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Recall

What is memory safety?
A memory safe program execution: 

1. Only creates pointers through standard means 
• p = malloc(…), or p = &x, or p = &buf[5], etc. 

2. Only uses a pointer to access memory that 
“belongs” to that pointer

Combines two ideas:  
temporal safety and spatial safety



Spatial safety

• View pointers as capabilities: triples (p,b,e) 
• p is the actual pointer (current address) 
• b is the base of the memory region it may access 
• e is the extent (bounds) of that region (count) 

• Access allowed iff b ≤ p ≤ (e-sizeof(typeof(p)))

Recall



No buffer overflows
• A buffer overflow violates spatial safety 

• Overrunning bounds of source and/or destination 
buffers implies either src or dst is illegal

void copy(char *src, char *dst, int len) 
{
  int i;
  for (i=0;i<len;i++) {
    *dst = *src; 
    src++; 
    dst++;
  }
}



No format string attacks
• The call to printf dereferences illegal pointers 

• View the stack as a buffer defined by the number and 
types of the arguments it provides 

• The extra format specifiers construct pointers beyond 
the end of this buffer and dereference them 

• Essentially a kind of buffer overflow

char *buf = “%d %d %d\n”;
printf(buf);



Temporal safety
• Violated when trying to access undefined memory

• Spatial safety assures it was to a legal region 
• Temporal safety assures that region is still in play  

• Memory regions either defined or undefined 
• Defined means allocated (and active) 
• Undefined means unallocated, uninitialized, or deallocated 

• Pretend memory is infinitely large, no reuse



No dangling pointers
• Accessing a freed pointer violates temporal safety 

The memory dereferenced no longer belongs to p.  

• Accessing uninitialized pointers is similarly not OK: 

int *p = malloc(sizeof(int));
*p = 5;
free(p);
printf(“%d\n”,*p); // violation

int *p;
*p = 5; // violation



Integer overflows?

• Integer overflows are themselves allowed 
• But can’t become illegal pointers 

• Integer overflows often enable buffer overflows

int f() {
  unsigned short x = 65535;
  x++; // overflows to become 0
  printf(“%d\n”,x); // memory safe
  char *p = malloc(x); // size-0 buffer!
  p[1] = ‘a’; // violation
}

For more on memory safety, see 
http://www.pl-enthusiast.net/2014/07/21/memory-safety/

http://www.pl-enthusiast.net/2014/07/21/memory-safety/


How to get memory safety?

• The easiest way to avoid all of these vulnerabilities 
is to use a memory-safe language 

• Modern languages are memory safe 
• Java, Python, C#, Ruby 
• Haskell, Scala, Go, Objective Caml, Rust 

• In fact, these languages are type safe, which is 
even better (more on this shortly)



Recall

C and C++ still very popular

spectrum.ieee.org/computing/software/the-2016-top-programming-languages

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages


Memory safety for C
• C/C++ are here to stay.  

• You can write memory safe programs with them 
• But the language provides no guarantee 

• Compilers could add code to check for violations
• Out-of-bounds: immediate failure (Java ArrayBoundsException) 

• This idea has been around for more than 20 years. 
Performance has been the limiting factor.
• Work by Jones and Kelly in 1997 adds 12x overhead 
• Valgrind memcheck adds 17x overhead



Research progress
• CCured (2004), 1.5x slowdown 

• But no checking in libraries 
• Compiler rejects many safe programs 

• Softbound/CETS (2010): 2.16x slowdown 
• Complete checking, highly flexible 

• Intel MPX hardware (2015 in Linux) 
• Hardware support to make checking faster

ccured

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-
protection-extensions-intel-mpx-support-in-the-gnu-toolchain

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-protection-extensions-intel-mpx-support-in-the-gnu-toolchain
https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-protection-extensions-intel-mpx-support-in-the-gnu-toolchain


Type Safety
https://a.dilcdn.com/bl/wp-content/uploads/sites/8/2014/02/typewriterfont.jpg



Type safety
• Each object is ascribed a type (int, pointer to int, 

pointer to function), and 

• Operations on the object are always compatible with 
the object’s type 
• Type safe programs do not “go wrong” at run-time 

• Type safety is stronger than memory safety
int (*cmp)(char*,char*);
int *p = (int*)malloc(sizeof(int));
*p = 1;
cmp = (int (*)(char*,char*))p;
cmp(“hello”,”bye”); // crash!

