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A (very) little number theory
• Pick p, a random, large prime number 

• g, a generator for p 1 < g < p if… 
• For all k between 1 and p:  
• There is some i, s.t. k = gi mod p 

• This is called discrete log
• Easy: Given p, g, x, compute y  = gx mod p 
• Believed hard: Given p, g, y, compute x 
• Candidate one-way function!



Generator examples: p = 7

31 mod 7 3

32 mod 7 2

33 mod 7 6

34 mod 7 4

35 mod 7 5

36 mod 7 1

21 mod 7 2

22 mod 7 4

23 mod 7 1

24 mod 7 2

25 mod 7 4

26 mod 7 1

g = 3 g = 2

YES NO



Diffie-Hellman protocol

BobAlice
secret value x secret value y

p, g, A

1 Compute A = gx mod p

2

3Compute B = gy mod p
B 4

5 k = Bx mod p 6k = Ay mod p
k = gxy mod p

Successful secret key exchange!



Picking Large Primes

Originally, use a sieve

We want huge primes



Better: Primality Tests
• Fermat’s Little Theorem, if a not divisible by p 

• p prime implies a^(p-1) = 1 mod p 

• Pick random a’s, try the test 
• If a’s powers of two, optimize w/ bit tricks 

• Also, Miller-Rabin Primality Test 
• Probabilistic test for primality, run many times



Public-Key Crypto



• Recall our three goals: 

• Confidentiality 

• Integrity 

• Authenticity



• Recall: Drawbacks of symmetric crypto 

• How to securely exchange keys? 

• Hard to scale 

• Limited authenticity / non-repudiation

We will use asymmetric crypto to 
mitigate these drawbacks!



Bob

D

Asymmetric crypto

Alice

Public channel
E

m

ke

m (or error)

kdc

• ke != kd 
• kd = private key, ke = public key 

• Bob computes both, gives public key to Alice 
• Alice sends a message to Bob: c = E(m, ke) 
• Bob can decrypt it: m = D(m, kd) 
• Anyone can send, only Bob can read!



Asymm. Cryptosystem: 
Definition

• Three polynomial-time algorithms: 
• KeyGen: Returns kp (public) and ks (secret)  
• E(kp,m): Encrypts m with kp, returns c in C 

• Must be randomized (why?) 
• D(ks,c): Decrypts c with ks, returns m in M 

• Or error 

• Correctness condition: 
• For all pairs (kp, ks): D(ks, E(kp, m)) = m



Pros and Cons
• Scales well — everyone makes one key pair 

• Not n keys 

• No direct setup comms between Alice and Bob  

• Asymmetric is much, much slower

• Asymmetric is easier to attack 
• Requires stronger assumptions



The authenticity problem

• In symmetric, we needed an authentic, private 
channel to exchange keys 
• Diffie-Hellman let us relax to authentic only 
• Public-key also requires authentic channel 

• Who posted that ad in the NY Times? 
• Much more on this later



In practice: Hybrid
• Bob generates key pair and publishes kp 

• Alice generates new symmetric key kAB 

• Alice -> Bob: c1 = E(kp, (Alice || kAB)) 

• Alice -> Bob: c2 = E(kAB, message) 

• Arbitrary-length messages, efficiently 
• Keep kAB as a session key



Intuition for algorithms



El Gamal (simplified)
• Similar to Diffie-Hellman 

• Public key: prime p, generator g, h = gx 
• Private key: x, Alice publishes h and g 

• Encryption: Sender chooses y 
• c1 = gy, c2 = m*hy 

• Decryption: m = c2 / c1x 

• Security equivalent to D-H hardness



A teeny bit of number theory
• N = pq, where p and q are distinct primes 

• ⏀(N) = (p-1)(q-1) 

• Easy to compute if you know p and q; hard if not 

• ab mod N = ab mod phi(N) mod N 
• Take my word or take crypto 

• ZM*: integers relatively prime to M 
• Have no common denominators except 1



Building to RSA (simplified)

• Choose e relatively prime to phi(N) 
• You can do mod arithemetic 

• Choose d s.t. e*d mod phi(N) = 1 
• Easy if you know phi(N); else hard 

• By extension, easy if you know p and q 

• Public key = (e, N); Private key = d



Textbook RSA

• Encrypt: c = me mod N 

• Decrypt: m = cd mod N 

• Why does this work? med = m1 = m 



Textbook RSA: NOT Secure

• Deterministic 

• Leaks info about plaintext 

• In practice: Preprocess message before applying 
RSA permutation 
• Randomized padding, hash permutations



PKCS #1 v1.5

• You need 1024 total bits 

• Pad message: c = (r || m)e mod N 
• r is (mostly) a random number 

• Check padding on decryption to detect error



Is RSA hard?

