Asymmetric
Encryption

With material from Jonathan
Katz, David Brumley, and
Dave Levin

ASYMMETRIC
SYNTHESIS

Edited by
R.A. Aitken and S. N. Kilény

A (very) little number theory

* Pick p, a random, large prime number

* g,ageneratorforp1<g<pif...
* For all k between 1 and p:
* Thereissome |, s.t. k=g mod p

* Thisis called discrete log
* Easy: Given p, g, X, compute y = gxmod p
e Believed hard: Given p, g, y, compute X
e Candidate one-way function!

Generator examples: p =7

g=3 g=2
31 mod 7 3 21 mod 7 2
32mod 7 2 22mod 7 4

Diffie-Hellman protocol

N

Alice

secret value x secret value y

@ k = Bxmod p E— K =AYy mod p @

Successful secret key exchange!

Picking Large Primes

Sieve

of Eratosthenes (10 x 10) Originally, use a sieve

2131451671819 110 Primes:

11

12(13|14(15|16|17|18|19(20| 2: 3: O
11, 13,

S

21

22123|24)|25(26|27(28|29|30| 19. 23.

31

S
e

32/133/34/35/36/37/38/39|40/| 31, 37,

41

43. 47,
42|43|44|45|46|47|48| 49|50 »
59. 61.

1=

1 O

52|53(54|55|56|57|58|59(60| 71, 73,

61

SRR

N

¢ < (
6216364656667 686970 33 89

71

72|73 |\74|75|76 77|78 79|80

81

82|83|84|85|86|87[88/ 8990 We want huge primes

91

9219319419596 |97 98|99 100

Better: Primality lests

* Fermat’s Little Theorem, if a not divisible by p
* p prime implies aN(p-1) = 1 mod p

* Pick random a’s, try the test
* |f a’s powers of two, optimize w/ bit tricks

* Also, Miller-Rabin Primality Test

* Probabilistic test for primality, run many times

Public-Key Crypto

* Recall our three goals:
* Confidentiality
* Integrity

* Authenticity

* Recall: Drawbacks of symmetric crypto
* How to securely exchange keys”
* Hard to scale

» Limited authenticity / non-repudiation

We will use asymmetric crypto to

mitigate these drawbacks!

Asymmetrlc crypto

m (or error)

®-
: @
/ o

Public channel

* ke!l=Kg
* kg = private key, ke = public key
* Bob computes both, gives public key to Alice
* Alice sends a message to Bob: ¢ = E(m, ke)
* Bob can decryptit: m = D(m, kq)
* Anyone can send, only Bob can read!

Asymm. Cryptosystem:
Definition
* Three polynomial-time algorithms:
 KeyGen: Returns kp (public) and ks (secret)
* E(kp,m). Encrypts m with kp, returns cin C
* Must be randomized (why”)

* D(ks,c). Decrypts ¢ with ks, returns min M
* Or error

 Correctness condition:
* For all pairs (Kp, ks): D(ks, E(kp, m)) = m

Pros and Cons

Scales well — everyone makes one key pair
* Not nkeys

No direct setup comms between Alice and Bob
Asymmetric iIs much, much slower

Asymmetric Is easier to attack
* Requires stronger assumptions

The authenticity problem

* |n symmetric, we needed an authentic, private
channel to exchange keys

* Dittie-Hellman let us relax to authentic only
* Public-key also requires authentic channel

* Who posted that ad in the NY Times?
* Much more on this later

N practice: Aybrid
Bob generates key pair and publishes kp

Alice generates new symmetric key kag
Alice -> Bob: ¢1 = E(kp, (Alice || kag))

Alice -> Bob: c2 = E(kas, message)

Arbitrary-length messages, efficiently
 Keep kag as a session key

Intuition for algorithms

El Gamal (simplified)

Similar to Diffie-Hellman
* Public key: prime p, generator g, h = g
* Private key: x, Alice publishes h and g

Encryption: Sender chooses y
* C1=QgY, C2=m*hy

Decryption: m = c2 / c1*

Security equivalent to D-H hardness

A teeny bit of number theory

* N = pqg, where p and g are distinct primes
+ O(N) = (p-1)(g-1)
 Easy to compute if you know p and g; hard if not

e ab mod N = gbmodphiN) mod N

o [ake my word or take crypto

o /Vv”: Integers relatively prime to M

 Have no common denominators except 1

Building to RSA (simplified)

