Asymmetric Encryption

With material from Jonathan Katz, David Brumley, and Dave Levin

ASYMMETRIC SYNTHESIS

Edited by R.A. Aitken and S. N. Kilényi

A (very) little number theory

- Pick p, a random, large prime number
- g, a **generator** for p 1 < g < p if...
 - For all k between 1 and p:
 - There is some i, s.t. $k = g^i \mod p$
- This is called *discrete log*
 - Easy: Given p, g, x, compute $y = g^x \mod p$
 - Believed **hard**: Given p, g, y, compute x
 - Candidate one-way function!

Generator examples: p = 7

g = 3		g = 2				
31 mod 7	3	21 mod 7	2			
3 ² mod 7	2	2 ² mod 7	4			
3 ³ mod 7	6	2 ³ mod 7	1			
34 mod 7	4	24 mod 7	2			
3 ⁵ mod 7	5	2 ⁵ mod 7	4			
3 ⁶ mod 7	1	2 ⁶ mod 7	1			
YES		NO				

Picking Large Primes

Sieve of Eratosthenes (10×10)

Originally, use a **sieve**

We want **huge** primes

	2	3	4	5	6	7	8	9	10	Primes:
11	l 12	13	14	15	16	17	18	19	20	2, 3, 5, 7, 11 13 17
21	1 22	23	24	25	26	27	28	29	30	11, 13, 17, 19, 19, 19, 23, 29, 19, 23, 29, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
31	<mark>l</mark> 32	33	34	35	36	37	38	39	40	31, 37, 41, 42, 47, 52
41	<mark>l</mark> 42	43	44	45	46	47	48	49	50	43, 47, 53, 59, 61, 67,
51	l <mark>52</mark>	53	54	55	56	57	5 8	59	60	71, 73, 79
61	62	63	64	65	66	67	68	69	70	83, 89, 97
71	l 72	73	74	75	76	77	78	79	80	
81	l <mark>82</mark>	83	84	85	86	87	88	89	90	
91	l 92	93	94	95	96	97	98	99	100	

K $|\mathsf{K}| < |\mathsf{D}|$

Better: Primality Tests

- Fermat's Little Theorem, if a not divisible by p
 - p prime implies $a^{p-1} = 1 \mod p$
- Pick random a's, try the test
 - If a's powers of two, optimize w/ bit tricks
- Also, Miller-Rabin Primality Test
 - Probabilistic test for primality, run many times

Public-Key Crypto

- Recall our three goals:
 - Confidentiality
 - Integrity
 - Authenticity

- Recall: Drawbacks of symmetric crypto
 - How to securely exchange keys?
 - Hard to scale
 - Limited authenticity / non-repudiation

We will use asymmetric crypto to mitigate these drawbacks!

- k_e != k_d
- k_d = **private** key, k_e = **public** key
 - Bob computes both, gives public key to Alice
- Alice sends a message to Bob: $c = E(m, k_e)$
- Bob can decrypt it: $m = D(m, k_d)$
- Anyone can send, only Bob can read!

Asymm. Cryptosystem: Definition

- Three polynomial-time algorithms:
 - KeyGen: Returns k_p (public) and k_s (secret)
 - $E(k_p, m)$: Encrypts m with k_p , returns c in C
 - Must be *randomized* (why?)
 - $D(k_s, c)$: Decrypts c with k_s , returns m in M
 - Or error
- Correctness condition:
 - For all pairs (k_p, k_s) : $D(k_s, E(k_p, m)) = m$

Pros and Cons

- Scales well everyone makes one key pair
 - Not *n* keys
- No direct setup comms between Alice and Bob
- Asymmetric is *much, much slower*
- Asymmetric is easier to attack
 - Requires stronger assumptions

The authenticity problem

- In symmetric, we needed an *authentic, private* channel to exchange keys
 - Diffie-Hellman let us relax to *authentic* only
 - Public-key also requires authentic channel
- Who posted that ad in the NY Times?
 - Much more on this later

In practice: Hybrid

- Bob generates key pair and publishes k_{p}
- Alice generates new symmetric key kAB
- Alice -> Bob: $c_1 = E(k_p, (Alice || k_{AB}))$
- Alice -> Bob: $c_2 = E(k_{AB}, message)$

- Arbitrary-length messages, efficiently
 - Keep k_{AB} as a session key

Intuition for algorithms

El Gamal (simplified)

- Similar to Diffie-Hellman
 - Public key: prime p, generator g, $h = g^{x}$
 - Private key: x, Alice **publishes** h and g
- Encryption: Sender chooses y
 - $C_1 = g^y$, $C_2 = m^*h^y$
- Decryption: $m = c_2 / c_1^x$
- Security equivalent to D-H hardness

