
Welcome to the cybersecurity course

Fundamentally, security is about thinking hard about the
way systems are designed

And then asking how weaknesses in that design allows you
to launch an exploit

In this class, you’ll build an end-to-end system

Along with your team

^

Along the way, you’re going to be learning security

But…

The code I give you has bugs

During this course, we’ll learn how to exploit
these bugs

And I’ll have you fix some of them

But I won’t tell you about all of them

At the end of the course, you’re
going to break other teams’ code

The more you break, the more you’ll win, if
you fix you get more points

Memory attacks
Crypto everyone should know
Web attacks
Social engineering and UI design for security
Security foundations (info flow, full abstraction)
Reverse engineering

We’ll cover approximately these things…

We’ll be building an encrypted chat app

That can store files on disc

And has a web-based interface

You should know…

A bit of C/ASM

A high-level language (Python)

Be willing to pick up a bit of web programming

(File storage system written in this)

(Chat app written in this, using PyNaCl for crypto)

(We’ll be using sockets, a small bit of SQL, and maybe some JS)

A few logistical items to give you an idea of
whether this is a good course for you…

This course will cover security across the software stack,
which will introduce some other topics by proxy

A few logistical items to give you an idea of
whether this is a good course for you…

This course will cover security across the software stack,
which will introduce some other topics by proxy

I expect it will be hard

A few logistical items to give you an idea of
whether this is a good course for you…

This course will cover security across the software stack,
which will introduce some other topics by proxy

I expect it will be hard
Expectation: you will be able to pick things up

without us going over them in class explicitly

A few logistical items to give you an idea of
whether this is a good course for you…

Projects
3 Projects followed by “break it” phase

Each project has two components:

Individual Group

Projects

Individual Group

60% 40%

3 Projects followed by “break it” phase

Each project has two components:

Projects

No extensions on these…

Exams

Two “take home” exams

You can take up to eight hours on these, and
they are open everything

Little over ~1/3 and ~2/3 into course

Grades
Since I expect the course to be challenging,

there may be a curve at the end

I’ll let you know averages on exams

Memory-Based Attacks

Just write in Java / Rust / Python / …

Basically anything except C/C++!!

Upshot

If you write in these languages, you’ll be automatically
immune to most of these attacks

Assembly Review

By which I mean x86-64 assembly…

Note: you won’t have to write significant amounts of
assembly for this course, but you will need to be able to
read small pieces of it and figure out what it’s doing…

Registers

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

Originally, 8-bit registers: al, bl, cl, dl

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

Also other registers: bp, sp, di, si

Base pointer

(Start of frame) Stack pointer

(Top of stack)

IP: instruction pointer
Points at current instruction,

incremented after each instruction

FLAGS: holds flags

Set on subtraction, comparison, etc..

Originally, 8-bit registers: al, bl, cl, dl

Traditionally, x86 architectures only had four
16-bit general purpose registers: ax, bx, cx, dx

As time progressed, also added 32-bit registers:
eax, ebx, ecx, edx

In past few years, 64-bit registers: rax, rbx, rcx, rdx

Also other registers: bp, sp, di, si

(Also 64-bit versions: rip, etc..)

We’ll pretty much exclusively use
64-bit registers!

Note RAX is an extension of EAX

If you change EAX, you change lower 32 bits of RAX

Special regs: floating-
point / matrix ops

12 34

To represent 0x1234567890abcdef

56 78 90 ab cd ef

Least Significant ByteMost Significant Byte

x86 is a little-endian architecture

If an n-byte value is stored at addresses a to a+(n-1) in memory,
byte a will hold the least significant byte

0x1234567890abcdef

Exercise with partner

Instructions

Binary code is made up of giant sequences of “instructions”

Modern Intel / AMD chip has hundreds of them, some very complex

Moving memory around Arithmetic Branch / If

Matrix operations Atomic-Instructions

Transactional memory instructions

Encoded as binary (as you may have seen from
hardware-design course)

We (humans) write in a format named “assembly”

Confusingly: two types of assembly

AT&T Intel

mov 5, %rax mov rax, 5

I will basically always use AT&T

(Since that’s what’s used in GNU toolchain)

Several addressing modes

mov %rax, %rbx
Opcode name

Source

Destination

“Move the value from register rax into the register rbx”

Plurality of instructions
are movs

Then push
Then call

Memory: a giant chunk of bytes

You can read from it and write to it in 1/2/4/8/16-byte increments

mov (%rax), %rbx

mov (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0x1234123412341234%rbx

mov (%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xdeadbeefdeadbeef%rbx

mov 8(%rax), %rbx
Opcode name

Source

Destination

“Move the value at address %rax+8 into register %rbx”

0xaf23c8a223356ac0xffffffff00000000%rax 0xffffffff00000008

0xdeadbeefdeadbeef0xffffffff00000000
0xaf23c8a223356ac%rbx

A few other more complicated ones that
allow you to add registers, offsets, etc…

Different instructions allow different addressing-modes

Memory is divided into different regions

Name a few?

