
Symmetric Encryption 2: Integrity
w/ material from Michelle Mazurek, Dave Levin, Jon Katz, 

David Brumley

ht
tp

://
w

w
m

si
te

.w
pe

ng
in

e.
co

m
/w

p-
co

nt
en

t/u
pl

oa
ds

/2
01

1/
12

/In
te

gr
ity

-li
on

-3
00

x2
22

.jp
g

http://wwmsite.wpengine.com/wp-content/uploads/2011/12/Integrity-lion-300x222.jpg


Summing up (so far)
• Computational security 

• Adversary receives encryption of either m0 or m1 
• Can’t do better than guess which it is 

• Secure PRF: Adversary can’t distinguish between 
PRF and actual random function 

• Block ciphers: Secure when used properly (IVs!) 
• Multiple encryption modes



Message integrity 
and authentication



• Privacy and integrity are orthogonal 

• Up to now we’ve had privacy without integrity 

• Now we will do integrity without privacy 

• And later, both at once 

• Reminder: Goal is to detect tampering 

• Not to prevent it!



Bob

D

Goal: Integrity

Alice

message m: “curiouser 
and curiouser!”

Eve

Public channel

Eve should not be able to alter m without detection.

E

message m’: “curious 
and curious?”

ERROR!



Bob

V

Message authentication (MAC)

Alice

Public channel
S

m true or false

m||t

t = Sign(m, ks)

ks ks

Verify(m,t,ks) ?= true

Only someone who knows ks could 
have sent the message!



Non-repudiation

• A special case of authentication 

• Only Alice can have sent the message 
• Bob could not have made it up 
• Alice cannot effectively deny having sent it 

• Why would you want this?



MAC definition

• t:T = S(k,m) 

• V(k,m,t) = yes or no 

• V(k, m, S(k,m)) = yes



Straw example #1: CRC

• CRC = cyclic redundancy check 
• Binary division gives short, deterministic 

“summary” of data 

• S(k,m) = CRC(m) 

• What’s wrong with this plan?



MAC security
• Alice sends message m with tag t 

• Attacker’s power: Chosen plaintext 
• Can observe correct (mi, ti) pairs 
• Can use MAC oracle to get tx for chosen mx 

• Attacker’s goal: Generate some valid m’, t’ for m’ not 
previously seen 
• m’ does not have to make sense! 

• Secure if: Pr[V(k, m’, t’) == yes] is very small
Called: Existential forgery



Replay attacks

• Does a MAC prevent a replay attack? 

• NO — Must be prevented at a higher level 
• Application-dependent scenario 
• Nonce, timestamp, etc. (more later)



Straw example #2: Block cipher

• Suppose message is exactly one block 

• t = S(k,m) = E(k,m)  
• t is 128 bits long under AES 

• Is this secure? Why?



Security sketch
• Since E(k,m) is a secure block cipher, can 

conceptually replace E(k,m) with a random 
permutation. 

• Seeing E(k,m1) … E(k,mn) doesn’t help predict 
unseen mn+1 

• Probability of a random guess is 1/2L 
• L = length of output tag (in bits) 
• Need to make sure L is long enough!

But this only works for tiny messages!



Encrypted CBC (ECBC)

IV = 0 m1 m2 m3 m4

t

� �

E E

�

E

�

E

Verify: Same algorithm as signing

Using 
key k0

EUsing 
key k1



ECBC vs. CBC
• Output only one block instead of many 

• Don’t need to recover the plaintext 
• AES => 2-128 chance of guessing 

• We used two keys 
• Necessary to prevent existential forgery 

• Both require serial computation



Why two keys?

• Attacker requests tag for message m (m1 .. mn) 
• Get corresponding tag t = c[n] 

• Attacker creates message m’ (one block long) 
• Request tag t’ for (t XOR m’) 

• Resulting t’ is valid for m || m’

Uh oh.



MACs with Hashes



Hash functions
• A pseudorandom, one-way function 

• Does not require a key 

• H(m) = h 
• Input m = pre-image, can be arbitrary length 
• Output h = digest or hash, fixed small length 

• Generally very fast to compute



Cryptographic hash
• Pre-image resistance:  

• Given H(m), it’s hard to find m 

• Collision resistant:  
• Given H(m), it’s hard to find m’ s.t. 

