
Racket and FP

Break up into pairs: find someone
that has Dr. Racket

(Yes, you have to participate..)

λ

Kris talks about failure

Racket
• Dynamically typed: variables are untyped, values typed

• Functional: Racket emphasizes functional style

• Immutability—Requires automatic memory management

• Imperative: Racket allows values to be strongly-updated,
and is thus “impure” as functional languages go

• Often discouraged

• Language-Oriented: Racket is really a language toolkit

A brief tour of history…

We wanted a language that allowed symbolic manipulation

(this (is an) (s) expression)

List of either atoms or S-expressions

(this (is an) (s) expression)

List of either atoms or S-expressions

(this (is an) (s) expression)

List of either atoms or S-expressions

atom

(this (is an) (s) expression)

List of either atoms or S-expressions

S-expression

(this (is an) (s) expression)

List of either atoms or S-expressions

also an S-expression

So how do we write programs in this?

(function arg0 arg1 …)

Calls function with arguments arg0, arg1, etc…

No infix operators! Everything is like this..

Two examples with + and -

Quiz problems: + and -

Calculate (1 + (2 - 3)) - 4

Introduce if, and, or

(if #t 1 2)

(if (equal? 2 3) 1 2)

(if (< 3 4) 1 2)

(if (and (or #t) #t) 1 2)

Notice: there is no “return” value

In functional programming, every single expression
implicitly returns its resulting value

(and #t #f)

(or #t …)

Always true, even if … doesn’t terminate!

(define (factorial x)
 (if (equal? x 0)
 1
 (* (factorial (- x 1)) x)))

(define (factorial x)
 (if (equal? x 0)
 1
 (* (factorial (- x 1)) x)))

• Everything in parenthesis
• Prefix notation
• No variable assignment
• Recursion instead of loops
• No types
• No return

Quiz

• Compute the factorial of 5

• Compute the factorial of 20

• Compute the factorial of 20000

Quiz
• Define the fibonacci function:

• Use if, equal?, -

• fib(0) = 1

• fib(1) = 1

• fib(n) = fib(n-1) + fib(n-2)

Introduce cond

Introduce cond

(cond
 ([= x 1] 1)
 ([= x 2] 2)
 (else 3))

Introduce cond

Any number of conditional “clauses”

(cond
 ([= x 1] 1)
 ([= x 2] 2)
 (else 3))

Introduce cond

Potentially an “else” clause

(cond
 ([= x 1] 1)
 ([= x 2] 2
 (else 3))

(cond
 ([= x 1] 1)
 ([= x 2] 2)
 (else 3))

Introduce cond

cond checks each clause and executes the body
of the first one that matches

(cond
 ([= x 1] 1)
 ([= x 2] 2)
 (else 3))

If you get stuck, use the debugger…!

Racket is dynamically typed

(define (fib-again x)
 (cond
 [(< x 0) (raise ‘lessthanzero)]
 [(eq? 0 x) 1]
 [(eq? 1 x) 1]
 [else 0]))

Define max
• cond
• <
• >
• equal?

Most Racket data is based on lists

‘(1 2 3)

Most Racket data is based on lists

‘(1 2 3)

(first ‘(1 2 3)) —> 1

(rest ‘(1 2 3)) —> ‘(2 3)

(rest ‘(3)) —> ‘()

Can use empty? to check

(empty? ‘())

(empty? ‘(1 2))

Pronounced “empty-huh?”

Define max-of-list
• empty?
• first
• rest
• length?

Can create local variables with let

(let ([x 2]
 [y 3])
 (+ x y))

“Let x be 2 and y be 3 inside the
expression…”

Quiz
Define (distance x1 y1 x2 y2)

Use sqrt
Use let at least once

You can create anonymous functions with lambda

(lambda (x) (- x))

(lambda (str) (string-ref str 0))

((lambda (x) (* x x) 3)

(define f (lambda (x) (* 2 x))) (f 3)

(let ([x 1])
 (+ x 1))

Rewrite this in terms of lambda!

