Welcome to the cybersecurity course
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Fundamentally, security is about thinking hard about the
way systems are designed

And then asking how weaknesses in that design allows you
to launch an exploit



Along with your team

~\
In this class, you'll build an end-to-end system



Along the way, you're going to be learning security



But...



The code | give you has bugs



During this course, we’'ll learn how to exploit
these bugs

And I'll have you fix some of them

But | won’t tell you about all of them



At the end of the course, you’re
going to break other teams’ code

The more you break, the more you’ll win, if
you fix you get more points



We’ll cover approximately these things...

Memory attacks

Crypto everyone should know

Web attacks

Social engineering and Ul design for security

Security foundations (info flow, full abstraction)
Reverse engineering



WVe'll be building an encrypted chat app
That can store files on disc

And has a web-=-based interface



You should know...

A bit of C/ASM

(File storage system written in this)

A high-level language (Python)

(Chat app written in this, using PyNaCl for crypto)

Be willing to pick up a bit of web programming

(WEe'll be using sockets, a small bit of SQL, and maybe some |S)



A few logistical items to give you an idea of
whether this is a good course for you...



A few logistical items to give you an idea of
whether this is a good course for you...

This course will cover security across the software stack,
which will introduce some other topics by proxy



A few logistical items to give you an idea of
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This course will cover security across the software stack,
which will introduce some other topics by proxy

| expect it will be hard



A few logistical items to give you an idea of
whether this is a good course for you...

This course will cover security across the software stack,
which will introduce some other topics by proxy

| expect it will be hard

Expectation: you will be able to pick things up
without us going over them in class explicitly



Projects

3 Projects followed by “break it” phase

Each project has two components:

Individual Group



Projects

3 Projects followed by “break it” phase

Each project has two components:

Individual Group
60% 40%



Projects

No extensions on these...



Exams

Two “take home” exams
Little over ~1/3 and ~2/3 into course

You can take up to eight hours on these, and
they are open everything



Grades

Since | expect the course to be challenging,
there may be a curve at the end

I'll let you know averages on exams












Memory-Based Attacks



Upshot

Just write in Java / Rust / Python / ...

Basically anything except C/C++!!

If you write in these languages, you’ll be automatically
immune to most of these attacks



Assembly Review

By which I mean xF6-64 &ssambiv...



Note: you wont have to write significant anmounts of
assembly for this course, but you will need to be able to
read small pieces of it and fiqure out what its doing..



Registers



Originally, 8-bit registers: al, bl, cl, dI

Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)



Originally, 8-bit registers: al, bl, cl, dI

Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

IP: instruction pointer FLAGS: holds flags

Points at current instruction,

: ) : Set on subtraction, comparison, etc..
incremented after each instruction



Traditionally, x86 architectures only had four
| 6-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

As time progressed, also added 32-bit registers:
eax, ebx, ecx, edx

In past few years, 64-bit registers: rax, rbx, rcx, rdx

(Also 64-bit versions: rip, etc..)

We’ll pre&%v nuch exdus&vel.v wse
64--bit reqisters!



Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX



General-Purpose Multimedia Extension and

Registers (GPRs) Floating-Point Registers
RAX MMO/STO
REX [ MM1/ST
RCX MM2/ST2
RDX | MM3/ST3
RBP MM4/ST4
RSI MM5/STS
RDI MM&6/ST6
RSP MM7/5T7
R8 63 0
R9
R10 Flags
R11 Regrster
R12 | | EFLAGS
R13 4 0
R14 Instruction Pointer
R15 | I I RIP

63 ) 63 0

LERaCy xB5 Regrsiers, Supponed m 21 modes

Regrater ExdenSons, supponied in 64-84 Mode

Streaming SIMD
Extension (SSE) Registers

127

XMMO
XMMI
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9
XMM10
XMM
XMM12
XMM13
XMM14

XMMI15

SV s



General-Purpose

Registers (GPRs)

