
Asymmetric
Encryption

With material from Jonathan
Katz, David Brumley, and

Dave Levin

A (very) little number theory
• Pick p, a random, large prime number

• g, a generator for p 1 < g < p if…
• For all k between 1 and p:
• There is some i, s.t. k = gi mod p

• This is called discrete log
• Easy: Given p, g, x, compute y = gx mod p
• Believed hard: Given p, g, y, compute x
• Candidate one-way function!

Generator examples: p = 7

31 mod 7 3

32 mod 7 2

33 mod 7 6

34 mod 7 4

35 mod 7 5

36 mod 7 1

21 mod 7 2

22 mod 7 4

23 mod 7 1

24 mod 7 2

25 mod 7 4

26 mod 7 1

g = 3 g = 2

YES NO

Diffie-Hellman protocol

BobAlice
secret value x secret value y

p, g, A

1 Compute A = gx mod p

2

3Compute B = gy mod p
B 4

5 k = Bx mod p 6k = Ay mod p
k = gxy mod p

Successful secret key exchange!

Picking Large Primes

Originally, use a sieve

We want huge primes

Better: Primality Tests
• Fermat’s Little Theorem, if a not divisible by p

• p prime implies a^(p-1) = 1 mod p

• Pick random a’s, try the test
• If a’s powers of two, optimize w/ bit tricks

• Also, Miller-Rabin Primality Test
• Probabilistic test for primality, run many times

Public-Key Crypto

• Recall our three goals:

• Confidentiality

• Integrity

• Authenticity

• Recall: Drawbacks of symmetric crypto

• How to securely exchange keys?

• Hard to scale

• Limited authenticity / non-repudiation

We will use asymmetric crypto to
mitigate these drawbacks!

Bob

D

Asymmetric crypto

Alice

Public channel
E

m

ke

m (or error)

kdc

• ke != kd
• kd = private key, ke = public key

• Bob computes both, gives public key to Alice
• Alice sends a message to Bob: c = E(m, ke)
• Bob can decrypt it: m = D(m, kd)
• Anyone can send, only Bob can read!

Asymm. Cryptosystem:
Definition

• Three polynomial-time algorithms:
• KeyGen: Returns kp (public) and ks (secret)
• E(kp,m): Encrypts m with kp, returns c in C

• Must be randomized (why?)
• D(ks,c): Decrypts c with ks, returns m in M

• Or error

• Correctness condition:
• For all pairs (kp, ks): D(ks, E(kp, m)) = m

Pros and Cons
• Scales well — everyone makes one key pair

• Not n keys

• No direct setup comms between Alice and Bob

• Asymmetric is much, much slower

• Asymmetric is easier to attack
• Requires stronger assumptions

The authenticity problem

• In symmetric, we needed an authentic, private
channel to exchange keys
• Diffie-Hellman let us relax to authentic only
• Public-key also requires authentic channel

• Who posted that ad in the NY Times?
• Much more on this later

In practice: Hybrid
• Bob generates key pair and publishes kp

• Alice generates new symmetric key kAB

• Alice -> Bob: c1 = E(kp, (Alice || kAB))

• Alice -> Bob: c2 = E(kAB, message)

• Arbitrary-length messages, efficiently
• Keep kAB as a session key

Intuition for algorithms

El Gamal (simplified)
• Similar to Diffie-Hellman

• Public key: prime p, generator g, h = gx
• Private key: x, Alice publishes h and g

• Encryption: Sender chooses y
• c1 = gy, c2 = m*hy

• Decryption: m = c2 / c1x

• Security equivalent to D-H hardness

A teeny bit of number theory
• N = pq, where p and q are distinct primes

• ⏀(N) = (p-1)(q-1)

• Easy to compute if you know p and q; hard if not

• ab mod N = ab mod phi(N) mod N
• Take my word or take crypto

• ZM*: integers relatively prime to M
• Have no common denominators except 1

Building to RSA (simplified)

• Choose e relatively prime to phi(N)
• You can do mod arithemetic

• Choose d s.t. e*d mod phi(N) = 1
• Easy if you know phi(N); else hard

• By extension, easy if you know p and q

• Public key = (e, N); Private key = d

Textbook RSA

• Encrypt: c = me mod N

• Decrypt: m = cd mod N

• Why does this work? med = m1 = m

Textbook RSA: NOT Secure

• Deterministic

• Leaks info about plaintext

• In practice: Preprocess message before applying
RSA permutation
• Randomized padding, hash permutations

PKCS #1 v1.5

• You need 1024 total bits

• Pad message: c = (r || m)e mod N
• r is (mostly) a random number

• Check padding on decryption to detect error

Is RSA hard?

