Advanced Racket

Today...

(1 Map / Fold

] Tail Calls / Tail Recursion / Tail-Call Optimization
] Structs

] Pattern Matching

] QuasiQuoting / QuasiPatterns

] Building small interpreter with QuasiPatterns...

] (Maybe?) Contracts

Exam Grievances

» Grading mistakes sometimes happen: if you believe your exam
has been graded in error (Not because you wish you had

gotten more points!)...
» Type up and print off argument describing the mistake;

- Attach it to your exam, hand your exam back, | will return
within a week

* | must receive before one week from when you get exam

* Please don’t ask me to look at your exam before doing this!

- Exam grades were exactly what | thought they would be

 No curve on Midterm |

* For the rest of the semester, let’s do real PL

By which | mean, building languages

* https://www.youtube.com/watch?v=dht 3NziwSw

https://www.youtube.com/watch?v=dht_3NziwSw

Goal in the rest of the class:

Write interpreters and compilers
for (a significant subset of) Racket

Higher-Order Functions

> (map (lambda (str) (string-ref str 0)) "("ha" "ha"))
"(#\h #\h)

(map f) takes a function f and
applies f to each element of |

Folding

Fold “accumulates™ a value by iterating over a list

(define (fold-right f init seq)
(1f (null? seq)
1nit
(f (car seq)
(fold-right f init (cdr seq)))))

http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%25_idx_190
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%25_idx_98
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_410
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_392
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_396

(define (fold-right f init seq)
(1f (null? seq)
1nit
(f (car seq)
(fold-right f init (cdr seq)))))

(6 minutes) Calculate the following:

(fold-right (lambda (x y) (+ x y)) 0 ‘(1 2 3))
(fold-right (lambda (x y) (- x y)) @ ‘(1 2 3))
(fold-right (lambda (x y) (cons x y)) ‘OO ‘(1 2 3))

(fold-right (lambda (x y) (append y (list x)))
‘O
‘(1 2 3))

http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%25_idx_190
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%25_idx_98
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_410
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_392
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_396

Tail Recursion

Tail recursion is the way you make recursion
fast in functional languages

Anytime I'm going to recurse more then |0k
times, | use tail recursion

(I also do it because it’s a fun mental exercise)

Tail Recursion

A function is tail recursive if all recursive calls are in
tail position

A call is in tail position if it is the “last thing to
happen” in a function

“This will definitely be on the exam, so don’t
ignore it.” — Kris

(define (factorial x)
(1f (equal? x 0)
1
(* (factorial (- x 1)) x)))

/V

This is not a tail call: its return value is used by *

(We call such calls direct=style calls)

(define (factorial x acc)
(1f (equal? x 0)
acc
(factorial (- x 1) (* acc x))))

-~

This Is a tail call: it it the last thing done by the function

Note that we “thread through” an accumulator

(define (factorial x acc)
(1f (equal? x 0)
acc
(factorial (- x 1) (* acc x))))

-~

This Is a tail call: it it the last thing done by the function

Note that we “thread through” an accumulator

(define (factorial x acc)
(1f (equal? x 0)
acc
(factorial (- x 1) (* acc x))))

-~

This Is a tail call: it it the last thing done by the function

But now factorial has an extra arg: how do | call it?

Within a function body, a tail call is a call
that never “returns”

A function is tail-recursive if all
recursive calls are tail calls

So why is tail-recursion useful?

(define (factorial x)
(1f (equal? x 0)
1
(* (factorial (- x 1)) x)))

(factorial 2)

v

. (* (factorial 1) 2)
Stack frames ¢ *

. (* (* (factorial @) 1) 2)

v

v ™11 2

The stack holds the “partial results”

(define (factorial x acc)
(1f (equal? x 0)
acc
(factorial (- x 1) (* acc x))))

(factorial 2 1)

v

X (factorial 1 2)
Stack frames ¢ *

. (factorial @ 2)
v 2
Stack just propagates final value to original callsite

(factorial 2 1)

A tail recursive function never ‘“‘needs’ to use the stack

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

>factorial 1 2 m
>factorial 0 2

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

>factorial 1 2 factorial 1 2

>factorial O 2 factorial 0 2

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

>factorial 1 2 factorial 1 2

>factorial O 2 factorial 0 2

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

>factorial 2 1 factorial 2 1

>factorial 1 2 factorial 1 2

>factorial O 2 factorial 0 2

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))

;.. Lat
(factir?;. »1) 1don’t need the stack at all!

>factorial 2 1 factorial 2 1

>factorial 1 2 factorial 1 2

>factorial O 2 factorial 0 2

Insight: w/ tail recursion, stack only used
to propagate results to original caller!