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8
R9
R10
R11
R12
R13
R14

R15

1'(“\' 411 \f
. . N N

Legacy xB6 Regis

Regrader Exdersons, suppor

Multimedia Extension and
Floating-Point Registers

MMO/STO
MM1/ST
MM2/5T2
MM3/ST3
MM4/ST4
MM5/STS
MM&/ST6
MM7/5T7

63 U

Streaming SIMD
Extension (SSE) Registers

? 127

e OPecial regs: floating-

point / matrix ops

XMMO
XMMI
XMM2
XMM3
XMM4
XMMS5
XMMé6
XMM7
XMM8
XMM9
XMM10
XMM
XMM12
XMMI13
XMM14

XMMI15



To represent 0x1234567890abcdef

DEEDDEEE

Most Significant Byte Least Significant Byte



x86 is a little=endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory,
byte a will hold the least significant byte

0x123456789Qabcdef

Exercise with partner



Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions



Encoded as binary (as you may have seen from
hardware-design course)

We (humans) write in a format named “assembly”

Confusingly: two types of assembly

AT&T Intel

mov 5, %rax mov rax, 5

I will basi&aitv atwa:js use ATET
(Stnce that’s what’s used i &NU toolchain)



Several addressing modes



“Move the value from register rax into the register rbx”

Opcode name Destination

mov %rax, %rbx

Source



Top 20 instructions of x86 architecture

shl
1%

Others
ar 11%
1%

fstp

1%
mov

/35%

push

~
e

6%
4% 5%

Then call

Plurality of instructions
are movs

Then push



Memory:a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov (%rax), %rbx



“Move the value at address %rax into register %rbx”

Opcode name Destination

mov (%rax), %rbx

Source

%I"GX OXFFFFFFFf00000000 | OxFFffffffo0000008] Oxaf23c8a223356ac
OxfffFFFFFO0000000

0)

/)I"bx 0x1234123412341234

Oxdeadbeefdeadbeef



“Move the value at address %rax into register %rbx”

Opcode name Destination

mov (%rax), %rbx

Source

%r'ax Oxffffffff00000000 Oxffffffffo0000008] Oxaf23c8al223356ac
Oxffffffffo0000000] Oxdeadbeefdeadbeef




“Move the value at address 7%rax+8 into register %rbx”

Opcode name Destination

mov 8(%rax), %rbx

Source

%r'ax Oxffffffff00000000 Oxffffffff00000008] Oxaf23c8al223356ac

OxFFFFFFFFO0000000| 0xdeadbeefdeadbeef

Brbx | e e




A few other more complicated ones that
allow you to add registers, offsets, etc...

Different instructions allow different addressing-modes



Memory is divided into different regions

Name a few!



OS separates these into different segments



Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

I'w—-

BSS segment W=
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
I-X

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

|

Random
offset

Random
offset

Random
offset

..... 0x804800

Kernel memory

Your OS uses it



Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack: push / pop

Stack W=

Local variables

int tries = 10;

Random
offset

mmap segments Very important:

File mappings (including dynamic libraries)
Anonymous mappings

/1ib/1ibc.s0 The Stacl( grows down

Heap e
Small memory chunks
char *path = malloc(256);
Random
offset
BSS segment T

Uninitialized static variables.
static char *fullname:;

Data segment £

Initialized static variables.
static char *hello = "Hello, world!";

Ir'-X

Text segment
ELF header and code of the process.

int main() { return printf(hello); }

.......... 0x804800




Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack: push / pop

Stack W=

Local variables

int tries = 10;

Random
offset

mmap segments Very important:

File mappings (including dynamic libraries)
Anonymous mappings

/1ib/1ibc.s0 The Stacl( grows down

Heap e
Small memory chunks
char *path = malloc(256);
Random
offset
BSS segment T

Uninitialized static variables.
static char *fullname:;

Data segment £

Initialized static variables.
static char *hello = "Hello, world!";

Ir'-X

Text segment
ELF header and code of the process.

int main() { return printf(hello); }

.......... 0x804800




Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/1libc.so

Heap

Small memory chunks
char *path = malloc(256);

I'w—-

BSS segment T
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
I-X

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

Random
offset

Random
offset

Random
offset

.......... 0x804800

mmap segments

Allows you to map a file
to memory



Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/1libc.so

Heap

Small memory chunks
char *path = malloc(256);