* Choose e relatively prime to phi(N)

e You can do mod arithemetic

* Choose ds.t. e*d mod phi(N) = 1
* Easy it you know phi(N); else hard

* By extension, easy if you know p and g

* Public key = (e, N); Private key = d

Textbook RSA

* Encrypt: c = memod N
* Decrypt: m =cdmod N

* Why does this work”? med = m? =m

Textbook RSA: NOT Secure

* Deterministic
* Leaks info about plaintext

* |n practice: Preprocess message before applying
RSA permutation

* Randomized padding, hash permutations

PKCS #1 v1.5

e You need 1024 total bits

* Pad message: ¢ = (r || m)e mod N
* ris (mostly) a random number

* Check padding on decryption to detect error

s RSA hard?

 Easy to compute m when we know d (of course)
* But what about if we don't?

* Challenge: Compute x given ¢ = me mod N
* Easiest known way: Factor N into p and o
* Believed (not proven) nothing easier
* Factoring N is believed hard (but not proven)

How hard I1s hard?

* Best current algorithms to factor N=pq
* p and g equal-length
* runs in = exp(|N|3)

* Currently [N| ~ 1024 for OK security
e ~2048 to be sure

How hard I1s hard?

* World record: RSA-768 (232 digits)
* [wo years, hundreds of machines
* Equivalent to 2000 single-core years!

* Factoring 1024-bit integer
e About 1000 times harder
e ... Possible this decade?

Implementation attacks

* [Iming and power:
* How long / how much to compute ¢4 mod N

* Bad randomness:
* p and g can't be predictably generated
 [tN =pgand N = pqg’, both are broken

 Bad padding / malleability

Malleability

* Given ¢ (m unknown), can construct ¢’ that will
decrypt to a related message m’

e Recall CBC attack last time

@?BC IS not CCA-secure

Challenge:
Choose b =xory
at uniform random

Decryption oracle

Eve
(polynomial time)

m’=D(k,c’) =mp xor1 %

Uh oh.

Malleability

Given ¢ (m unknown), can construct ¢’ that will
decrypt to a related message m

e Recall CBC attack last time
e CBC, CTR are malleable: auth. encr. is not!

Basic El Gamal and basic RSA are malleable
e CCA-safe variations exist

Bleichenbacher attack

* |nsecure padding, malleabillity
* Return error if padding not formatted correctly

* Allows gradual CCA attack based on error detection

* Analogous to blind ROP attack?

N practice

Need CCA security for real applications
Symmetric: Use authenticated encryption
Use approved pub key scheme

Hybrid: Combine!
e Secure if components are

Digital signatures

Signatures for integrity

e Sign with your private key

* Anyone can verity using public key

* Assuming private key iIs secret, only you could
have sent the message

* €.g., Sign software patches
* Public key bundled with initial software

Signatures vs. MACS

Manage one key Manage n keys

Sign once, verifiable by

anyone Sign separately per verifier

Public non-repudiation Nope

Defining a signature scheme

* Keygen: outputs kp and ks
¢ S = S(ks, m)
* V(kp, m, S) outputs true or false

e Correctness:
* For all pairs (kp, ks): V(kp, m, S(ks, m)) = true

Signature security game

* No existential forgeries (analogous to MAC)

) Eve
| ~ (polynomial time)

Security IFF Pr[V(kp, m’, s') = 1] is very small!

Naive RSA signhatures

Public key (e,N) and private key (d,N)
 Recall: e*d ~ 1 (mod arithmetic)

s = md mod N
Verity whether se mod N = m

This is easily existentially forgeable
 Choose s. Calculate m.

RSA signatures (better)

Send s = H(m)d mod N along with m
* Use a good cryptographic hash function H

Recipient calculates digest g = se mod N
e Verify g == H(m)

Why does this fix the problem?
* You can choose s’ and find the matching digest g’

 BUT, preimage resistance means that you can't pick a message
m’ s.t. g == H(mM’)

Variants of this approach are believed secure
* Assuming RSA is hard
* Bonus: Handles long messages “tor free”

