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…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

…
0xD01F: pop %rdi
0xD020: ret
…

Let’s say that I want to call D01F and then F019



Stuff from foo…

Return addr

Saved %rbp

buffer[999]

…

buffer[0]

…

To “set up” the attack we put 0xD01F in saved RIP

{Bar’s 
frame

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

…
0xD01F: pop %rdi
0xD020: ret
…



Stuff from foo…

0xD01F

Saved %rbp

buffer[999]

…

buffer[0]

…
…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

…
0xD01F: pop %rdi
0xD020: ret
…

To “set up” the attack we put 0xD01F in saved RIP

{Bar’s 
frame



Stuff from foo…

0xD01F

Saved %rbp

buffer[999]

…

buffer[0]

…

…
0xD01F: pop %rdi
0xD020: ret
…

Before foo returns, it pops all of this stuff from the stack

{Bar’s 
frame

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…



Stuff from foo…

0xD01F
…
0xD01F: pop %rdi
0xD020: ret
…

Now it goes here

(Rather than it’s caller foo)

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

Super Critical: pops 0xD01F from stack!



Stuff from foo…
…
0xD01F: pop %rdi
0xD020: ret
…

So now whatever’s on stack will be 
popped into %rdi

(Which is previously stuff in foo’s stack)

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

%rsp



Stuff from foo…
…
0xD01F: pop %rdi
0xD020: ret
…

So if I want to put 1 in RDI, I put it here

(Which is previously stuff in foo’s frame)

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

%rsp



0x0000000000000001
…
0xD01F: pop %rdi
0xD020: ret
…

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

So if I want to put 1 in RDI, I put it here

(Which is previously stuff in foo’s frame)

%rsp



…
0xD01F: pop %rdi
0xD020: ret
…

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

Now, when the code hits this point, 
it’s going to execute a return

….%rsp

Which will yet again go to 
whatever address is in %rsp



…
0xD01F: pop %rdi
0xD020: ret
…

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

0xF019%rsp

Critical observation: if %rsp is now 
0xF019, we’ll get what we want



…
0xD01F: pop %rdi
0xD020: ret
…

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

0xF019%rsp

Critical observation: if %rsp is now 
0xF019, we’ll get what we want



…
0xD01F: pop %rdi
0xD020: ret
…

…
0xF019: mov $60, %rax
0xF01B: syscall
0xF01C: ret
…

Critical observation: if %rsp is now 
0xF019, we’ll get what we want

•Set %rdi to 1(arg for exit)
•Set %rax to 60 (exit)
•Execute the “syscall” instruction



Observation: We can chain multiple sequences (that all 
end in ret) by setting up the stack right



Exercise



Saved %rbp

buffer[99]

…

buffer[0]

…{Assume 
this is 128

0xF019: pop %eax
0xF01B: ret

0xCA2F: syscall

0xB0FF: pop %rdx
0xB102: ret

0xD235: xchang %rdx, %rdi
0xD238: ret

0xC110: pop %rsi
0xC112: ret

0x1029: pop %edx
0x102a: ret

write(1, “Hello, world!”, 13);

%rax = 1 %rdi = 1 %rsi = &”Hello, world”, %rdx = 13

buffer = 0x40000



Approach

• Gadgets are instruction groups that end with ret

• Stack serves as the code
• %esp = program counter

• Gadgets invoked via ret instruction
• Gadgets get their arguments via pop, etc.

• Also on the stack



Simple example
0x17f: pop %edx
       ret

50x17

0xffffffff0x00

Text

mov %edx, 5

…

goal: put 5 into edx
%eip

%edx 5next

%es

Gadget

“Instructions”

“program counter”

(ret)



0xffffffff0x00

0x404 ……5…

%eax

%ebx

…

%es

0x17f: mov %eax, [%esp]
       mov %ebx, 
[%esp+8]
       mov [%ebx], %eax

%eip

0x404

Text

5

0x404

5

Code sequence (no 
ROP)



0xffffffff0x00

0x4040x20 0x215…

%eax

%ebx

…

%esp

0x17f: pop %eax
       ret
…
0x20d: pop %ebx 
       ret
…
0x21a: mov [%ebx], 
%eax

%eip

0x404

Text

5

0x404

5

Equivalent ROP 
sequence



Whence the gadgets?
• How can we find gadgets to construct an exploit?