I'w—-

BSS segment T
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
I-X

Text segment
ELF header and code of the process.

int main() { return printf(hello); }

|

Random
offset

Random
offset

Random
offset

..... 0x804800

Heap: dynamic allocation

C++: New / delete

C: Malloc / free



Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

I'w—-

BSS segment T
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
I-X

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

Random
offset

Random
offset

Random
offset

.......... 0x804800

BSS: Uninitialized static
vars (globals)



Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack W=

Local variables

int tries = 10;

Random
offset

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/1libc.so

I'w—-

Heap

Small memory chunks
char *path = malloc(256);

Random
offset

BSS segment T

Uninitialized static variables.
static char *fullname:;

Data segment £

Data segment: initialized
static chez -hello - Mhellor worldi'; statics—e.g., constant strings

Text segment £
ELF header and code of the process.

int main() { return printf(hello); }

.......... 0x804800




Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/libc.so

Heap

Small memory chunks
char *path = malloc(256);

I'w—-

BSS segment W=
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
I-X

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

Random
offset

Random
offset

|

Random
offset

Text segment: program code

.......... 0x804800



Kernel space
Virtual memory reserved for the kernel usage.

Random
offset

Stack W=

Local variables

int tries = 10;

Random
offset

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/1libc.so

I'w—-

Heap

Small memory chunks
char *path = malloc(256);

4—— Note the permissions

BSS segment

Uninitialized static variables.
static char *fullname:;

Data segment

Initialized static variables.
static char *hello = "Hello, world!";

Ir'-X

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

.......... 0x804800




Kernel space
Virtual memory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/1libc.so

Heap

Small memory chunks
char *path = malloc(256);

I'w—-

BSS segment T
Uninitialized static variables.
static char *fullname;
Data segment £
Initialized static variables.
static char *hello = "Hello, world!";
I-X

Text segment

ELF header and code of the process.
int main() { return printf(hello); }

Random
offset

Random
offset

} offset

.......... 0x804800

This random offset
really security feature



Calling conventions

Touch-tone phones, send an acoustic wave over the wire

\S

If Alice wants to call Bob, her phone needs to send the right
sounds over the wire in the right order



Calling conventions

When function A wants to call function B, it has to do the same

Where do arguments go!
How to store return address?
Who saves registers?

Where is result stored!?



Calling conventions

Modern computers use a few different calling conventions

De-facto standard (Linux / MacOS / etc..) : x86-64 System V ABI

Where do arguments go!
How to store return address?
Who saves registers?

Where is result stored!?

Note: this is hew for the 64 bit APl.You might see stuff online
for the 32-bit API that is different



Calling conventions: x86-64
System V ABI

Where do arguments go!
First six: rdi,rsi,rdx,rcx,r8,r9
How to store return address!?
call instruction puts on top of stack

Who saves registers!
Caller saves caller-save registers
RIO,RI1, any ones used for args
Where is result stored!?
Result stored in %rax




e
Xx86-64 Integer Registers:

Usage Conventions

Srax Return value %$r8 Argument #5
Srbx Callee saved $r9 Argument #6
Srcx Argument #4 $rl0 Caller saved
$rdx Argument #3 $rll Caller Saved
srsi Argument #2 $rl2 Callee saved
srdi Argument #1 $rl3 Callee saved
SrsSp Stack pointer srld Callee saved
srbp Callee saved $xrldS Callee saved

http://slideplayer.com/slide/9679824/ 4



x86-64 System V ABI

Rules for caller:

* Save caller-save registers

* First six args in registers, after that put on
stack

* Execute cal l—pushes ret addr
Afterwards:

* Pop saved registers
*Result now in %rax



x86-64 System V ABI

Rules for callee:

* First six args available in registers

* Push %rbp—caller’s base pointer

* Move 7%rsp to %rbp—-Setup new frame

* Subtract necessary stack space

* Push callee-save registers

* Before exit: restore rbp/callee-saved regs

 Leave instruction restores rbp
* When function done, put result in %rax
* Use ret instruction to pop return rip



These rules are cumbersome: | frequently
look them up, they change depending on the
kind of function you're calling, etc...

