
Intro to Crypto
With material from: Michelle 

Mazurek, David Brumley, 
Dan Boneh
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Crypto is everywhere
• Secure comms: 

• Web traffic (HTTPS) 
• Wireless traffic (802.11, WPA2, GSM, Bluetooth) 

• Files on disk: Bitlocker, FileVault 

• User authentication: Kerberos 

• … and much more



Overall goal: Protect 
communication

Alice Bob

message m: “curiouser 
and curiouser!”

Eve

Public channel

Powerful adversary: say, any 
polynomial-time algorithm



Security goals

• Privacy 

• Integrity 

• Authentication



Bob

D

Goal: Privacy

Alice

message m: “curiouser 
and curiouser!”

Eve

Public channel

Eve should not be able to learn m. Not even one bit!

E

???



Bob

D

Goal: Integrity

Alice

message m: “curiouser 
and curiouser!”

Eve

Public channel

Eve should not be able to alter m without detection.

E

message m’: “curious 
and curious?”

ERROR!

Works regardless of whether Eve knows the contents of m!



Bob

D

Goal: Authenticity

Alice

Eve

Public channel

Eve should not be able to forge messages as Alice

E

“Why is a raven like 
a writing desk?” 

signed, Alice

ERROR!



History of 
Cryptography



Caesar cipher
• Also called shift or substitution cipher 

• Classic: m + 3 
• Others: ROT13, etc.

Julius&Caesar&
100&BC.&44&BC&

e t t u b r u t e

h w w x e u x w h



How would you attack this cipher?



Jvl mlwclk yr jvl owmwez twp yusl w zyduo pjdcluj 

mqil zydkplmr. Hdj jvlz tykilc vwkc jy mlwku jvl wkj 

yr vwsiquo, tvqsv vlmflc mlwc jvlg jy oklwjulpp. 

Zyd vwnl jvl fyjlujqwm jy cy jvl pwgl. Zydk plsklj 

fwpptykc qp: JYWPJ

http://picoctf.com

http://picoctf.com


How did you do it?
1. Word frequency 

2. Letter frequency 
• Most common: e,t,a,o,i,n 
• Least common: j,x,q,z



Classically: Iterative design
Scheme 1

Scheme 2

Broken!

Broken!

Scheme 3 Deploy Broken!

No way to prove security. How to know when broken?



Claude Shannon and 
Information Theory (1945)

• Formally define:  
• Security goals 
• Adversary models 
• Security of a system w.r.t. goals 

• Beyond iterated design: Proof!



Bob

D

Defining a cryptosystem

Alice

Public channel
E

m

ke

m (or error)

kdc

m = message (aka “plaintext”) (message space M) 
c = ciphertext (cipher space C) 
E = encryption algorithm 
D = decryption algorithm 
ke = encryption key (key space K) 
kd = decryption key (key space K)



Defining a cryptosystem, ctd

• Three polynomial-time algorithms: 
• KeyGen(L): Returns random key of length L.  
• E(ke,m): Encrypts m with ke, returns c in C 
• D(kd,c): Decrypts c with kd, returns m in M 

• Correctness condition: 
8m 2 M,k 2 K : D(k,E(k,m)) = m



Attacker models
• Known ciphertext attack (KCA) 

• aka “Ciphertext only attack” (COA) 

• Known plaintext attack (KPA) 
• Have one matching pair 

• Chosen plaintext attack (CPA) 
• Encryption oracle 

• Chosen ciphertext attack (CCA) 
• Decryption oracle

In order of weakest -> strongest

Matters if you are 
sending multiple 

messages with the 
same key!



One-Time Pad
Miller (1882) and Vernam (1917)

E(k,m) = k �m = c

D(k, c) = k � c = m

E(k,m) = k �m = c

D(k, c) = k � c = m

M = C = K = {0,1}n

m: 0 1 1 0 1 1 0 1
k: 1 1 0 1 0 0 0 1

c: 1 0 1 1 1 1 0 0
k: 1 1 0 1 0 0 0 1
m: 0 1 1 0 1 1 0 1

�

�



Case study: One-time pad



One-Time Pad
Miller (1882) and Vernam (1917)

