
Memory Safety: Attacks and Defense (Demos)

• Show vulnerable program

• Dissect program, objdump

• Load program using GDB

• Basic use of GDB

• Three tasks in GDB:

• Break program / Control-flow Hijacking / Shellcode injection

• Two defenses:

• ASLR, Stack Canaries

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void foo(char *str) {
 char buffer[100];
 strcpy(buffer, str);
}

int main(int argc, char **argv) {
 foo(argv[1]);
}

Group question: find the vulnerable piece in this program

Exercise: how does this program get compiled?

Once we have the binary, what does it look like?

Enter objdump / readelf

objdump -D cpyarg

Disassemble
readelf -a cpyarg

.plt

File composed of many sections

.rodata

.text

.symtab

.debug
…

Written in ELF

(Executable Linking Format)

Purpose of this format is to tell
computer how to set up a binary

Binary File

.plt
File composed of many sections

.rodata

.text

.symtab

.debug
…

Written in ELF

(Executable Linking Format)

Purpose of this format is to tell
computer how to set up a binary

Binary File

Kernel then loads these into memory

(Other things: dynamic linking, won’t
discuss here)

.plt

.rodata

.text

.symtab

.debug
…

Binary File

…

http://www.cirosantilli.com/elf-hello-world/

Why no code for functions from libc?

Answer: dynamically linked into the file

http://slideplayer.com/slide/8579139/

Upshot: dynamic linker “moves around” program to work

Poking around the program: GDB

i f

i r

x/<n> <addr>

b <function>  
s

Set a breakpoint at <function> 
step through execution (into calls)

Examine <n> bytes of memory 
starting at address <addr>

Show info about registers 
(%rip, %rbp, %rsp, etc.)

Show info about the current frame  
(prev. frame, locals/args, %rbp/%rip)