Memory safe, 
NOT type safe



Aside: Dynamic Typing
• Dynamically typed languages 

• Don’t require type declaration 
• e.g., Ruby and Python 
• Can be viewed as type safe 

• Each object has one type: Dynamic 
• Each operation on a Dynamic object is permitted, but 

may be unimplemented 
• In this case, it throws an exception 
• Checked at runtime not compile time!



Types for Security
• Use types to enforce security property invariants 

• Invariants about data’s privacy and integrity 
• Enforced by the type checker 

• Example: Java with Information Flow (JIF)

int{Alice, Bob} x;
int{Alice, Bob, Chuck} y;
x = y; //OK: policy on x is stronger
y = x; //BAD: policy on y is weaker

http://www.cs.cornell.edu/jif

Types have 
security labels 
that govern 
information flow

http://www.cs.cornell.edu/jif


Why not type safety?
• C/C++ often chosen for performance reasons 

• Manual memory management 
• Tight control over object layouts 
• Interaction with low-level hardware 

• Enforcement of type safety is typically expensive 
• Garbage collection avoids temporal violations 

• Can be as fast as malloc/free, often uses much more memory 
• Bounds and null-pointer checks avoid spatial violations  
• Hiding representation may inhibit optimization 

• Many C-style casts, pointer arithmetic, & operator, not allowed



A new hope?

• Many applications do not need C/C++ 
• Or the risks that come with it 

• New languages aim to provide similar features to 
C/C++ while remaining type safe 
• Google’s Go, Mozilla’s Rust, Apple’s Swift 



Avoiding 
exploitation
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https://www.amazon.com/Avoid-Huge-Ships-John-Trimmer/dp/0870334336


Until we have a widespread type-safe replacement 
for C, what can we do? 

• Make bugs harder to exploit 
• Crash but not code execution 

• Avoid bugs with better programming 
• Secure coding practices, code review, testing

Better together: Try to avoid bugs, but also 
add protection if some slip through



Avoiding exploitation

• Putting attacker code into memory 
• (No zeroes or other stoppers) 

• Getting %eip to point to attacker code 

• Finding the return address

Recall the steps of a stack smashing attack:

How can we make these attack steps more difficult?



• Side note: How to implement fixes? 

• Goal: change libraries, compiler, or OS 
• Fix architectural design, not code 
• Avoid changing (lots of) application code 
• One update fixes all programs at once



Control-flow Integrity (CFI)

• Define “expected behavior”: 

• Detect deviations from expectation efficiently 

• Avoid compromise of the detector

Control flow graph (CFG)



Call Graph

sort2
sort

lt

gt

Which functions call other functions

bool lt(int x, int y) {
  return x<y;
}
bool gt(int x, int y) {
  return x>y;
}

sort2(int a[], int b[], int len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}



Control Flow Graph
bool lt(int x, int y) {
  return x<y;
}
bool gt(int x, int y) {
  return x>y;
}

sort2(int a[], int b[], int len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}

sort2
sort

lt

gt

Break into basic blocks
Distinguish calls from returns



CFI: Compliance with CFG
• Compute the call/return CFG in advance 

• During compilation, or from the binary 

• Monitor the control flow of the program and ensure that it 
only follows paths allowed by the CFG 

• Observation: Direct calls need not be monitored 
• Assuming the code is immutable, the target address 

cannot be changed 

• Therefore: monitor only indirect calls 
• jmp, call, ret with non-constant targets



bool lt(int x, int y) {
  return x<y;
}
bool gt(int x, int y) {
  return x>y;
}

sort2(int a[], int b[], int len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}