• Automated search: look for ret instructions, work 
backwards 
• Cf. https://github.com/0vercl0k/rp

• Are there sufficient gadgets to do anything interesting?
• For significant codebases (e.g., libc), Turing complete

• Especially true on x86’s dense instruction set
• Schwartz et al. (USENIX Sec’11) automated gadget 

shellcode creation, Turing complete not required



Blind ROP
• Defense: Randomizing the location of the code (by 

compiling for position independence) on a 64-bit machine makes 
attacks very difficult
• Recent, published attacks are often for 32-bit versions of 

executables

• Attack response: Blind ROP

• If server restarts on a crash, but does not re-randomize:
1.Read the stack to leak canaries and a return address
2.Find a few gadgets (at run-time) to effect call to write
3.Dump binary to find gadgets for shellcode

http://www.scs.stanford.edu/brop/

http://www.scs.stanford.edu/brop/


Blind ROP, continued

• Able to completely automatically, only through 
remote interactions, develop a remote code 
exploit for nginx, a popular web server
• The exploit was carried out on a 64-bit executable with 

full stack canaries and randomization

• Conclusion: Are avoidance defenses hopeless?

• Put another way: Memory safety is really useful!



Today
• Finish up memory safety:

• Finish CFI
• Rules for secure coding in C

• Move on to malware
• Viruses
• Worms
• Case studies
• “Modern” malware



Control Flow 
Integrity



Behavior-based 
detection

• Stack canaries, non-executable data, ASLR make standard 
attacks harder / more complicated, but may not stop them

• Idea: observe the program’s behavior — is it doing 
what we expect it to?
• If not, might be compromised

• Challenges
• Define “expected behavior”
• Detect deviations from expectation efficiently
• Avoid compromise of the detector



Control-flow Integrity 
(CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)



Call Graph

sort2
sort

lt

gt

Which functions call other functions

bool lt(int x, int y) 
{
  return x<y;
}
bool gt(int x, int y) 
{
  return x>y;
}

sort2(int a[], int b[], int 
len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}



Control Flow Graph
bool lt(int x, int y) {
  return x<y;
}
bool gt(int x, int y) {
  return x>y;
}

sort2(int a[], int b[], int 
len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}

sort2
sort

lt

gt

Break into basic blocks
Distinguish calls from returns



CFI: Compliance with 
CFG

• Compute the call/return CFG in advance
• During compilation, or from the binary

• Monitor the control flow of the program and ensure that it 
only follows paths allowed by the CFG

• Observation: Direct calls need not be monitored
• Assuming the code is immutable, the target address cannot be 

changed

• Therefore: monitor only indirect calls
• jmp, call, ret with non-constant targets



bool lt(int x, int y) 
{
  return x<y;
}
bool gt(int x, int y) 
{
  return x>y;
}

sort2(int a[], int b[], int 
len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}

Control Flow Graph

sort2
sort

lt

gt

Direct calls (always the same target)



Control Flow Graph

sort2
sort

lt

gt

Indirect transfer (call via register, or ret)

bool lt(int x, int y) 
{
  return x<y;
}
bool gt(int x, int y) 
{
  return x>y;
}

sort2(int a[], int b[], int 
len)
{
  sort(a, len, lt);
  sort(b, len, gt);
}



Control-flow Integrity 
(CFI)

• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)



In-line Monitor
• Implement the monitor in-line, as a program 

transformation

• Insert a label just before the target address of 
an indirect transfer

• Insert code to check the label of the target at 
each indirect transfer 
• Abort if the label does not match

• The labels are determined by the CFG



Simplest labeling

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

Use the same label at all targets: label 
just means it’s OK to jump here.

What could go wrong?



Simplest labeling

• Can’t return to functions that aren’t in the graph

• Can return to the right function in the wrong order 

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

system
ok



Detailed labeling
sort2

sort
lt

gtlabel L

label L

label M
label N

label M

• All potential destinations of same source must match
• Return sites from calls to sort must share a label (L)
• Call targets gt and lt must share a label (M)
• Remaining label unconstrained (N)

Prevents more abuse than simple labels, 
but still permits call from site A to return to site B

ok



Classic CFI 
instrumentation

Befor
e CFI

After 
CFI


