ROP Defenses:
Control-Flow
Integrity

With material from Mike Hicks, Dave
Levin, and Michelle Mazurek

Let’s say that | want to call DOIF and then FO[9

OxFQ19: mov $60, %rax
OxFO1B: syscall
OxFO1C: ret

OxDO1F: pop %rdi
OxD020: ret

To “set up” the attack we put OxDOIF in saved RIP

Stuff from foo...

OxDO1F: pop %rdi Return addr

0xD020: ret
Saved %rbp

coo)/

OxF019: mov $60, %rax Bar’s buffer[999]
OxFO1B: syscall frame

OxFO1C: ret

buffer[0]

To “set up” the attack we put OxDOIF in saved RIP

Stuff from foo...

OxDO1F: pop %rdi OxDO1F

OxD020: ret

OXFO1B: syscall frame
OxFO1C: ret

buffer[0]

Before foo returns, it pops all of this stuff from the stack

Stuff from foo...

OxDO1F: pop %rdi

OxDO1F
OxD020: ret
Saved %rbp
oo ’
OxF019: mov $60, %rax Bar’s buffer[999]
OxFO1B: syscall frame
OxFO1C: ret

buffer[0]

Now it goes here

Stuff from foo...

* OxDO1F: pop %rdi OxDO1F
OxD020: ret

OxFQ19: mov $60, %rax
OxFQ1B: syscall
OxFO1C: ret

(Rather than it’s caller foo)

Super Critical: pops OxDOI|F from stack!

%rsp

->®xD®1F: pop %rdi

OxDA20: ret

OxFQ19: mov $60, %rax
OxFO1B: syscall
OxFO1C: ret

So how whatever’s on stack will be
popped into Zrdi

(Which is previously stuff in foo’s stack)

% 'S p Stuff from foo...

->@xD®1F: pop %rdi

OxDA20: ret

OxFQ19: mov $60, %rax
OxFO1B: syscall
OxFO1C: ret

So if | want to put | in RDI, I put it here

(Which is previously stuff in foo’s frame)

% 'S p 0x0000000000000001

->@xD®1F: pop %rdi

OxDA20: ret

OxFQ19: mov $60, %rax
OxFO1B: syscall
OxFO1C: ret

So if | want to put | in RDI, I put it here

(Which is previously stuff in foo’s frame)

%rsp _

OxDO1F: pop %rdi

P 0xD020: ret

Now, when the code hits this point,
it's going to execute a return

OxFQ19: mov $60, %rax
OxFO1B: syscall
OxFO1C: ret

Which will yet again go to
whatever address is in %rsp

OxDO1F: pop %rdi

P 0xD020: ret

OxFQ19: mov $60, %rax
OxFQ1B: syscall
OxFO1C: ret

Critical observation: if 7%rsp is now
OxF019, we'll get what we want

OxDO1F: pop %rdi
OxDA20: ret

>®x:®19: mov $60, %rax
OxFQ1B: syscall
OxFQ1C: ret

Critical observation: if 7%rsp is now
OxF019, we'll get what we want

*Set %rdi to |(arg for exit)
*Set %rax to 60 (exit)
*Execute the “syscall” instruction

OxDO1F: pop %rdi
0xD020: ret

>®x:®19: mov $60, %rax
OxFO1B: syscall
OxFQ1C: ret

Critical observation: if %rsp is now
OxF019, we'll get what we want

Observation:We can chain multiple sequences (that all
end in ret) by setting up the stack right

Exercise

write(1l, “Hello, world!”, 13);

%rax = 1 %rdi = 1 %rsi1 = &Hello, world”, %rdx = 13

0x1029: pop %edx

0xC11@: pop %rsi 0x102a: ret

OxCl1l12: ret

OxF019: pop %eax

OxD235: xchang %rdx, %rdi OxFQ1B: ret

OxD238: ret

OXBOFF: pop %rdx
OxB1@2: ret 5
Assume
this is 128
puffer = 0x40000

OxCA2F: syscall

Approach

» (adgets are Instruction groups that end with ret

« Stack serves as the code

* ¥esp = program counter

- (adgets invoked via ret Instruction

- (Gadgets get their arguments via pop, etc.

« Also on the stack

Simple example

%e1p

Ox17f: pop %edx goal: put 5 Into edx
ret mov %edx, 5

Gadget

“brogram counter”
%es

l
Jext oo 5 next %edx| §

f(')) A
Instructions
0x00 Oxffffffff

Code sequence (ho
ROP)

%e1p

e 0C UNX

mov %ebx, Seax 5
[%esp+8]
\ mov_[%ebx], %eﬁ“‘/ Sebx |0x404
%es
A T 4

0x00 Qx404 OXfEffEfff

Equivalent ROP
sequence

%e1p

/) % NON e
ret eax 5

0x20d: pop %ebx 3ebx |0x404
ret

Ox21a: mov [%ebx]%.esp

Aeax |

B | v

Text 5 @xZ@ 0x404 0Ox21
A T A
0x00 Qx404 OXEfEfffEfff

Whence the gadgets?

- How can we find gadgets to construct an explort!