E(k,m) = k �m = c

D(k, c) = k � c = m

E(k,m) = k �m = c

D(k, c) = k � c = m

M = C = K = {0,1}n

D(k,E(k,m)) = D(k, k �m)

= k � (k �m)

= 0�m

= m
Recall def’n:
• Efficient  ✔
• Correct   ✔



Perfect secrecy (Shannon)

Alice
Bob

Public channel

a.k.a. Information Theoretic Secrecy

Eve

1

Eve

2

Goal: Eve2 is no better off 
than Eve1

(Pr[m=m1] = Pr[m=m2])

Guess: m1 Guess: 
m2

m



Perfect secrecy (Shannon)

• Formal definition:

aka Information Theoretic Secrecy

8m0,m1 2 M. where |m0| = |m1|
8c 2 C.

Pr [E(k,m0) = c] = Pr [E(k,m1) = c]



Good news: OTP has perfect secrecy
• Goal: Show  

• Proof:

Pr [E(k,m0) = c] = Pr [E(k,m1) = c]

Pr[E(k,m0) = c] = Pr[k �m0 = c] (1)

=
|k 2 {0, 1}m : k �m0 = c|

{0, 1}m (2)

=
1

2m
(3)

Pr[E(k,m1) = c] = Pr[k �m1 = c] (4)

=
|k 2 {0, 1}m : k �m1 = c|

{0, 1}m (5)

=
1

2m
(6)

Therefore, Pr[E(k,m0) = c] = Pr[E(k,m1) = c]

Pr[E(k,m0) = c] = Pr[k �m0 = c] (1)

=
|k 2 {0, 1}m : k �m0 = c|

{0, 1}m (2)

=
1

2m
(3)

Pr[E(k,m1) = c] = Pr[k �m1 = c] (4)

=
|k 2 {0, 1}m : k �m1 = c|

{0, 1}m (5)

=
1

2m
(6)

Therefore, Pr[E(k,m0) = c] = Pr[E(k,m1) = c]

Pr[E(k,m0) = c] = Pr[k �m0 = c] (1)

=
|k 2 {0, 1}m : k �m0 = c|

{0, 1}m (2)

=
1

2m
(3)

Pr[E(k,m1) = c] = Pr[k �m1 = c] (4)

=
|k 2 {0, 1}m : k �m1 = c|

{0, 1}m (5)

=
1

2m
(6)

Therefore, Pr[E(k,m0) = c] = Pr[E(k,m1) = c]

Pr[E(k,m0) = c] = Pr[k �m0 = c] (1)

=
|k 2 {0, 1}m : k �m0 = c|

{0, 1}m (2)

=
1

2m
(3)

Pr[E(k,m1) = c] = Pr[k �m1 = c] (4)

=
|k 2 {0, 1}m : k �m1 = c|

{0, 1}m (5)

=
1

2m
(6)

Therefore, Pr[E(k,m0) = c] = Pr[E(k,m1) = c]

Pr[E(k,m0) = c] = Pr[k �m0 = c] (1)

=
|k 2 {0, 1}m : k �m0 = c|

{0, 1}m (2)

=
1

2m
(3)

Pr[E(k,m1) = c] = Pr[k �m1 = c] (4)

=
|k 2 {0, 1}m : k �m1 = c|

{0, 1}m (5)

=
1

2m
(6)

Therefore, Pr[E(k,m0) = c] = Pr[E(k,m1) = c]

Pr[E(k,m0) = c] = Pr[k �m0 = c] (1)

=
|k 2 {0, 1}m : k �m0 = c|

{0, 1}m (2)

=
1

2m
(3)

Pr[E(k,m1) = c] = Pr[k �m1 = c] (4)

=
|k 2 {0, 1}m : k �m1 = c|

{0, 1}m (5)

=
1

2m
(6)

Therefore, Pr[E(k,m0) = c] = Pr[E(k,m1) = c]



Which attacks does the one-
time pad resist?

• Known ciphertext 

• Known plaintext 

• Chosen plaintext 

• Chosen ciphertext

Yes

No?

key reuse issue!