A tail recursive function never ‘“‘needs’” to use the stack
So functional compilers optimize tail calls

Basically: tail-recursive functions compile to loops

(This is called tail=-call optimization or TCO)

(define (factorial x acc)
(if (equal? x 0)
acc
(factorial (- x 1) (*f acc x))))
... Later
(factorial 2 1)

>factorial 2 1

>factorial 1 2

>factorial O 2 factorial 0 2

(define (factorial x acc)
(1f (equal? x 0)
acCC
(factorial (- x 1) (* acc x))))

 int factorial(int x, int acc) {
int factorial(int x, int acc) { . while (true) {

if (x == 0) . 1f (x == 0)
return acc; . return acc;
else : acc = x*acc;
return factorial(x-1,x*acc); e X = x-1;
} . 3
*)
No TCO . Tail-Call Optimization

This is (conceptually) what the compiler will do

Many other languages also support TCO

* Guaranteed by the Scheme (e.g., rérs) standard
* “Implementations of Scheme must be properly tail-recursive.”
» C/C++: Often.Varies by compiler / options
* Python does not on principle
* Stack traces become less helpful!
* JavaScript does depending on browser / engine
* Safari (March 2018) supports TCO in |S:
* https://stackoverflow.com/questions/37224520/are-
functions-in-javascript-tail-call-optimized
* Active development in Chrome:
* https://bugs.chromium.org/p/v8/issues/detail?id=4698

https://stackoverflow.com/questions/37224520/are-functions-in-javascript-tail-call-optimized
https://stackoverflow.com/questions/37224520/are-functions-in-javascript-tail-call-optimized

In general, it’s a bit tricky to convert a non-tail-recursive
function to being tail recursive...

Talil recursion for A and profit...

To make a function tail recursive...

- that tracks the result you’re building up

- then return the result

- might have to use more than one extra arg

- Call function with base case as initial accumulator

This isn’t the only way to do it, just a nice trick
that usually results in clean code...

(define (factorial x)
(1f (equal? x 0)
1
(* (factorial (- x 1)) x)))

!

(define (factorial-tail x acc)
(1f (equal? x 0)
accC
(factorial-tail (- x 1) C* acc x))))
(define (factorial x) (factorial-tail x 1))

Exercise: translate fib into tail-recursive style

(define (fib n)
(cond
[(=n 0) 1]
[(=n 1D 1]
[else (+ (fib (- n 1)) (fib (- n 2)))]))

(define (max-of-1list 1)
(cond [(eq? (length 1) 1) 1]
(empty? 1) (raise 'empty-list)]
else (max (first 1) (max-of-1list (rest 1))

)1D)

Write this as a tail-recursive function

Which of these is tail recursive!

(define (fold-right f init seq)
(1f (null? seq)
1nit
(f (car seq)
(fold-right f init (cdr seq)))))

(define (fold-left f 1nit seq)
(1f (null? seq)
1nit
(fold-left f
(f (car seqg) 1nit)
(cdr seq))))

http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%25_idx_190
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%25_idx_98
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_410
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_392
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_396
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%25_idx_190
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%25_idx_98
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_410
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_392
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_396

Upshot: if you can, use fold|

(define (fold-right f init seq)
(1f (null? seq)
1nit
(f (car seq)
(fold-right f init (cdr seq)))))

(define (fold-left f 1nit seq)
(1f (null? seq)
1nit
(fold-left f
(f (car seqg) 1nit)
(cdr seq))))

http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%25_idx_190
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%25_idx_98
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_410
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_392
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_396
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%25_idx_190
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%25_idx_98
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_410
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_392
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%25_idx_396

(define (concat-strings 1)
(foldl (lambda (next_element accumulator)
(string-append next_element accumulator))

w))

Question: what goes in ... to define concat-strings?

Structures, Pattern Matching, and Contracts

#s) Racket

5 Programmer-Defined Datatypes

New datatypes are normally created with the struct form, which is the topic of this
chapter. The class-based object system, which we defer to Classes and Objects, offers an
alternate mechanism for creating new datatypes, but even classes and objects are
implemented in terms of structure types.

5.1 Simple Structure Types: struct

To a first approximation, the syntax of struct is

(struct struct-id (field-id ...))

Examples:
i (struct posn (x y))

The struct form binds struct-id and a number of identifiers that are built from struct-
id and the field-ids:

» struct-id: a constructor function that takes as many arguments as the number of
field-ids, and returns an instance of the structure type.

Example:

> (posn 1 2)
#<posn>

e struct-id? : a predicate function that takes a single argument and returns #t if it is an
instance of the structure type, #f otherwise.