Upshot: don’t feel you have to memorize, just
get the gist / know how to recognize them



Small examples: interactive demo of x86-64 ABI



Trivia: the red zone

int bar(int a, int b) {
return a + b;

¥

Weird! This code using -4(%rbp) before
decrementing the stack pointer!!

Turns out: x86-64 guarantees there
are always |28 bytes below %rsp

bar:

pushg
mov(q

mov L
mov L
mov L
mov L
addl
popq
ret

%rbp

%rsp, %rbp
%edi, -4(%rbp)
%esi, -8(%rbp)
-4(%rbp), %edx
-8(%rbp), %eax
%edx, %eax
%rbp



high address

RBP + 8
RBP
RBP -8
RBP - 16
RBP - 24

RBP - 32

low address

retum address

saved RBP

>

REP
RSP

red zone”

128 bytes

RDI: Kl
RSI: b
RDX: c

Upshot: if a function uses at most
|28 bytes below RSP, doesn’t have
to subtract anything from RSP

I”

This is an optimization for “smal
functions: so they never have to
subtract from RSP



Question: why does GCC generate such stupid code!

Answer: code unoptimized, add -O(1/2/3) to optimize it

-O0 generates code that is predictable and easy to read






First attack: Stack Smashing



This code is bad because it doesn’t check the
length of the string in ptr...

void foo(char *ptr) {
char buffer[1000];

strcpy(buffer, ptr);
printf(“length: %d\n”, strlen(buffer));



After OO starts

%rsp+400 Stuff from foo...

%/rsp+3F8 Return addr

%rsp+3F0 Saved %rbp %rbp

%rsp+3E8 buffer[999]

%rsp buffer[0]




After OO starts

%rsp+400 Callee’s %rbx

%/rsp+3F8 Return addr

%rsp+3F0 Saved %rbp %rbp

%rsp+3E8 buffer[999]

%rsp buffer[0]

Key observation: the stack grows down



%rsp+400 Callee’s %rbx

%rsp+3F8 Return addr

%rsp+3F0 Saved %rbp

%rsp+3E8 buffer[999]

buffer[Z]
buffer[1]

%rsp buffer[0]

Consider what happens when strcpy(buffer,ptr)



%rsp+400 Callee’s %rbx
%rsp+3F8 Return addr
%rsp+3F0 Saved %rbp

%rsp+3E8 buffer[999]

ptr[2] = 0
ptr[1] = ‘1’

%rsp

Consider what happens when strcpy(buffer,ptr)

(This one is fine..)



Now consider what happens when we provide input ‘A’ * 1008



%rsp+400 Callee’s %rbx
%rsp+3F8 0x41414141 *8

%rsp+3F0 0x41414141 * 8

%rsp+3ES8 <A’

%rsp

Return addr becomes 0x41414141 (A’ four times)



Upon return, control goes to Ox41414141

If anything at this address, program will execute it



Kernel space
Virtual memaory reserved for the kernel usage.

Stack

Local variables

int tries = 10;

rw-—

mmap segments

File mappings (including dynamic libraries)
Anonymous mappings
/1lib/1libc.so

Heap

Small memory chunks
char *path = malloc(256);

BSS segment

Uninitialized static variables.
static char *fullname:;

I'W-

Data segment

Initialized static variables.
static char *hello = "Hello, world!";

==

Text segment
ELF header and code of the process.

int main() { return printf(hello); }

I'-X

Random
offset

Random
offset

But falls in here, unmapped memory

0x804800

Result: most common C crash
Segmentation Fault



The compiler translates binary code into machine code

1" ° 1
execve('"/bin/sh™)
Compiler
We’ll cover this assembly
later in class!