• Easy to compute m when we know d (of course)
• But what about if we don’t?

• Challenge: Compute x given c = me mod N
• Easiest known way: Factor N into p and q

• Believed (not proven) nothing easier
• Factoring N is believed hard (but not proven)

How hard is hard?

• Best current algorithms to factor N=pq
• p and q equal-length
• runs in ≈ exp(|N|1/3)

• Currently |N| ~ 1024 for OK security
• ~2048 to be sure

How hard is hard?

• World record: RSA-768 (232 digits)
• Two years, hundreds of machines
• Equivalent to 2000 single-core years!

• Factoring 1024-bit integer
• About 1000 times harder
• …. Possible this decade?

Implementation attacks
• Timing and power:

• How long / how much to compute cd mod N

• Bad randomness:
• p and q can’t be predictably generated
• If N = pq and N’ = pq’, both are broken

• Bad padding / malleability

Malleability

• Given c (m unknown), can construct c’ that will
decrypt to a related message m’
• Recall CBC attack last time

CBC is not CCA-secure

Eve
(polynomial time)

———

mx and my

|mx| = |my| = 1 blk Challenge:
Choose b = x or y
at uniform random

c = E(k,mb) = IV || c[0]

c’ = (IV xor 1) || c[0]

m’ = D(k,c’) = mb xor 1

Decryption oracle

Uh oh.

Recall:

Malleability

• Given c (m unknown), can construct c’ that will
decrypt to a related message m’
• Recall CBC attack last time
• CBC, CTR are malleable; auth. encr. is not!

• Basic El Gamal and basic RSA are malleable
• CCA-safe variations exist

Bleichenbacher attack

• Insecure padding, malleability
• Return error if padding not formatted correctly

• Allows gradual CCA attack based on error detection
• Analogous to blind ROP attack?

In practice

• Need CCA security for real applications

• Symmetric: Use authenticated encryption

• Use approved pub key scheme

• Hybrid: Combine!
• Secure if components are

Digital signatures

Signatures for integrity

• Sign with your private key

• Anyone can verify using public key
• Assuming private key is secret, only you could

have sent the message

• e.g., Sign software patches
• Public key bundled with initial software

Signatures vs. MACs

Manage one key Manage n keys

Sign once, verifiable by
anyone Sign separately per verifier

Public non-repudiation Nope

Defining a signature scheme

• Keygen: outputs kp and ks

• s = S(ks, m)

• V(kp, m, s) outputs true or false

• Correctness:
• For all pairs (kp, ks): V(kp, m, S(ks, m)) = true

Signature security game

• No existential forgeries (analogous to MAC)

Eve
(polynomial time)

Security IFF Pr[V(kp, m’, s’) = 1] is very small!

———

Signing oracle
m1 … mn

s1 = S(ks,m1) … sn

m’, s’ (not in mi)Verify s’ or error

Naive RSA signatures
• Public key (e,N) and private key (d,N)

• Recall: e*d ~ 1 (mod arithmetic)

• s = md mod N

• Verify whether se mod N = m

• This is easily existentially forgeable
• Choose s. Calculate m.

RSA signatures (better)
• Send s = H(m)d mod N along with m

• Use a good cryptographic hash function H

• Recipient calculates digest g = se mod N
• Verify g == H(m)

• Why does this fix the problem?
• You can choose s’ and find the matching digest g’
• BUT, preimage resistance means that you can’t pick a message

m’ s.t. g == H(m’)

• Variants of this approach are believed secure
• Assuming RSA is hard
• Bonus: Handles long messages “for free”