Control Flow Graph

sort2
sort

lt

gt

Direct calls (always the same target)



Control Flow Graph

sort2
sort

lt

gt

Indirect transfer (call via register, or ret)

bool lt(int x, int y) {
  return x<y;
}
bool gt(int x, int y) {
  return x>y;
}

sort2(int a[], int b[], int len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}



Control-flow Integrity (CFI)

• Define “expected behavior”: 

• Detect deviations from expectation efficiently 

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)



In-line Monitor
• Implement the monitor in-line, as a program 

transformation 

• Insert a label just before the target address of an 
indirect transfer 

• Insert code to check the label of the target at 
each indirect transfer  
• Abort if the label does not match 

• The labels are determined by the CFG



Simplest labeling

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

Use the same label at all targets: 
label just means it’s OK to jump here. 

What could go wrong?



Simplest labeling

• Can’t return to functions that aren’t in the graph 

• Can return to the right function in the wrong order 

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

system
ok…



Detailed labeling
sort2

sort
lt

gtlabel L

label L

label M
label N

label M

• All potential destinations of same source must match 
• Return sites from calls to sort must share a label (L) 
• Call targets gt and lt must share a label (M) 
• Remaining label unconstrained (N)

Prevents more abuse than simple labels,  
but still permits call from site A to return to site B

ok…



Classic CFI instrumentation
Before 

CFI

After 
CFI



Classic CFI instrumentation



Efficient?
• Classic CFI (2005) imposes 16% overhead on 

average, 45% in the worst case
• Works on arbitrary executables 
• Not modular (no dynamically linked libraries) 

• Modular CFI (2014) imposes 5% overhead on 
average, 12% in the worst case 
• C only (part of LLVM) 
• Modular, with separate compilation 
• http://www.cse.lehigh.edu/~gtan/projects/upro/

http://www.cse.lehigh.edu/~gtan/projects/upro/


Control-flow Integrity (CFI)

• Define “expected behavior”: 

• Detect deviations from expectation efficiently 

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)

Sufficient randomness, immutability



Can we defeat CFI?
• Inject code that has a legal label

• Won’t work because we assume non-executable data

• Modify code labels to allow the desired control flow 
• Won’t work because the code is immutable 

• Modify stack during a check, to make it seem to 
succeed 
• Won’t work because adversary cannot change 

registers into which we load relevant data 
• No time-of-check, time-of-use bug (TOCTOU)



CFI Assurances
• CFI defeats control flow-modifying attacks 

• Remote code injection, ROP/return-to-libc, etc. 

• But not manipulation of control-flow that is allowed by the 
labels/graph 
• Called mimicry attacks
• The simple, single-label CFG is susceptible to these 

• Nor data leaks or corruptions 
• Heartbleed would not be prevented 
• Nor the authenticated overflow 

• Which is allowed by the graph

void func(char *arg1)
{
  int authenticated = 0;
  char buffer[4];
  strcpy(buffer, str);
  if(authenticated) { …
}



Secure?

• MCFI can eliminate 95.75% of ROP gadgets on 
x86-64 versions of SPEC2006 benchmark suite 
• By ruling their use non-compliant with the CFG 

• Average Indirect-target Reduction (AIR) > 99% 
• Essentially, the percentage of possible targets of 

indirect jumps that CFI rules out



Secure Coding



Secure coding in C
• Since the language provides few guarantees, 

developers must use discipline 

• Good reference guide: CERT C Coding Standard 
• https://www.securecoding.cert.org/confluence/display/c/

SEI+CERT+C+Coding+Standard 
• Similar guides for other languages (e.g., Java) 

• See also: David Wheeler: http://www.dwheeler.com/secure-programs/Secure-
Programs-HOWTO/internals.html

Combine with advanced code review and testing

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/internals.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/internals.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/internals.html


Design vs. Implementation
• In general, we strive to follow principles and rules 

• A principle is a design goal with many possible 
manifestations.  