(let ([x 1])
 (+ x 1))

Transform..
((lambda (x)
 (+ x 1)) 1)

Let is λ

(let* ([x 1]
 [y (+ x 1)])
 (list y x))

(define (f x) x)

shorthand for…

(define f (lambda (x) x))

Lots of other things are λ too…

(define (f x) x)

(define f (lambda (x) x))

(define (f x y) x)

(define f (lambda (x y) x))

…

Here’s what most confused me…

Define hyphenate

(Use string-append)

Using higher order functions…

If you give me a function, I can use it
(define twice
 (lambda (f)
 (lambda (x)
 (f (f x)))))

Challenge: figure out how I would use twice to add 2 to 2

Use Racket’s add1 function

(add1 (add1 2))

All the forms we covered today:
Define, let, lambda, cond, if

Data Structures via Lists

In today’s class, we’re going to build all data
from three things…

The first is atoms

These are the primitive things in the language

‘symbol

1

These are like “int” and “char” in C++

The second is the empty list

‘()

The last is cons

Cons is a function that takes two values and
makes a pair

That pair is represented as a cons cell

(cons 1 2)

1 2

cons is the the natural
constructor of the language

I use two strange words to refer to the
elements of this cons cell

“car”

“car” “cdr”

Because car and cdr break apart what I build with
cons, I call them my destructors

And that’s all

And that’s all
Atoms ‘sym 23 #\c

Empty list ‘()

cons (cons ‘sym 23)

car/cdr (car (cons ‘sym 23))

Using just this, I can make a list

Using just this, I can make a list

(And everything else in the world, but we’ll
get back to that…)

If I want to make the list containing 2 I do this

(cons 2 ‘())

2 ‘()

When I do this, Racket prints it out as a list

‘(2)

The way to read this is

“The list containing 2, followed by the empty list.”

Just as I can build lists of a single element, I can build
larger lists from smaller lists…

And I do that by stuffing lists inside other lists…

(cons 2 ‘())

2 ‘()

(cons 2 ‘())

2 ‘()

(cons 3)

3

Racket will print this out as

‘(3 2)

Of course, I probably need at least numbers
as primitives right?

To get the head of a list, I use car

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cons 2 ‘())

2 ‘()

(cons 3)

3

(car
)

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

So now how would I get the second element?

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

(car

)

Racket abbreviates

(cons 1 (cons 2 (cons…(cons n ‘())…)))

as…

‘(1 2 … n)

If I wanted to write out lists, I could do so using

(cons 1 (cons 2 …))

How do I get the nth element of a list?

(define (nth list n)
 (if (= 0 n)
 (car list)
 (nth (cdr list) (- n 1))))

Now, write (map f l)

Writing lists would get quite laborious

Instead, I can use the primitive function list

(list 1 2 ‘serpico)

‘(1 2 serpico)

Oh, and actually I can use this to represent trees too

1 2 3 4

How would I build this?

(define empty-tree 'empty-tree)

(define (make-leaf num) num)

(define (make-tree left right)
 (cons left right))

You define (left-subtree tree)

(define (least-element tree)
 (if (number? tree)
 tree
 (least-element (left-subtree tree))))

But surely I need things like numbers right?

It turns out, you could build those using just
cons, car, cdr, if, =, and ‘()

Define the number n as …

‘()

‘(())

‘(() ())

…

(define (weird-plus i j)
 (if (equal? i '())
 j
 (weird-plus (cdr i)
 (cons '() j))))

(weird-plus '(() ()) '(() ()))

'(() () () ())

It turns out, if I’m clever, we can even get rid of
if and equal

(Though we shall not do so here..)