"\x48\x31\xd2" // Xor srdx, %$rdx
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
"\x48\xcl\xeb\x08" // shr $0x8, %rbx
"\x53" // push $rbx
"\x48\x89\xe7" // mov $rsp, %rdi
"\x50" // push $rax
"\x57" // push $rdi
"\x48\x89\xe6" // mov $rsp, %rsi
"\xb0\x3b" // mov $0x3b, %al

"\x0£\x05"; // syscall



Man €Xecve



All that code is loaded by the kernel at a specific place in memory



Let’s assume for a second that the compiler loads that code at

0x41414141

In the next few slides we’ll see what happens if it's not there



Return pointer: 0x41414141

0x41414141

// foo’s caller

foo(p);
X = x+1;

void foo(char *ptr) {
char buffer[ptr];
strcpy(buffer, ptr);

After returning, we expect the
code to go back here

printf(“length: %d\n”, strlen(buffer));

"\x48\x31\xd2"

//

"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" //

"\x48\xcl\xeb\x08"

"\x53"
"\x48\x89\xe7"
"\x50"

"\x57"
"\x48\x89\xe6"
"\xb0\x3b"
"\x0f\x05";

//
//
//
//
//
//
//
//

XOr grdx, %rdx
mov $0x68732f6e69622f2f,
shr S0x8, %rbx

push 3rbx

mov $rsp, %$rdi
push ¥rax

push $rdi

mov $rsp, %rsi
mov S0x3b, %al
syscall

$rbx



Return pointer: 0x41414141

0x41414141

// foo’s caller

foo(p);
X = x+1;

void foo(char *ptr) {
char buffer[ptr];
strcpy(buffer

But the return address has been
overwritten (stack has been smashed)

Instead, return goes here

)

ngth: %d\n”, strlen(buffer));

"\x48\x31\xd2" //
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" //
"\x48\xcl\xeb\x08" //
"\x53" //
"\x48\x89\xe7" //
"\x50" //
"\x57" //
"\x48\x89\xe6" //
"\xb0\x3b" //
"\x0f\x05"; //

XOr grdx, %rdx

mov $0x68732f6e69622f2f,
shr S0x8, %rbx

push 3rbx

mov $rsp, %$rdi

push ¥rax

push $rdi

mov $rsp, %rsi

mov S0x3b, %al
syscall

$rbx



Now, the computer executes a shell instead!!!
Might not be so bad if it’s a local program

But bad if it’s a connection to a remote server!



In your first project, you'll mount one of these
attacks on a vulnerable file server



So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question |: How do | find a bug!?

A: Dig through the source manually, if source is available
(If source unavailable, use a decompiler)

A: Some automated testing tools
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Abstract—In this paper we present MAYHEM, a new sys-
tem for automatically finding exploitable bugs in binary (i.e.,
executable) programs. Every bug reported by MAYHEM is

accompanied by a working shell-spawning exploit. The working
exploits ensure soundness and that each bug report is security-

critical and actionable. MAYHEM works on raw binary code
without debugging information. To make exploit generation
possible at the binary-level, MAYHEM addresses two major
technical challenges: actively managing execution paths without
exhausting memory, and reasoning about symbolic memory
indices, where a load or a store address depends on user
input. To this end, we propose two novel techniques: 1) hybrid
symbolic execution for combining online and offline (concolic)
execution to maximize the benefits of both techniques, and
2) index-based memory modeling, a technique that allows
MAYHEM to efficiently reason about symbolic memory at
the binary level. We used MAYHEM to find and demonstrate
29 exploitable vulnerabilities in both Linux and Windows
programs, 2 of which were previously undocumented.

Keywords-hybrid execution, symbolic memory, index-based
memory modeling, exploit generation

I. INTRODUCTION

Bugs are plentiful. For example, the Ubuntu Linux bug
management database currently lists over 90,000 open
bugs [17]. However, bugs that can be exploited by attackers
are typically the most serious, and should be patched first.
Thus, a central question is not whether a program has bugs,
but which bugs are exploitable.