• A rule is a specific practice consistent with sound principles. 
• The difference between these can sometimes be fuzzy 

• Here we look at rules for good C coding
• In particular, to avoid implementation errors that could 

result in violations of memory safety 

• Later: Consider principles and rules more broadly



General Principle: Robust coding
• Like defensive driving 

• Avoid depending on anyone else around you 
• If someone does something unexpected, you won’t crash 

(or worse) 
• It’s about minimizing trust 

• Each module pessimistically checks its assumed 
preconditions (on outside callers)
• Even if you “know” clients will not send a NULL pointer 
• … Better to throw an exception (or even exit) than run 

malicious code



int main() {
char buf[100], *p;

while (1) {
p = fgets(buf,sizeof(buf),stdin);
len = atoi(p);
p = fgets(buf,sizeof(buf),stdin);

for (i=0; i<len; i++) {
if (!iscntrl(buf[i]))
putchar(buf[i]);

else putchar(‘.’);
}
printf(“\n”);

}
...

Rule: Enforce input compliance

{Read integer

{Echo back 
(partial) 

message

{Read message

len may exceed
actual message

length!

Recall

Sanitizes input 
to be compliant

len = MIN(len,strlen(buf));



Rule: Enforce input compliance
char digit_to_char(int i) {
  char convert[] = “0123456789”;

}

  return convert[i];  if(i < 0 || i > 9)
    return ‘?’;

• Unfounded trust in received input is a recurring 
source of vulnerabilities
• We will see many more examples in the course

possible 
overflow



Rule: Use safe string functions

• Traditional string library routines assume target 
buffers have sufficient length

char str[4];
char buf[10] = “good”;
strcpy(str,”hello”); // overflows str
strcat(buf,”day to you”); // overflows buf

char str[4];
char buf[10] = “good”;
strlcpy(str,”hello”,sizeof(str)); //fails 
strlcat(buf,”day to you”,sizeof(buf));//fails

• Safe versions check the destination length



Detour: strncpy vs. strlcpy

• strncpy is “safe” because it won’t overwrite 
• But string not properly terminated 
• Always add buf[sizeof(buf) -1] = 0; 

• strlcpy is better — copies (n-1) bytes max and 
appends the null for you!

void vulnerable(char *name_in)
{

 char buf[10];
strncpy(buf, name_in, sizeof(buf));
printf(“Hello, %s\n”, buf);

}

name_in = “0123456789ABC”

does not 
append NULL

prints until NULL

Recall



Replacements
• … for string-oriented functions 

• strcat ⟹ strlcat 

• strcpy ⟹ strlcpy 

• strncat ⟹ strlcat 

• strncpy ⟹ strlcpy 

• sprintf ⟹ snprintf  

• vsprintf ⟹ vsnprintf 

• gets ⟹ fgets 

• Microsoft versions different 
• strcpy_s, strcat_s, …



Rule: Don’t forget NUL terminator

• Strings require one additional character to store the 
NUL. Forgetting that could lead to overflows.

char str[3];
strcpy(str,”bye”); // write overflow
int x = strlen(str); // read overflow

char str[3];
strlcpy(str,”bye”,3); // blocked
int x = strlen(str); // returns 2

• Using safe string library calls will catch this mistake



Rule: Understand pointer arithmetic

• sizeof() returns number of bytes, but pointer 
arithmetic multiplies by the sizeof the type
int buf[SIZE] = { … };
int *buf_ptr = buf;
 
while (!done() && buf_ptr < (buf + sizeof(buf))) {
  *buf_ptr++ = getnext(); // will overflow
}

while (!done() && buf_ptr < (buf + SIZE)) {
  *buf_ptr++ = getnext(); // stays in bounds
}

• So, use the right units 



Principle: Defend dangling pointers
int x = 5;
int *p = malloc(sizeof(int));
free(p);
int **q = malloc(sizeof(int*)); //reuses p’s space
*q = &x;
*p = 5;
**q = 3; //crash (or worse)!