Bad news #1: Two-time pad 
is insecure

• c1 = m1 + k, c2 = m2 + k  

• No secrecy against known plaintext 

• Worse: c1 + c2 = m1 + m2 

• Enough redundancy in ASCII (and English) to 
reveal m1 and m2 with high probability



Bad? News #2: All keys 
must be equally likely

• Let M = {000, 001} 

• Let K = {000, 001, 010, 011, 100, 101, 110, 111} 

• If k = 000 (random selection), then M = C 
• OK if all plaintext is equally likely: 

• 001 + 000 -> 001; 000 + 001 -> 001 
• Bad if plaintext is recognizable: “This is a secret” 
• Necessary so ciphertexts are equally likely

2 possible messages

8 possible keys



Bad? News #3: Brute force
• C = MAEIXRBMYCIYKYYDQYDZVPD

• Key1 = ABCDEFGHIJKLMNOPQRSTUVWXYZABC 

• Key2 = QWERTYUIOPASDFGHJKLZXCVBNMQWE 

• Key 3 = QAZWSXEDCRFVTGBYHNUJMIKOLPQAZ 

• Can you find my secret message? 
• http://www.braingle.com/brainteasers/codes/onetimepad.php

Again, not a problem if all messages equally likely

http://www.braingle.com/brainteasers/codes/onetimepad.php


More bad news
• Theorem: Perfect secrecy requires |K| >= |M| 

• Why is this bad news? 
• If you could send K securely, you could send M 

securely and you don’t need the encryption! 

• In practice, fall back to computational security
• Can’t be solved by an attacker faster than X 

• In practice, faster than some assumed hard math 
problem, like integer factorization 

• Assumes limited computational resources



Recall security goals

• Privacy, integrity, authenticity 

• Which apply to the one-time pad? Why? 
• Only privacy!



Preview of crypto unit



Covered in this class
Symmetric trust model Asymmetric trust model

Privacy
Private-key encryption 
• Stream ciphers 
• Block ciphers

Public-key encryption

Authenticity, 
Integrity

Hashes, MACs, 
authenticated encryption

Signatures, PKI, 
certificates, SSL/TLS, user 

authentication

Everyone shares 
the same secret k

Every party has her 
own secret

Assumptions: (1) All algorithms public,  
(2) security based only on key size



Bob

D

Symmetric crypto

Alice

Public channel
E

m

ke

m (or error)

kdc

• k = ke = kd 
• Everyone who knows k knows the whole secret



• How did Alice and Bob both get the secret key? 

• That is a different problem 

• Not solved by symmetric crypto. Assumed.



Bob

D

Asymmetric crypto

Alice

Public channel
E

m

ke

m (or error)

kdc

• ke != kd 
• kd = private key, ke = public key 

• Bob computes both, gives public key to Alice 
• Alice sends a message to Bob: c = E(m, ke) 
• Bob can decrypt it: m = D(m, kd) 
• Anyone can send, only Bob can read!



• How did Alice get Bob’s public key? 

• That’s easy, he sent it in plain / publicly 

• BUT, how does she know it came from Bob? 
• And not from Eve? 

• Again, this is a separate problem. Assumed.



Bob

V

Message authentication

Alice

Public channel
S

m true or false

m||s

s = Sign(m, ks)

ks kv

Verify(m,s,kv) ?= true

Only someone who knows ks could 
have sent the message!



Session keys
• Generally bad idea to use your long-lived keys a lot 

• Increase opportunities for KPA 

• Instead, generate session key 
• Using existing keys, generate fresh session key 
• Be sure session key is authentic 
• Use session key for this session only 

• Also faster (asymmetric crypto is slow)



Next… Block Ciphers



Bob

D

Symmetric crypto

Alice

Public channel
E

m

ke

m (or error)

kdc

• k = ke = kd 
• Everyone who knows k knows the whole secret

Recall: 



Perfect secrecy (Shannon)

Alice
Bob

Public channel

a.k.a. Information Theoretic Secrecy

Eve

1

Eve

2

Goal: Eve2 is no better off 
than Eve1

(Pr[m=m1] = Pr[m=m2])

Guess: m1 Guess: 
m2

m

Recall: 



Random functions



• Terminology note: 

• Capital letters (X,Y,F) = sets of things 

• Lowercase letters (x,y,f) = individual things in set



Concept model: f(x)
• f(x) maps inputs X to outputs Y (X = Y or X != Y) 
• For reasonably-sized X and Y, LOTS of possibilities!