• m’ != m 
• H(m’) = H(m) 

• Even more: Pr[any bit matching] = 1/2



Example hash functions
• MD5: Known collision attacks, still frequently used 

• SHA-1, SHA-256, SHA-512, etc. 
• SHA1 is theoretically broken 

• New SHA-3 (224, 256, 385, 512) 
• Public contest 2007-2012 
• Officially standardized August 2015



Hash-MAC
• Most widely used MAC on internet 

• General idea: hash then PRF (short MAC) 
• Translate arbitrary message into one block 
• Works if H and E are both secure

m t

Using 
key k

EH



Aside: Birthday paradox
• How likely 2 people in a room share a birthday? 

• Pr > 50% with 23 people! 
• Why? There are n2 different pairs 

• With X possibility space and n samples: 
• Pr[xi = xj] ~ 50% when n = X1/2 

• Upshot: May need to change keys frequently



Integrity vs. Authentication

• Recall: What is the difference? 
• Don’t forget non-repudiation 

• Do symmetric MACs like ECBC and Hash-Mac give 
one, or both? Which? 

• Problem: More than one person knows the key



Authenticated 
Encryption



• Previously: 

• Privacy / secrecy 

• Integrity 

• Now: Both at once



Ciphertext integrity
• Maintain semantic secrecy under CPA attack 

• Attacker cannot create a new ciphertext that 
decrypts properly! 

Eve
(polynomial time)

Ciphertext integrity IFF prob. of decryption without 
error is very small 

 
———
 

Encryption oracle
m1 … mn

c1 = E(k,m1) … cn

c (not in c1 … cn)Decrypt c or error



D

Bob

CCA revisited

Alice

c = E(k,m)

Eve

VPN

Eve can get a cipher text decrypted

E

c’ = forged cipher text

m

m’



CCA game
• Attacker gets encryption oracle + decryption oracle 

• (Encryption oracle not shown)

Eve
(polynomial time)

Eve’s job: Guess whether x or y was picked. CCA-
secure IFF no better than guessing

 
———
 

Decryption oracle
c1 … cn

m1 = D(k,c1) … mn

mx and my 
(not in m1 … mn)

Challenge: 
Choose b = x or y 
at uniform random

c = E(k,mb)



CBC is not CCA-secure

Eve
(polynomial time)

 
———

mx and my  

|mx| = |my| = 1 blk Challenge: 
Choose b = x or y 
at uniform random

c = E(k,mb) = IV || c[0]

c’ = (IV xor 1) || c[0]

m’ = D(k,c’) = mb xor 1

Decryption oracle

Uh oh.



Ciphertext integrity (aka authenticated 
encryption) can protect against CCA!

Because only someone who knows k can 
send a message that will decrypt properly.



Auth. Encr. limitations

• Does not protect against replay 

• Does not protect against e.g. timing attacks



Constructing 
authenticated encryption



Three basic options

• Encrypt and MAC 

• MAC then encrypt 

• Encrypt then MAC

Can you guess?



Encrypt and MAC

• Send E(m) || MAC(m) 

• This is not secure b/c MAC may leak information about 
the message 
• Secrecy is not a MAC property

m t

kI
S

c
E

kE



MAC then encrypt

m
kI

S E
kE

tm c

• Send E(m || MAC(m)) 

• This can be insecure in some combinations 
• Always follow standards!



Encrypt then MAC

m
kI

SE
kE

c

• Send E(m) || Mac(E(m)) 

• This is always secure! Intuition: 
• MAC reveals only info about ciphertext (OK) 
• MAC ensures ciphertext has not been tampered 

tc



Key exchange



• Up to now, we have assumed Alice and Bob share 
a secret key 

• How did that happen? 

• How does this scale to many users?



TTP

One solution: Trusted third party (TTP)

• TTP is a bottleneck for every message 
• TTP must be online at all times 
• TTP can read every message 
• Does not solve bootstrapping problem

U1 U2

U3 U4

k1 k2

k3 k4



TTP

Session keys and tickets
Used for Kerberos

BobAlice

“Bob”

kAT KAB, Ticket

“Hi”kAB

Ticket

Ticket = E(KBT, 
“Alice||Bob||kAB”) 

(fresh kAB)

• TTP is a bottleneck for every message 
• TTP must be online at all times 
• TTP can read every message 
• Does not solve bootstrapping problem