?
x:
p:
q:

Stack Heap

?
5

?&x5



Rule: Use NULL after free
int x = 5;
int *p = malloc(sizeof(int));
free(p);
p = NULL; //defend against bad deref
int **q = malloc(sizeof(int*)); //reuses p’s space
*q = &x;
*p = 5; //(good) crash
**q = 3;

?
x:
p:
q:

Stack Heap

?
5

?&x0



Principle: Manage memory properly

• Rule: Use goto chains 
to avoid duplicated or 
missed code
• Mimics try/finally in 

languages like Java 

• Confirm your logic! 
• Gotofail bug

int foo(int arg1, int arg2) {
  struct foo *pf1, *pf2;
  int retc = -1;

  pf1 = malloc(sizeof(struct foo));
  if (!isok(arg1)) goto DONE;
    …
  pf2 = malloc(sizeof(struct foo));
  if (!isok(arg2)) goto FAIL_ARG2;
  … 
  retc = 0;

 FAIL_ARG2:
  free(pf2); //fallthru
 DONE:
  free(pf1);
  return retc;
}



Anatomy of a goto fail 
static OSStatus
SSLVerifySignedServerKeyExchange(...)
{

OSStatus        err;
...

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

// triggers if if fails: err == 0

// returns err = 0 (SUCCESS), without SSL verify function

// SSL verify called somewhere in here



Rule: Favor safe libraries
• Designed to ensure safe use of strings, pointers, etc. 

• Encapsulate well-thought-out design. Take advantage! 

• Smart pointers
• Pointers with only safe operations 
• Lifetimes managed appropriately 
• First in the Boost library, now a C++11 standard 

• Networking: Google protocol buffers, Apache Thrift 
• For dealing with network-transmitted data 
• Ensures input validation, parsing, etc. 
• Efficient



Rule: Use a safe allocator
• ASLR challenges libc exploits by making the library base unpredictable 

• Challenge heap-based overflows by making the addresses returned 
by malloc unpredictable 
• Can have some negative performance impact 

• Example implementations: 
• Windows Fault-Tolerant Heap

• http://msdn.microsoft.com/en-us/library/windows/desktop/
dd744764(v=vs.85).aspx 

• DieHard (on which fault-tolerant heap is based) 

• http://plasma.cs.umass.edu/emery/diehard.html

http://msdn.microsoft.com/en-us/library/windows/desktop/dd744764(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd744764(v=vs.85).aspx
http://plasma.cs.umass.edu/emery/diehard.html


Gashlycode Tinies
by Andrew Myers @Cornell 
inspired by the Gashlycrumb Tinies by Edward Gorey



Gashlycode Tinies
A is for Amy whose malloc was one byte short 
B is for Basil who used a quadratic sort
C is for Chuck who checked floats for equality 
D is for Desmond who double-freed memory
E is for Ed whose exceptions weren't handled 
F is for Franny whose stack pointers dangled 
G is for Glenda whose reads and writes raced
H is for Hans who forgot the base case
I is for Ivan who did not initialize 
J is for Jenny who did not know Least Surprise
K is for Kate whose inheritance depth might shock 
L is for Larry who never released a lock

M is for Meg who used negatives as unsigned 
N is for Ned with behavior left undefined

O is for Olive whose index was off by one 
P is for Pat who ignored buffer overrun 
Q is for Quentin whose numbers had overflows 
R is for Rhoda whose code left the rep exposed 
S is for Sam who skipped retesting after wait()
T is for Tom who lacked TCP_NODELAY
U is for Una whose functions were most verbose 
V is for Vic who subtracted when floats were close 
W is for Winnie who aliased arguments
X is for Xerxes who thought type casts made good sense 
Y is for Yorick whose interface was too wide
Z is for Zack whose code nulls were often spied