1

2

3

4

6

8

7

5

f1(x)
1

2

3

4

5

6

8

7

f2(x)

F = set of all such possible functions f(x)



Draw f from F at random
• Pr[f(x) = y) == 1/|Y| 

• If f(3) = 8, then what is f(4)? 
• We don’t know! And there is no way to predict 

(unless you know f). True for all values x. 
• Given that f(x) = 7, what is x? 

• Can’t find out without brute-forcing.  
• How long will this take? 

• This is called a one-way function



Why do we care? 

Because one-way functions provide 
confidentiality!



• If Alice writes f(x) instead of x to a file, no one can 
recover the plaintext without brute-forcing. 

• Including Alice! (This is a problem.)

Alice



(Efficiently) Recovering x

• If everyone can invert f, no confidentiality 

• Instead, we want a one-way trapdoor function: 
• F(k,x) = y 
• If you know y and k, you can recover x easily 
• If you don’t know k, you must brute-force

This is starting to resemble our cryptosystem model!



This is all imaginary
• Storing all the possible fs in F would be hard 

• No true one-way trapdoor has been found 
• Unclear whether it’s possible 

• Instead: Approximate this with pseudo-random 
functions (PRF) 
• These are really hard to create correctly!



Pseudo-Random 
Functions



Pseudo-random function 
family (PRF)

• F: family of functions f(x) 
• All have the same domain and range X, Y 

• Randomly choose one function fk(x) 
• Recall, k is our trapdoor 
• k is which function in the family we chose!  

• Cannot distinguish between a true random 
function, and a randomly chosen function in F 
• Family is public!



PRF security

Eve
(polynomial time)

Eve’s job: Provide x. 
Figure out which world 

we are in. With very 
high probability, she 
can’t do better than 
random guessing.

Setup: tbl[*] = random 
———
Return: y = tbl[x]

World 0

Setup: k = rand() 
———
Return: y = fk(x)

World 1

x

y

x

gk(x)



• Note — if attacker is wrong most of the time (rather 
than half the time), that indicates insecurity. 

• She should switch guesses



Block ciphers



Block cipher basics
• Start with a PRF  

• That operates on fixed-length blocks: input size 
== output size 

• Each function is a permutation (it’s invertible) 
• Each function, inverse is efficiently computable 

• Key length: related to how many functions there are 

• Block length: size of input/output block



Security goal
• Every fk in F has the same range 

• Every output (ciphertext) belongs to some input 
• But the permutation is different for each k 

• Goal: If you don’t know k, you cannot distinguish! 

• k is the only secret!



Example block cipher

• Let block length == key length 

• Ek(m) = k    x = c;    Dk(c) = k    c = x� �



Beyond the block

• Block ciphers operate on a (small) fixed size block 
• AES = 128 bits 
• This is not enough for real applications 

• Instead: Break input up into blocks 
• Strategy for doing this = encryption mode 
• Different modes = different security, performance



Block cipher modes



Electronic code book (ECB)

m1 m2 m3 m4 …. mn

c1 c2 c3 c4 …. cn

Plain:

Cipher: 

E(k,mi):

• What is the problem here? 



CPA revisited

Alice

Bob

Eve

Ek(Hillary)

Uh oh.

Ek(Trump)

Ek(Trump)



• CPA-resistance is mandatory 

• Deterministic schemes cannot be CPA-secure

• Nor are they secure to send multiple messages 

• Moral: Always use randomized encryption!  

• Which builds in a varying value per message 

• Never use ECB mode!



Bob

D

Randomizing block ciphers

Alice

Public channel
E

m

k

m (or error)

kc

• r is an Initialization Vector (IV) 
• ci = E(k, m XOR ri); m = ri XOR D(k,ci) 
• r can be random or unique (see next slides)

ri

ri



Random IV

• A new string chosen at random per message 

• Must send r along with c; use more bandwidth



Unique IV
• Should not repeat 

• New IV for every message 

• Both sender and receiver can predict which IV is used 
for the next message; must remain synch’d. 
• Naive counter (not very secure, more later) 

• IVi+1  = IVi + 1 
• Better: Calculate from previous: IVi+1 = E(k,IVi) 

• Less bandwidth but requires in-order delivery



• How to generate randomness at each block? 