I can build my own datatypes in this manner

I usually write constructor functions to help
me build datatypes

I usually write constructor functions to help
me build datatypes

And I usually write destructor functions to
access it

(define (make-complex real imag)
 (cons real imag))

And I usually write destructor functions to
access it

(define (make-complex real imag)
 (cons real imag))

(define (get-real complex)
 (car complex))

(define (get-imag complex)
 (cdr complex))

Now, define (add-complex c1 c2)

Next, define (make-cartesian x y)

And the associated helper functions

> (map (lambda (str) (string-ref str 0)) '("ha" "ha"))
'(#\h #\h)

(map f l) takes a function f and
applies f to each element of l

[0, 1, 2]
f f f

[0, 1, 2]
f f f

[0, 1, 2]
f f f

[0,-1,-2]

Next class we will talk about…

struct
match

I/O

Intermediate Racket Programming

Tail Recursion

Tail recursion is the way you make recursion fast
in functional languages

Anytime I’m going to recurse more then 10k
times, I use tail recursion

(I also do it because it’s a fun mental exercise)

Tail Recursion

A function is tail recursive if all recursive calls
are in tail position

A call is in tail position if it is the last thing to
happen in a function

(define (factorial x)
 (if (equal? x 0)
 1
 (* (factorial (- x 1)) x)))

The following is not tail recursive

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))

The following is tail recursive

(define (factorial x)
 (if (equal? x 0)
 1
 (* (factorial (- x 1)) x)))

The following is not tail recursive

Explain to the person next to you why this is

Swap. Explain to the person next to you why this is

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))

The following is tail recursive

This isn’t merely trivia!

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

But wait!
I don’t need the stack at all!

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

Insight: in tail recursion, the stack is
just used for copying back the results

Insight: in tail recursion, the stack is
just used for copying back the results

So just forget the stack. Just give the final
result to the original caller.

Insight: in tail recursion, the stack is
just used for copying back the results

So just forget the stack. Just give the final
result to the original caller.

This is called “tail call optimization”

>factorial 2 1 factorial 2 1

factorial 1 2>factorial 1 2

factorial 0 2>factorial 0 2

(define (factorial x acc)
 (if (equal? x 0)
 acc
 (factorial (- x 1) (* acc x))))
; .. Later
(factorial 2 1)

(define (factorial x)
 (if (equal? x 0)
 1
 (* (factorial (- x 1)) x)))

Why couldn’t I do that with this?

Talk it out with neighbor

Tail recursion for λ and profit…

To make a function tail recursive…
• add an extra accumulator argument
• that tracks the result you’re building up
• then return the result
• might have to use more than one extra arg
• Call function with base case as initial accumulator

This isn’t the only way to do it, just a nice trick
that usually results in clean code…

(define (factorial x)
 (if (equal? x 0)
 1
 (* (factorial (- x 1)) x)))

(define (factorial-tail x acc)
 (if (equal? x 0)
 acc
 (factorial-tail (- x 1) (* acc x))))
(define (factorial x) (factorial-tail x 1))

(define (max-of-list l)
 (cond [(eq? (length l) 1) 1]
 [(empty? l) (raise 'empty-list)]
 [else (max (first l) (max-of-list (rest l))
)]))

Write this as a tail-recursive function

foldl
Like map, a higher order function operating on lists

(foldl / 1 ‘(1 2 3)) = (/ 3 (/ 2 (/ 1 1)))

(foldl + 0 ‘(1 2 3)) = (+ 3 (+ 2 (+ 1 0)))

[0, 1, 2]
+

 0
1

[0, 1, 2]
+ +

 0 1
1

[0, 1, 2]
+ + +

 0 1 3
1

(define (concat-strings l)
 (foldl (lambda (next_element accumulator)
 (string-append next_element accumulator))
 ""
 (reverse l)))

Challenge: use foldl to define max-of-list

**Challenge: define foldl

Structures, Pattern Matching, and Contracts

Last time

(cons 2 ‘())

2 ‘()

(cons 3)

3

(cdr
)

(car

)

This time

Use struct to define a new datatype

(struct empty-tree ())

(struct leaf (elem))

(struct tree (left right))

(struct empty-tree ())

(struct leaf (elem))

(struct tree (value left right))

Copy these

(empty-tree)

(leaf 23)

