
Welcome to the cybersecurity course





Fundamentally, security is about thinking hard about the 
way systems are designed

And then asking how weaknesses in that design allows you 
to launch an exploit



In this class, you’ll build an end-to-end system

Along with your team

^



Along the way, you’re going to be learning security



But…



The code I give you has bugs



During this course,  we’ll learn how to exploit 
these bugs

And I’ll have you fix some of them

But I won’t tell you about all of them



At the end of the course, you’re 
going to break other teams’ code

The more you break, the more you’ll win, if 
you fix you get more points



Memory attacks
Crypto everyone should know
Web attacks
Social engineering and UI design for security
Security foundations (info flow, full abstraction)
Reverse engineering

We’ll cover approximately these things…



We’ll be building an encrypted chat app

That can store files on disc

And has a web-based interface



You should know…

A bit of C/ASM

A high-level language (Python)

Be willing to pick up a bit of web programming

(File storage system written in this)

(Chat app written in this, using PyNaCl for crypto)

(We’ll be using sockets, a small bit of SQL, and maybe some JS)



A few logistical items to give you an idea of 
whether this is a good course for you…



This course will cover security across the software stack, 
which will introduce some other topics by proxy
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This course will cover security across the software stack, 
which will introduce some other topics by proxy

I expect it will be hard

A few logistical items to give you an idea of 
whether this is a good course for you…



This course will cover security across the software stack, 
which will introduce some other topics by proxy

I expect it will be hard
Expectation: you will be able to pick things up 

without us going over them in class explicitly

A few logistical items to give you an idea of 
whether this is a good course for you…



Projects
3 Projects followed by “break it” phase

Each project has two components:

Individual Group



Projects

Individual Group

60% 40%

3 Projects followed by “break it” phase

Each project has two components:



Projects

No extensions on these…



Exams

Two “take home” exams

You can take up to eight hours on these, and 
they are open everything

Little over ~1/3 and ~2/3 into course



Grades
Since I expect the course to be challenging, 

there may be a curve at the end

I’ll let you know averages on exams









Memory-Based Attacks



Just write in Java / Rust / Python / …

Basically anything except C/C++!!

Upshot

If you write in these languages, you’ll be automatically 
immune to most of these attacks



Assembly Review

By which I mean x86-64 assembly…



Note: you won’t have to write significant amounts of 
assembly for this course, but you will need to be able to 
read small pieces of it and figure out what it’s doing…



Registers



Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally, 8-bit registers: al, bl, cl, dl



Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

IP: instruction pointer
Points at current instruction, 

incremented after each instruction

FLAGS: holds flags

Set on subtraction, comparison, etc..

Originally, 8-bit registers: al, bl, cl, dl



Traditionally, x86 architectures only had four 
16-bit general purpose registers: ax, bx, cx, dx

As time progressed, also added 32-bit registers: 
eax, ebx, ecx, edx

In past few years, 64-bit registers: rax, rbx, rcx, rdx

Also other registers: bp, sp, di, si

(Also 64-bit versions: rip, etc..)

We’ll pretty much exclusively use 
64-bit registers!



Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX





Special regs: floating-
point / matrix ops



12 34

To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte



x86 is a little-endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory, 
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner



Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions



Encoded as binary (as you may have seen from 
hardware-design course)

We (humans) write in a format named “assembly”

Confusingly: two types of assembly

AT&T Intel

mov 5, %rax mov rax, 5

I will basically always use AT&T

(Since that’s what’s used in GNU toolchain)



Several addressing modes



mov  %rax, %rbx
Opcode name

Source

Destination

“Move the value from register rax into the register rbx”



Plurality of instructions 
are movs

Then push
Then call



Memory: a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov  (%rax), %rbx



mov  (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234%rbx



mov  (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeef%rbx



mov  8(%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax+8 into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xaf23c8a223356ac%rbx



A few other more complicated ones that 
allow you to add registers, offsets, etc…

Different instructions allow different addressing-modes



Memory is divided into different regions

Name a few?