- Automated search: look for ret instructions, work
backwards

- Cf. https://github.com/OverclOk/rp

» Are there sufficient gadgets to do anything interesting!
» For significant codebases (e.g., libc), Turing complete

» Especially true on x86’s dense Instruction set

»+ Schwartz et al. (USENIX Sec’'l |) automated gadget
shellcode creation, Turing complete not required

Blind ROP

Defense: Randomizing the location of the code (by

compilling for position independence) on a 64-bit machine makes
attacks very difficult

Recent, published attacks are often for 32-bit versions of
executables

- Attack response; Blind ROP

if server restarts on a crash, but does not re-randomize:
| .Read the stack to leak canaries and a return address
2.Find a few gadgets (at run-time) to effect call to write

3.Dump binary to find gadgets for shellcode

http://www.scs.stanford.edu/brop/

http://www.scs.stanford.edu/brop/

Blind ROP, continued

+ Able to completely automatically, only through
remote interactions, develop a remote code
exploit for nginx a popular web server

- [he exploit was carried out on a 64-bit executable with
full stack canaries and randomization

» Conclusion: Are avoidance defenses hopeless!

* Put another way: Memory safety is really useful!

Today

* FInish up memory safety:

» Finish CF

* Rules for secure coding in C

 Move on to malware

* Viruses
« Worms
« (Case studies

« "Modern’” malware

Control Flow
Integrity

Behavior-based
detection

- Stack canaries, non-executable data, ASLR make standard
attacks harder / more complicated, but may not stop them

* |dea: observe the program’s behavior — is it doing
what we expect it to?

* It not, might be compromised

» Challenges

» Define “expected behavior”

» Detect deviations from expectation efficiently

» Avoid compromise of the detector

Control-flow Integrity
(CFI)

» Define “expected behavior’:
Control flow graph (CFG)

- Detect deviations from expectation efficiently

» Avoid compromise of the detector

Call Graph

sortZ2(int al[], int b[], 1int

len)
{

sort(a, len, 1t);
sort(b, len, gt);

|iiii||||l

bool 1t(int x, int y)
{

¥
bool gt(int x, 1nt y)

return Xx<y,;

\m

Which functions call other functions

Control Flow Graph

sortZ2(int al[], int b[], 1int

len)

{
sort(a, len, 1t);

sort(b, len, gt);
Iy

bool 1t(int x, int y) {
return x<y;

¥
bool gt(int x, int y) {
return x>y,

sortZ :

Break into basic blocks
Distinguish ealls from returns

CFl: Compliance with
CFG

- Compute the call/return CFG in advance

* During compilation, or from the binary

- Monitor the control flow of the program and ensure that it
only follows paths allowed by the CFG

« Observation: Direct calls need not be monitored

» Assuming the code Is iImmutable, the target address cannot be
changed

 Therefore: monitor only indirect calls

- Jmp, call, ret with non-constant targets

Control Flow Graph

sort2(int a[], int b[], int bool 1t(int x, int y)
len) {
{ return Xx<y;
sort(a, len, 1t); ; . .
sort(b, len, gt); bool gt(int x, int y)
1 i

~

N D
S — Gl

Direct calls (always the same target)

Control Flow Graph

sort2(int a[], int b[], int bool 1t(int x, int y)
len) {
{ return Xx<y;
sort(a, len, 1t); ; . .
sort(b, len, gt); bool gt(int x, int y)
1 i

-:k N

Indirect transfer (call via register, or ret)

Control-flow Integrity
(CFI)

» Define “expected behavior’:
Control flow graph (CFG)

- Detect deviations from expectation efficiently

In-line reference monitor (IRM)

» Avoid compromise of the detector

In=line Monitor

* Implement the monitor in-line, as a program
transformation

- Insert a label just before the target address of
an indirect transfer

- Insert code to check the label of the target at
each Indirect transfer

- Abort If the label does not match

- The labels are determined by the CFG

Simplest labeling

label L
label L
label L

SortZ

sort
lb IL &

lblL

Use the same Ilabel at all targets: |abel
just means it's OK to jump here.

What could go wrong?

Simplest labeling

sort

:

system

- Can't return to functions that aren’t in the graph

- €an return to the right function in the wrong order

Detailed labeling

sort?

label M
label L m
label N
label L label M

[NOENTRY]

* All potential destinations of same source must match
Return sites from calls to sort must share a label (L)

- Call targets gt and 1t must share a label (M)
Remaining label unconstrained (N)

Prevents more abuse than simple labels,
but still permits call from site A to return to site B

Classic CFI
instrumentation

8B 43 08 mov eax, [ebxl8] : load p01nter into register
After 3E 81 78 04 78 56 34 12 cmp leax+4], 12345678h ; compare opccdes at destination
75 13 jne error_label ; 1f not ID value, then fail
CFI FF DO call eax ; call functicn pointer

3E OF 18 05 DD CC BB AA prefetchnta [AABBCCDDh] ; label ID, used Jpcn the return

Comment

; return, and nop 16 extra bytes ¥

ecxX, [ebp] ; load addlebs 1nto reglbtel
esp, 14h ; pop 20 bytee off the stack
04 DD CC BE AA [ecx+4], AABBCCDDh ; compare opcodes at destination
j error_label ; if not ID value, then fail
jump to return address