(tree 12 (empty-tree) (leaf 23))

Racket automatically generates helpers…

tree?

tree-left

tree-right

Write max-of-tree
Use the helpers

Pattern matching

Pattern matching allows me to tell Racket the
“shape” of what I’m looking for

Manually pulling apart data
structures is laborious

(define (max-of-tree t)
 (match t
 [(leaf e) e]
 [(tree v _ (empty-tree)) v]
 [(tree _ _ r) (max-of-tree r)]))

(define (max-of-tree t)
 (match t
 [(leaf e) e]
 [(tree v _ (empty-tree)) v]
 [(tree _ _ r) (max-of-tree r)]))

Variables are bound in the match, refer
to in body

(define (max-of-tree t)
 (match t
 [(leaf e) e]
 [(tree v _ (empty-tree)) v]
 [(tree _ _ r) (max-of-tree r)]))

Note: match struct w/ (name params…)

Define is-sorted

Can match a list of x’s

(list x y z …)

(1 2 3 4)

x = 1 y = 2 z = ‘(3 4)

Can match cons cells too…

(cons x y)

Variants include things like match-let

IO

Racket has a “reader”

(read)

Racket “reads” the input one datum at a time

> (read)
(1 2 3)
'(1 2 3)
> (read)
1 2 3
1
> (read)
2
> (read)
3
>

Read will “buffer” its input

(read-line)

(open-input-file)

Contracts

(define (reverse-string s)
 (list->string (reverse (string->list s))))

Write out the call and return type of this
for yourself

(define (factorial i)
 (cond
 [(= i 1) 1]
 [else (* (factorial (- i 1)) i)]))

What are the call / return types?

What is the pre / post condition?

(define (gt0? x) (> x 0))

(define/contract (factorial i)
 (-> gt0? gt0?)
 (cond
 [(= i 1) 1]
 [else (* (factorial (- i 1)) i)]))

Now in tail form…

(define (fac-tail i)
 (letrec ([h (lambda (i acc)
 (cond
 [(= i 0) acc]
 [else (h (- i 1) (* acc i))]))])
 (h i 1)))

Now, let’s say I want to say it’s equal to
factorial…

(define/contract (fac-tail i)
 (->i ([x (>=/c 0)])
 [result (x) (lambda (result) (= (factorial x) result))])
 (letrec ([h (lambda (i acc)
 (cond
 [(= i 0) acc]
 [else (h (- i 1) (* acc i))]))])
 (h i 1)))

 (->i ([x (>=/c 0)])
 [result (x) (lambda (result) (= (factorial x) result))])

(define/contract (reverse-string s)
 (-> string? string?)
 (list->string (reverse (string->list s))))

(define/contract (reverse-string s)
 (-> string? string?)
 (list->string (reverse (string->list s))))

(<=/c 2)

<=/c takes an argument x, returns a function f that
takes an argument y, and f(y) = #t if x < = y

<=/c takes an argument x, returns a function f that
takes an argument y, and f(y) = #t if x < = y

(Note: <=/c is also doing some bookeeping, but
we won’t worry about that now.)

Challenge: write <=/c

Three stories

(define/contract (call-and-concat f s1 s2)
 (-> (-> string? string?) string? string? string?)
 (string-append (f s1) (f s2)))

(define (reverse-string s)
 (list->string (reverse (string->list s))))

Scenario: you call call-and-concat with reverse

Scenario: you call call-and-concat with
reverse, 12, and “12"

Now define

(define/contract (call-and-concat f s1 s2)
 (-> (-> string? string?) string? string? string?)
 (length (string-append (f s1) (f s2))))

Now define

(define/contract (call-and-concat f s1 s2)
 (-> (-> string? string?) string? string? string?)
 (length (string-append (f s1) (f s2))))

What went wrong?

Now define

(define/contract (call-and-concat f s1 s2)
 (-> (-> string? string?) string? string? string?)
 (length (string-append (f s1) (f s2))))

What went wrong?

Who is to blame?