OS separates these into different segments



Kernel memory

Your OS uses it



Stack: push / pop

Very important:
The stack grows down



Stack: push / pop

Very important:
The stack grows down



mmap segments

Allows you to map a file 
to memory



Heap: dynamic allocation

C++: New / delete

C: Malloc / free



BSS: Uninitialized static 
vars (globals)



Data segment: initialized 
statics—e.g., constant strings



Text segment: program code



Note the permissions



This random offset 
really security feature



Calling conventions

Touch-tone phones, send an acoustic wave over the wire

If Alice wants to call Bob, her phone needs to send the right 
sounds over the wire in the right order



Calling conventions

When function A wants to call function B, it has to do the same

Where do arguments go?
How to store return address?
Who saves registers?
Where is result stored?



Calling conventions

Modern computers use a few different calling conventions

Where do arguments go?
How to store return address?
Who saves registers?
Where is result stored?

De-facto standard (Linux / MacOS / etc..) : x86-64 System V ABI

Note: this is new for the 64 bit API. You might see stuff online 
for the 32-bit API that is different



Calling conventions: x86-64 
System V ABI

Where do arguments go?
First six: rdi,rsi,rdx,rcx,r8,r9

How to store return address?
call instruction puts on top of stack

Who saves registers?
Caller saves caller-save registers
R10,R11, any ones used for args

Where is result stored?
Result stored in %rax



http://slideplayer.com/slide/9679824/



x86-64 System V ABI

Rules for caller:
• Save caller-save registers
• First six args in registers, after that put on 

stack
• Execute call—pushes ret addr
Afterwards:
•Pop saved registers
•Result now in %rax



Rules for callee:
• First six args available in registers
• Push %rbp—caller’s base pointer
• Move %rsp to %rbp—Setup new frame
• Subtract necessary stack space
• Push callee-save registers
• Before exit: restore rbp/callee-saved regs
• leave instruction restores rbp

• When function done, put result in %rax
• Use ret instruction to pop return rip

x86-64 System V ABI



These rules are cumbersome: I frequently 
look them up, they change depending on the 

kind of function you’re calling, etc…

Upshot: don’t feel you have to memorize, just 
get the gist / know how to recognize them



Small examples: interactive demo of x86-64 ABI



Trivia: the red zone
int bar(int a, int b) {
  return a + b;
} bar:

   pushq   %rbp
movq    %rsp, %rbp

   movl    %edi, -4(%rbp)
   movl    %esi, -8(%rbp)
   movl    -4(%rbp), %edx
   movl    -8(%rbp), %eax
   addl    %edx, %eax

popq    %rbp
   ret

Weird! This code using -4(%rbp) before 
decrementing the stack pointer!!

Turns out: x86-64 guarantees there 
are always128 bytes below %rsp 



Upshot: if a function uses at most 
128 bytes below RSP, doesn’t have 

to subtract anything from RSP

This is an optimization for “small” 
functions: so they never have to 

subtract from RSP



Question: why does GCC generate such stupid code?

Answer: code unoptimized, add -O(1/2/3) to optimize it

-O0 generates code that is predictable and easy to read





First attack: Stack Smashing



void foo(char *ptr) {
    char buffer[1000];
    strcpy(buffer, ptr);
    printf(“length: %d\n”, strlen(buffer));
}

This code is bad because it doesn’t check the 
length of the string in ptr…



After foo starts

Stuff from foo…

Return addr

Saved %rbp

buffer[999]

…

buffer[0]%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

%rbp



Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

…

buffer[0]

%rbp

Key observation: the stack grows down

After foo starts

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

buffer[0]

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’buffer[1]

buffer[2]

…

ptr[2] =   0

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

‘H’

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’‘i’

0

…

ptr[2] =   0

(This one is fine..)

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Now consider what happens when we provide input ‘A’ * 1008



Callee’s %rbx

0x41414141

0x41414141

‘A’

‘A’

Return addr becomes 0x41414141 (‘A’ four times)

‘A’

…

‘A’

‘A’ * 8 

‘A’ * 8 

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400



Upon return, control goes to 0x41414141

If anything at this address, program will execute it



But falls in here, unmapped memory

Result: most common C crash

Segmentation Fault



The compiler translates binary code into machine code

execve("/bin/sh")