• Easy to compute m when we know d (of course) 
• But what about if we don’t? 

• Challenge: Compute x given c = me mod N 
• Easiest known way: Factor N into p and q 

• Believed (not proven) nothing easier 
• Factoring N is believed hard (but not proven)



How hard is hard?

• Best current algorithms to factor N=pq 
• p and q equal-length 
• runs in ≈ exp(|N|1/3) 

• Currently |N| ~ 1024 for OK security 
•  ~2048 to be sure



How hard is hard?

• World record: RSA-768 (232 digits) 
• Two years, hundreds of machines 
• Equivalent to 2000 single-core years! 

• Factoring 1024-bit integer 
• About 1000 times harder 
• …. Possible this decade?



Implementation attacks
• Timing and power:  

• How long / how much to compute cd mod N 

• Bad randomness: 
• p and q can’t be predictably generated 
• If N = pq and N’ = pq’, both are broken 

• Bad padding / malleability



Malleability

• Given c (m unknown), can construct c’ that will 
decrypt to a related message m’ 
• Recall CBC attack last time



CBC is not CCA-secure

Eve
(polynomial time)

 
———

mx and my  

|mx| = |my| = 1 blk Challenge: 
Choose b = x or y 
at uniform random

c = E(k,mb) = IV || c[0]

c’ = (IV xor 1) || c[0]

m’ = D(k,c’) = mb xor 1

Decryption oracle

Uh oh.

Recall:



Malleability

• Given c (m unknown), can construct c’ that will 
decrypt to a related message m’ 
• Recall CBC attack last time 
• CBC, CTR are malleable; auth. encr. is not! 

• Basic El Gamal and basic RSA are malleable 
• CCA-safe variations exist



Bleichenbacher attack

• Insecure padding, malleability 
• Return error if padding not formatted correctly 

• Allows gradual CCA attack based on error detection 
• Analogous to blind ROP attack?



In practice

• Need CCA security for real applications 

• Symmetric: Use authenticated encryption 

• Use approved pub key scheme 

• Hybrid: Combine! 
• Secure if components are



Digital signatures



Signatures for integrity

• Sign with your private key 

• Anyone can verify using public key 
• Assuming private key is secret, only you could 

have sent the message 

• e.g., Sign software patches 
• Public key bundled with initial software



Signatures vs. MACs

Manage one key Manage n keys

Sign once, verifiable by 
anyone Sign separately per verifier

Public non-repudiation Nope



Defining a signature scheme

• Keygen: outputs kp and ks 

• s = S(ks, m) 

• V(kp, m, s) outputs true or false 

• Correctness:  
• For all pairs (kp, ks): V(kp, m, S(ks, m)) = true



Signature security game

• No existential forgeries (analogous to MAC)

Eve
(polynomial time)

Security IFF Pr[V(kp, m’, s’) = 1] is very small!

 
———
 

Signing oracle
m1 … mn

s1 = S(ks,m1) … sn

m’, s’ (not in mi)Verify s’ or error



Naive RSA signatures
• Public key (e,N) and private key (d,N) 

• Recall: e*d ~ 1 (mod arithmetic) 

• s = md mod N 

• Verify whether se mod N = m 

• This is easily existentially forgeable
• Choose s. Calculate m.



RSA signatures (better)
• Send s = H(m)d mod N along with m 

• Use a good cryptographic hash function H 

• Recipient calculates digest g = se mod N 
• Verify g == H(m) 

• Why does this fix the problem?  
• You can choose s’ and find the matching digest g’ 
• BUT, preimage resistance means that you can’t pick a message 

m’ s.t. g == H(m’) 

• Variants of this approach are believed secure 
• Assuming RSA is hard 
• Bonus: Handles long messages “for free”