OS separates these into different segments

Kernel memory

Your OS uses it

Stack: push / pop

Very important:
The stack grows down

Stack: push / pop

Very important:
The stack grows down

mmap segments

Allows you to map a file
to memory

Heap: dynamic allocation

C++: New / delete

C: Malloc / free

BSS: Uninitialized static
vars (globals)

Data segment: initialized
statics—e.g., constant strings

Text segment: program code

Note the permissions

This random offset
really security feature

Calling conventions

Touch-tone phones, send an acoustic wave over the wire

If Alice wants to call Bob, her phone needs to send the right
sounds over the wire in the right order

Calling conventions

When function A wants to call function B, it has to do the same

Where do arguments go?
How to store return address?
Who saves registers?
Where is result stored?

Calling conventions

Modern computers use a few different calling conventions

Where do arguments go?
How to store return address?
Who saves registers?
Where is result stored?

De-facto standard (Linux / MacOS / etc..) : x86-64 System V ABI

Note: this is new for the 64 bit API. You might see stuff online
for the 32-bit API that is different

Calling conventions: x86-64
System V ABI

Where do arguments go?
First six: rdi,rsi,rdx,rcx,r8,r9

How to store return address?
call instruction puts on top of stack

Who saves registers?
Caller saves caller-save registers
R10,R11, any ones used for args

Where is result stored?
Result stored in %rax

http://slideplayer.com/slide/9679824/

x86-64 System V ABI

Rules for caller:
• Save caller-save registers
• First six args in registers, after that put on

stack
• Execute call—pushes ret addr
Afterwards:
•Pop saved registers
•Result now in %rax

Rules for callee:
• First six args available in registers
• Push %rbp—caller’s base pointer
• Move %rsp to %rbp—Setup new frame
• Subtract necessary stack space
• Push callee-save registers
• Before exit: restore rbp/callee-saved regs
• leave instruction restores rbp

• When function done, put result in %rax
• Use ret instruction to pop return rip

x86-64 System V ABI

These rules are cumbersome: I frequently
look them up, they change depending on the

kind of function you’re calling, etc…

Upshot: don’t feel you have to memorize, just
get the gist / know how to recognize them

Small examples: interactive demo of x86-64 ABI

Trivia: the red zone
int bar(int a, int b) {
 return a + b;
} bar:

 pushq %rbp
movq %rsp, %rbp

 movl %edi, -4(%rbp)
 movl %esi, -8(%rbp)
 movl -4(%rbp), %edx
 movl -8(%rbp), %eax
 addl %edx, %eax

popq %rbp
 ret

Weird! This code using -4(%rbp) before
decrementing the stack pointer!!

Turns out: x86-64 guarantees there
are always128 bytes below %rsp

Upshot: if a function uses at most
128 bytes below RSP, doesn’t have

to subtract anything from RSP

This is an optimization for “small”
functions: so they never have to

subtract from RSP

Question: why does GCC generate such stupid code?

Answer: code unoptimized, add -O(1/2/3) to optimize it

-O0 generates code that is predictable and easy to read

First attack: Stack Smashing

void foo(char *ptr) {
 char buffer[1000];
 strcpy(buffer, ptr);
 printf(“length: %d\n”, strlen(buffer));
}

This code is bad because it doesn’t check the
length of the string in ptr…

After foo starts

Stuff from foo…

Return addr

Saved %rbp

buffer[999]

…

buffer[0]%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

%rbp

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

…

buffer[0]

%rbp

Key observation: the stack grows down

After foo starts

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

buffer[0]

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’buffer[1]

buffer[2]

…

ptr[2] = 0

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Callee’s %rbx

Return addr

Saved %rbp

buffer[999]

‘H’

Consider what happens when strcpy(buffer,ptr)

ptr[0] = ‘H’

ptr[1] = ‘i’‘i’

0

…

ptr[2] = 0

(This one is fine..)