Compiler

    "\x48\x31\xd2"                             // xor    %rdx, %rdx
    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
    "\x48\xc1\xeb\x08"                         // shr    $0x8, %rbx
    "\x53"                                     // push   %rbx
    "\x48\x89\xe7"                             // mov    %rsp, %rdi
    "\x50"                                     // push   %rax
    "\x57"                                     // push   %rdi
    "\x48\x89\xe6"                             // mov    %rsp, %rsi
    "\xb0\x3b"                                 // mov    $0x3b, %al
    "\x0f\x05";                                // syscall

We’ll cover this assembly 
later in class!



man execve



All that code is loaded by the kernel at a specific place in memory



Let’s assume for a second that the compiler loads that code at 
0x41414141

In the next few slides we’ll see what happens if it’s not there



    "\x48\x31\xd2"                             // xor    %rdx, %rdx
    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
    "\x48\xc1\xeb\x08"                         // shr    $0x8, %rbx
    "\x53"                                     // push   %rbx
    "\x48\x89\xe7"                             // mov    %rsp, %rdi
    "\x50"                                     // push   %rax
    "\x57"                                     // push   %rdi
    "\x48\x89\xe6"                             // mov    %rsp, %rsi
    "\xb0\x3b"                                 // mov    $0x3b, %al
    "\x0f\x05";                                // syscall

0x41414141

// foo’s caller
foo(p);
x = x+1;

void foo(char *ptr) {
    char buffer[ptr];
    strcpy(buffer, ptr);
    printf(“length: %d\n”, strlen(buffer));
}

Return pointer: 0x41414141 After returning, we expect the 
code to go back here



    "\x48\x31\xd2"                             // xor    %rdx, %rdx
    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
    "\x48\xc1\xeb\x08"                         // shr    $0x8, %rbx
    "\x53"                                     // push   %rbx
    "\x48\x89\xe7"                             // mov    %rsp, %rdi
    "\x50"                                     // push   %rax
    "\x57"                                     // push   %rdi
    "\x48\x89\xe6"                             // mov    %rsp, %rsi
    "\xb0\x3b"                                 // mov    $0x3b, %al
    "\x0f\x05";                                // syscall

0x41414141

// foo’s caller
foo(p);
x = x+1;

void foo(char *ptr) {
    char buffer[ptr];
    strcpy(buffer, ptr);
    printf(“length: %d\n”, strlen(buffer));
}

Return pointer: 0x41414141
But the return address has been 

overwritten (stack has been smashed)

Instead, return goes here



Now, the computer executes a shell instead!!!

Might not be so bad if it’s a local program

But bad if it’s a connection to a remote server!



In your first project, you’ll mount one of these 
attacks on a vulnerable file server



So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 1: How do I find a bug?

A: Dig through the source manually, if source is available

(If source unavailable, use a decompiler)

A: Some automated testing tools







So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 2: What if program doesn’t have bugs!?

A: You’re hosed, can’t perform this attack

But some other attacks we’ll talk about on Thursday

The best way to prevent these attacks is to write in 
languages where these bugs can’t occur!!



So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 3: How do I know what code to execute?

A: Find the code you want in the binary

A: We’ll also learn how you can inject your own code



So my job as an attacker is to find a buffer overflow in the program 
and then craft an input that sends the code where I want

Question 4: How do I know where the code is

A: Use GDB to find it after booting up the binary

But there’s a critical catch!



The compiler includes a variety of protections 
against stack smashing

Stack canaries (which we’ll learn about next week)

Address Space Layout Randomization

Loads code into random addr each run!
(We’ll see some techniques to help defeat this)





Goal of this course isn’t to teach you “how to hack”

To do that, just go download metasploit

Instead, we focus on core principles



How are most systems hacked in the “real world?”

https://www.youtube.com/watch?v=msX4oAXpvUE

https://www.youtube.com/watch?v=iSr7kOCdPTc

https://www.youtube.com/watch?v=dxIPcbmo1_U



How are most systems hacked in the “real world?”

Answer: bad system configurations, out-of-date 
software, weak passwords

Almost never a hacker sitting in a dark room 
custom-writing an exploit



In addition to all of the standard things in 
the honor code…

Don’t use things from this course to 
unethically infiltrate systems



Upshot: we can control where the code returns by 
smashing the stack exploiting a buffer overflow

Next time:
• Stack smashing—live demo
• Using GDB to understand binaries
• Objdump and the ELF format

Lab tomorrow: Using the VM for the course, P1 intro

Before tomorrow: Download 
VirtualBox!