A teeny bit of number theory

- N = pq, where p and q are distinct primes
- $\Phi(N) = (p-1)(q-1)$
 - Easy to compute if you know p and q; hard if not
- $a^b \mod N = a^{b \mod phi(N)} \mod N$
 - Take my word or take crypto
- Z_M*: integers relatively prime to M
 - Have no common denominators except 1

Building to RSA (simplified)

- Choose *e* relatively prime to phi(N)
 - You can do mod arithemetic
- Choose d s.t. e*d mod phi(N) = 1
 - Easy if you know phi(N); else hard
 - By extension, easy if you know p and q
- Public key = (e, N); Private key = d

Textbook RSA

- Encrypt: $c = m^e \mod N$
- Decrypt: $m = c^d \mod N$
- Why does this work? $m^{ed} = m^1 = m$

Textbook RSA: NOT Secure

- Deterministic
- Leaks info about plaintext
- In practice: Preprocess message before applying RSA permutation
 - Randomized padding, hash permutations

PKCS #1 v1.5

- You need 1024 total bits
- Pad message: $c = (r \parallel m)^e \mod N$
 - r is (mostly) a random number
- Check padding on decryption to detect error

Is RSA hard?

- Easy to compute m when we know d (of course)
 - But what about if we don't?
- Challenge: Compute x given $c = m^e \mod N$
 - Easiest known way: Factor N into p and q
 - Believed (not proven) nothing easier
 - Factoring N is believed hard (but not proven)

How hard is hard?

- Best current algorithms to factor N=pq
 - p and q equal-length
 - runs in $\approx \exp(|N|^{1/3})$

- Currently $|N| \sim 1024$ for OK security
 - ~2048 to be sure

How hard is hard?

- World record: RSA-768 (232 digits)
 - Two years, hundreds of machines
 - Equivalent to 2000 single-core years!
- Factoring 1024-bit integer
 - About 1000 times harder
 - Possible this decade?

Implementation attacks

- Timing and power:
 - How long / how much to compute c^d mod N
- Bad randomness:
 - p and q can't be predictably generated
 - If N = pq and N' = pq', both are broken
- Bad padding / malleability

Malleability

- Given c (m unknown), can construct c' that will decrypt to a related message m'
 - Recall CBC attack last time

Recall: CBC is not CCA-secure

Uh oh.

Challenge: Choose b = x or y at uniform random

Decryption oracle

Malleability

- Given c (m unknown), can construct c' that will decrypt to a related message m'
 - Recall CBC attack last time
 - CBC, CTR are malleable; auth. encr. is not!
- Basic El Gamal and basic RSA are malleable
 - CCA-safe variations exist

Bleichenbacher attack

- Insecure padding, malleability
 - Return error if padding not formatted correctly
- Allows gradual CCA attack based on error detection
 - Analogous to blind ROP attack?

In practice

- Need CCA security for real applications
- Symmetric: Use authenticated encryption
- Use approved pub key scheme
- Hybrid: Combine!
 - Secure if components are

Digital signatures

Signatures for integrity

- Sign with your private key
- Anyone can verify using public key
 - Assuming private key is secret, only you could have sent the message
- e.g., Sign software patches
 - Public key bundled with initial software

Signatures vs. MACs

Manage one key	Manage n keys
Sign once, verifiable by anyone	Sign separately per verifier
Public non-repudiation	Nope

Defining a signature scheme

- Keygen: outputs k_{p} and k_{s}
- $s = S(k_s, m)$
- V(k_p, m, s) outputs true or false
- Correctness:
 - For all pairs (k_p, k_s) : $V(k_p, m, S(k_s, m)) = true$

Signature security game

• No existential forgeries (analogous to MAC)

Security IFF $Pr[V(k_p, m', s') = 1]$ is very small!

Naive RSA signatures

- Public key (e,N) and private key (d,N)
 - Recall: e*d ~ 1 (mod arithmetic)
- $s = m^d \mod N$
- Verify whether s^e mod N = m
- This is easily existentially forgeable
 - Choose s. Calculate m.

RSA signatures (better)

- Send $s = H(m)^d \mod N$ along with m
 - Use a good cryptographic hash function H
- Recipient calculates digest g = s^e mod N
 - Verify g == H(m)
- Why does this fix the problem?
 - You can choose s' and find the matching digest g'
 - BUT, preimage resistance means that you can't pick a message m' s.t. g == H(m')
- Variants of this approach are believed secure
 - Assuming RSA is hard
 - Bonus: Handles long messages "for free"