In this paper we present MAYHEM, a sound system
for automatically finding exploitable bugs in binary (i.e.,
executable) programs. MAYHEM produces a working control-

In order to tackle this problem, MAYHEM's design is based
on four main principles: 1) the system should be able to
make forward progress for arbitrarily long times—ideally run
“forever”—without exceeding the given resources (especially
memory), 2) in order to maximize performance, the system
should not repeat work, 3) the system should not throw away
any work—previous analysis results of the system should
be reusable on subsequent runs, and 4) the system should
be able to reason about symbolic memory where a load
or store address depends on user input. Handling memory
addresses is essential to exploit real-world bugs. Principle #1
is necessary for running complex applications, since most
non-trivial programs will contain a potentially infinite number
of paths to explore.

Current approaches to symbolic execution, e.g., CUTE [26],
BitBlaze [5], KLEE [9], SAGE [13], McVeto [27], AEG [2],
S2E [28], and others [3], [21], do not satisfy all the
above design points. Conceptually, current executors can be
divided into two main categories: offline executors — which
concretely run a single execution path and then symbolically
execute it (also known as trace-based or concolic executors,
e.g., SAGE), and online executors — which try to execute
all possible paths in a single run of the system (e.g., S2E).
Neither online nor offline executors satisfy principles #1-#3.
In addition, most symbolic execution engines do not reason
about symbolic memory, thus do not meet principle #4.

Offline symbolic executors [5], [13] reason about a single
execution path at a time. Principle #1 is satisfied by iteratively
picking new paths to explore. Further, every run of the



>>> Home Docs API Install Code Get Involved!

angr

We're launching an angr blog! The first post, with plans for the upcoming year, is here.

What is angr?

angr is a python framework for analyzing binaries. It combines both static and dynamic symbolic ("concolic”) analysis,
making it applicable to a variety of tasks.

As an introduction to angr's capabilities, here are some of the things that you can do using angr and the tools built with it:

« Control-flow graph recovery. show code

Symbolic execution. Show code

Automatic ROP chain building using angrop. Show code

Automatically binaries hardening using patcherex. show code

Automatic exploit generation (for DECREE and simple Linux binaries) using rex. show code

Use angr-management, a (very alpha state!) GUI for angr, to analyze binaries! show code
Achieve cyber-autonomy in the comfort of your own home, using Mechanical Phish, the third-place winner of the DARPA
Cyber Grand Challenge.

angr itself is made up of several subprojects, all of which can be used separately in other projects:

« an executable and library loader, CLE

a library describing various architectures, archinfo

a Python wrapper around the binary code lifter VEX, PyVEX

a data backend to abstract away differences between static and symbolic domains, Claripy
the program analysis suite itself, angr

How do | learn?
There are a few resources you can use to help you get up to speed!



So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question 2: What if program doesn’t have bugs!?
A: You're hosed, can’t perform this attack

But some other attacks we’ll talk about on Thursday

The best way to prevent these attacks is to write in
languages where these bugs can’t occur!!



So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question 3: How do | know what code to execute!
A: Find the code you want in the binary

A: We'll also learn how you can inject your own code



So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where | want

Question 4: How do | know where the code is
A: Use GDB to find it after booting up the binary

But there’s a critical catch!



The compiler includes a variety of protections
against stack smashing

Stack canaries (which we’ll learn about next week)

Address Space Layout Randomization

Loads code into random addr each run!

(We’'ll see some techniques to help defeat this)






Goal of this course isn’t to teach you “how to hack”
Instead, we focus on core principles

To do that, just go download metasploit




How are most systems hacked in the “real world?”

https://www.youtube.com/watch?v=msX40AXpvUE
https://www.youtube.com/watch?v=iSr7kOCdPTc

https://www.youtube.com/watch?v=dxiPcbmo1_U



How are most systems hacked in the “real world?”

Answer: bad system configurations, out-of-date
software, weak passwords

Almost never a hacker sitting in a dark room
custom-writing an exploit



In addition to all of the standard things in
the honor code...

Don’t use things from this course to
unethically infiltrate systems



Upshot: we can control where the code returns by
smashing the stack exploiting a buffer overflow

Next time:
* Stack smashing—live demo
* Using GDB to understand binaries

* Objdump and the ELF format

Lab tomorrow: Using the VM for the course, Pl intro

Before tomorrow: Download
VirtualBox!