• Lucky for us, E provides built-in randomness



Cipher-block chaining (CBC)

IV m1 m2 m3 m4

c1 c2 c3 c4

� �

E E

IV

Ciphertext 

etc. 
�

E

�

E

mi = D(k,ci) XOR ci-1 Decrypt?



CBC continued

• Solves the randomization/CPA problem 

• Encryption is not parallelizable anymore 

• Other similar approaches: PCBC, OFB, CFB 
• XOR in more/different stuff 
• Different performance characteristics



Avoid synching IV

?? m1 m2 m3 m4

c1 c2 c3 c4

� �

E E

etc. �

E

�

E

First block of output is gibberish, but we don’t care!

??

E

�

??



Attacking predictable IV
• Assume: 

• Options for m are known (e.g., {yes, no}) 
• Last IV (for mn)is known 
• Next IV is predictable 
• CPA attack 

• Choose mn+1 = “yes” XOR IVn XOR IVn+1 
• If cn+1 == cn then mn was “yes” … Why?



Stream cipher
• Inspired by the one time pad 

• Generate ongoing series of bits 
• XOR each bit with next bit of m 

• Synchronous: Sender, receiver use same bitstream  
• Requires synchronizing where to start, no drops 

• Musts: Good randomness, long period 

• Several popular ones but partially busted 
• Especially used for GSM



Output feedback (OFB)
• Turns a block cipher into a stream cipher 

• Generate key stream which is XORed with data 

• Can generate all keys ahead, encrypt in parallel

Used improperly, can cycle too fast! ht
tp
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https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation


Counter mode (CTR)

IV

c1 c2 c3 c4

� �

E E

IV

Ciphertext 

�

E

�

E

mi = D(k,IV+i) XOR ci Decrypt?

IV + 1 IV + 2 IV + 3 IV + 4

m1 m2 m4m3



More on counter mode
• Also converts block to stream cipher 

• Like OFB, encrypt in parallel 

• Generate keystream as a sequence 
• Sequence guaranteed not to repeat for a while 

• Possible attacks: 
• If initial IV is not random and not transformed or 

concatenated 
• When used properly, very secure



• This can cause trouble if you naively increment the 
IV every time between messages.  

• For message A, the input to the block cipher would 
be IVA, IVA + 1, IVA + 2, etc.  

• Then if for message B, you use IVB = IVA + 1 
• Input to blocks will be equivalent to IVA + 1, IVA + 

2, etc.  
• In effect you are reusing inputs to the block cipher 

in a predictable way, which is bad.



Block cipher padding
• If your message doesn’t divide evenly into blocks, 

then what? 
• Doesn’t apply in streaming mode (e.g. CTR) 
• Pad with extra bytes in some known pattern 

• Susceptible to padding oracle attacks 
• Brute-force one byte at a time (from end) in mn-1 

• Because of XOR, affects padding at the end of mn 

• If you guessed right, padding will be valid

Lesson: Don’t return informative errors 



• Cool walkthrough of padding oracle attack:  

• http://robertheaton.com/2013/07/29/padding-
oracle-attack/



Common block 
ciphers



Data Encryption Standard (DES)

• Developed at IBM/NSA in 1970s (non-public 
process) 

• 56-bit key, 64-bit block length 

• Concerns: 
• Short key length — can be brute-forced in days 
• Short block length — repeat blocks too often



Triple DES
• Triple the key length: k = (k1, k2, k3) 

• Still short block length 
• How much does brute-force increase by? 

• New block cipher:  
• E3(k,m) = E(k1,D(k2,E(k3,m))) 
• One version: k1 = k3  

• Effective key length = 112 

• Fairly slow, but used in practice (back compatible)



Advanced Encryption 
Standard (AES)

• Public contest at NIST, 1997 
• 15 candidates, winner selected in 2000 
• Lots of analysis of each candidate 

• Efficiency + security considered 
• “Most secure” didn’t win! 

• Supports keys: 128/192/256 bits 
• Nanoseconds since big bang: ~290



Summing up (so far)
• Symmetric crypto is very fast in practice 

• Especially stream ciphers 

• If used properly it can be very secure 

• Next time:  
• Message authentication 
• Key exchange