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Now consider what happens when we provide input ‘A’ * 1008

Callee’s %rbx

0x41414141

0x41414141

‘A’

‘A’

Return addr becomes 0x41414141 (‘A’ four times)

‘A’

…

‘A’

‘A’ * 8

‘A’ * 8

%rsp

%rsp+3E8

%rsp+3F0

%rsp+3F8

%rsp+400

Upon return, control goes to 0x41414141

If anything at this address, program will execute it

But falls in here, unmapped memory

Result: most common C crash

Segmentation Fault

The compiler translates binary code into machine code

execve("/bin/sh")

Compiler

 "\x48\x31\xd2" // xor %rdx, %rdx
 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
 "\x48\xc1\xeb\x08" // shr $0x8, %rbx
 "\x53" // push %rbx
 "\x48\x89\xe7" // mov %rsp, %rdi
 "\x50" // push %rax
 "\x57" // push %rdi
 "\x48\x89\xe6" // mov %rsp, %rsi
 "\xb0\x3b" // mov $0x3b, %al
 "\x0f\x05"; // syscall

We’ll cover this assembly
later in class!

man execve

All that code is loaded by the kernel at a specific place in memory

Let’s assume for a second that the compiler loads that code at
0x41414141

In the next few slides we’ll see what happens if it’s not there

 "\x48\x31\xd2" // xor %rdx, %rdx
 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
 "\x48\xc1\xeb\x08" // shr $0x8, %rbx
 "\x53" // push %rbx
 "\x48\x89\xe7" // mov %rsp, %rdi
 "\x50" // push %rax
 "\x57" // push %rdi
 "\x48\x89\xe6" // mov %rsp, %rsi
 "\xb0\x3b" // mov $0x3b, %al
 "\x0f\x05"; // syscall

0x41414141

// foo’s caller
foo(p);
x = x+1;

void foo(char *ptr) {
 char buffer[ptr];
 strcpy(buffer, ptr);
 printf(“length: %d\n”, strlen(buffer));
}

Return pointer: 0x41414141 After returning, we expect the
code to go back here

 "\x48\x31\xd2" // xor %rdx, %rdx
 "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx
 "\x48\xc1\xeb\x08" // shr $0x8, %rbx
 "\x53" // push %rbx
 "\x48\x89\xe7" // mov %rsp, %rdi
 "\x50" // push %rax
 "\x57" // push %rdi
 "\x48\x89\xe6" // mov %rsp, %rsi
 "\xb0\x3b" // mov $0x3b, %al
 "\x0f\x05"; // syscall

0x41414141

// foo’s caller
foo(p);
x = x+1;

void foo(char *ptr) {
 char buffer[ptr];
 strcpy(buffer, ptr);
 printf(“length: %d\n”, strlen(buffer));
}

Return pointer: 0x41414141
But the return address has been

overwritten (stack has been smashed)

Instead, return goes here

Now, the computer executes a shell instead!!!

Might not be so bad if it’s a local program

But bad if it’s a connection to a remote server!

In your first project, you’ll mount one of these
attacks on a vulnerable file server

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 1: How do I find a bug?

A: Dig through the source manually, if source is available

(If source unavailable, use a decompiler)

A: Some automated testing tools

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 2: What if program doesn’t have bugs!?

A: You’re hosed, can’t perform this attack

But some other attacks we’ll talk about on Thursday

The best way to prevent these attacks is to write in
languages where these bugs can’t occur!!

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 3: How do I know what code to execute?

A: Find the code you want in the binary

A: We’ll also learn how you can inject your own code

So my job as an attacker is to find a buffer overflow in the program
and then craft an input that sends the code where I want

Question 4: How do I know where the code is

A: Use GDB to find it after booting up the binary

But there’s a critical catch!

The compiler includes a variety of protections
against stack smashing

Stack canaries (which we’ll learn about next week)

Address Space Layout Randomization

Loads code into random addr each run!
(We’ll see some techniques to help defeat this)

Goal of this course isn’t to teach you “how to hack”

To do that, just go download metasploit

Instead, we focus on core principles

How are most systems hacked in the “real world?”

https://www.youtube.com/watch?v=msX4oAXpvUE

https://www.youtube.com/watch?v=iSr7kOCdPTc

https://www.youtube.com/watch?v=dxIPcbmo1_U

How are most systems hacked in the “real world?”

Answer: bad system configurations, out-of-date
software, weak passwords

Almost never a hacker sitting in a dark room
custom-writing an exploit

In addition to all of the standard things in
the honor code…

Don’t use things from this course to
unethically infiltrate systems

Upshot: we can control where the code returns by
smashing the stack exploiting a buffer overflow

Next time:
• Stack smashing—live demo
• Using GDB to understand binaries
• Objdump and the ELF format

Lab tomorrow: Using the VM for the course, P1 intro

Before tomorrow: Download
VirtualBox!

