ \ dies off

e W + globally!
y | m (\vlﬁh””@ o

‘-M \ / \ j / \\ /1/
\ / \ / -

al S 8 10 12 14 16
Hour (PDT)

—
—

Credit: Vern Paxson’s CS 161 at Berkeley

Modeling worm spreac

* Classic epidemic model: Susceptible-Infectable

dl S
LB
dt b N

S(t) = Susc. hosts at time t

I(t) = Infected hosts at time t

N = size of vuln. population = S(t) + I(t)
B = contact rate

Modeling worm spreac

* Classic epidemic model: Susceptible-Infectable

dl S
LI
dt g N

Rewriting using i(t) = I(t) / Nand S = N - I:

di eBt Fraction
— = B-i-(1-) — (1) = — infected grows
dt 1+ebt as a logistic

Fitting the model to Code Red

250,000

200,000

150,000

100,000

50,000

Number seen in an hour

“T~~_ Growth slows as
It becomes harder
to find new victims!

Exponential
initial growth

2 4 6 8 10 12 14 16 18 20
Hour of the day

wtpett of scans - Predicted # of scans

Credit: Vern Paxson’s CS 161 at Berkeley

SQL Slammer (2003)

Exploited overflow in MS SQL Server
e Patch had been available for > 6 months

Connectionless UDP rather than TCP
- Entire worm fit in a single packet!

When scanning, the worm could “fire and forget”
-« Stateless!

Infected 75k machines in 10 minutes
» Atits peak, doubled every 8.5 seconds

| ife just before Slammer

Credit: Vern Paxson’s CS 161 at Berkeley

|ife just after Slammer

Credit: Vern Paxson’s CS 161 at Berkeley

Slammer’s growth

DShield Probe Data What could have
caused growth to

deviate from the

1100 A model?
T 1000 -
5 900 -
A 800 -
- ¥ Hint: at this point the
c /00 - worm is generating
§ 600 - 55,000,000 scans/sec
@0 500 4
o
e 400 -
300 * Heavy traffic caused routers to collapse
| <91 » Caused flood of routing table updates
— o
a 102 P___/—/ More updates on router restart
S760 - 1750 |* Hence, B decreased! (Carrying capacity)

Seconds after S5am UTC

—Shield Data =K =6,7/m, T=1808.7s, Peak=2050, Const, 28

Credit: Vern Paxson’s CS 161 at Berkeley

‘Modern”
Malware

* Note that most of these examples are old, why?
 Maybe the problem is solved? (Hint: no)

* |nstead, new era of malware
* Old: Pride, anger, destruction, low-level politics
* New: Economics, governments, espionage
* How does this change the game?

* Didn’t change: Spread fast, avoid detection

* New goals:
* Avoid detection longer; persistence
* EXfil key data
* Maintain command-control (remote admin)

* New infection vectors
* Web security, coming next week

Botnets (More |ater)

* Infect many hosts; maintain control

e Sell these hosts as resources

* Jo send spam, mine bitcoin, turn on welbcams,
nstall keyloggers

Stuxnet: Propagation

June 2010

* Virus: initially spread by infected USB stick
» Once inside network, acted as a worm, spreading quickly

* Exploited four zero-day exploits
* Zero-day: Known to only the attacker until the attack
* Typically, one zero-day is enough to profit

Four was unprecedented
Immense cost and sophistication on behalf of the attacker

* Rootkit: Installed signed device drivers

* Thereby avoiding user alert when installing
+ Signed with certificates stolen from two Taiwanese CAs

Stuxnet: Payload

Do nothing

o Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz

* You know, like those In Iran and Finland
.. those ones that are used to operate centrifuges
.. for producing enriched uranium for nuclear weapons

* |In which case, slowly increase the freq to 1410Hz
* You know, enough to break the centrifuge

.. all the while sending “looks good to me” readings to the
user

.. then drop back to normal range

Stuxnet: Payload

* Jarget industrial control systems: overwrite programmable
logic boards

e Man-in-the-middle between Windows and Siemens control
systems; looked like it was working properly to the operator

>

Motors

Windows

e |nreality, it sped up and slowed down the motors

* Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

Stuxnet: Fallout

lran denied they had been hit by Stuxnet
Then claimed they were, but had contained it
Now believed it took out 1k of Iran’s 5k centrifuges

Security experts believe the U.S. did it (possibly
along with Israel) due to its sophistication and cost

- Legitimized cyber warfare

Detecting modern malware

Connection to known C&C server

* Counter: Cycle domain and use dynamic DNS

e Re-counter: Block connections to new domains

“Custom” TCP and UDP

Generating direct email (vs. traversing mail server)

Anomaly detection

Detection, not prevention
All subject to arms race!

Malware summary

Technological arms race between those who wish
to detect and those who wish to evade detection

Started off innocuously

Became professional, commoditized
- Economics, cyber warfare, corporate espionage

Advanced detection: based on behavior, anomalies
- Must react to attacker responses