Fxamples:

Use struct to define a new datatype

(struct leaf (elem))

(struct tree (value left right))

Copy these

(struct leaf (elem) #:transparent)

(struct tree (value left right))

(leaf 23)

(tree 12 (empty-tree) (leaf 23))

Racket automatically generates helpers...

tree?
tree-left

tree-right

Write max-of-tree

Use the helpers

Pattern matching

Pattern matching allows me to tell Racket the
“shape” of what I'm looking for

Manually pulling apart data
structures is laborious

(define (max-of-tree t)
(match t
(leaf e) e]
(tree v _ (empty-tree)) v]j
(tree r) (max-of-tree r)]))

Variables are bound in the match, refer

to in body
(define (max-of-tree t)
(match t
(leaf e) e]

(tree v _ (empty-tree)) v]j
(tree r) (max-of-tree r)]))

Note: match struct w/ (name params...)

(define (max-of-tree t)
(match t
(leaf e) e]
(tree v _ (empty-tree)) v]j
(tree r) (max-of-tree r)]))

Define 1s-sorted

Can match a list of X’s

(list x y z ..)
(12 3 4)

Xx=1y=22z=°34)

Can match cons cells too...

(cons X y)

Variants include things like match-let

QuasiQuoting
Quotes build data
‘(123 ‘(13 a

What if you want to build a list like this...
‘(1 2 x)

Where x gets substituted to whatever X is

(define x 3)
(1 2 3) ,a)

QuasiQuote (the backtick) begins building a datum: any
time it hits an unquote (comma) it evaluates the expression

QuasiPatterns

We can also use quasiquoting in a match pattern
We call this a quasipattern

It turns out this lets us build an
implementation of a little language!

(define (interpret-binary-arith e)
(match e

[(+ ,el ,e2) (+ (interpret-binary-arith el)
(interpret-binary-arith e2))]

[(- ,el ,e2) (- (interpret-binary-arith el)
(1nterpret-binary-arith e2))]

[(? number? n) n]

[else (error “bad expression..”)]))

Exercise: call Lhterpret-binary-arith on the following...
3 (+ 2 3)

(+ G G235 G106 23)))

Quiz
What'’s the difference between the following two expressions!?

(interpret-binary-arith

(+ G235 10 23))))

(interpret-binary-arith

"+ G E23)5 G123

Answer:in one we're cheating.VWe're not really using our
interpreter, we're just using Racket

Contracts

(define (reverse-string s)
(list->string (reverse (string->list s))))

Write out the call and return type of this
for yourself

(define (factorial 1)
(cond

(=1 1) 1]
else (* (factorial (- 1 1)) 1)]))

What are the call / return types?

What is the pre / post condition?

(define (gt@? x) (> x 0))

(define/contract (factorial 1)
(-> gt@? gt0d?)
(cond
[= 1 1) 1]
[else (* (factorial (- 1 1)) 1)]))

Now in tail form...

(define (fac-tail 1)
(letrec ([h (lambda (1 acc)
(cond
[(= 1 @) acc]
[else (h (- 1 1) (* acc 1))]1))D)
Ch11)))

Now, let’s say | want to say it’s equal to
factorial...

(define/contract (fac-tail 1)
(->1 ([x (>=/c 0)])
[result (x) (lambda (result) (= (factorial x) result))])
(letrec ([h (1lambda (1 acc)
(cond
[(=1 @) acc]
[else C(h (- 1 1) (* acc 1))]1))]1)
Ch 1 1)))

(>1 ([x (>=/c O)])
[result (x) (lambda (result) (= (factorial x) result))])

(define/contract (reverse-string s)
(-> string? string?)
(list->string (reverse (string->list s))))

(define/contract (reverse-string s)
(-> string? string?)
(list->string (reverse (string->list s))))

(<=/c 2)

<=/C takes an argument X, returns a function f that
takes an argument Y,and f(y) = #tifx < =y

<=/C takes an argument X, returns a function f that
takes an argument Y,and f(y) = #tifx < =y

(Note: <=/c is also doing some bookeeping, but
we won’t worry about that now.)

Challenge: write <=/c

Three stories

(define/contract (call-and-concat f sl s2)
(-> (-> string? string?) string? string? string?)
(string-append (f s1) (f s2)))

(define (reverse-string s)
(list->string (reverse (string->list s))))

Scenario: you call call-and-concat with reverse

Scenario: you call call-and-concat with
reverse, |2,and “|2"

Now define

(define/contract (call-and-concat f sl s2)
(-> (-> string? string?) string? string? string?)
(length (string-append (f sl1) (f s2))))

Now define

(define/contract (call-and-concat f sl s2)
(-> (-> string? string?) string? string? string?)
(length (string-append (f sl1) (f s2))))

What went wrong?

Now define

(define/contract (call-and-concat f sl s2)
(-> (-> string? string?) string? string? string?)
(length (string-append (f sl1) (f s2))))

What went wrong?

Who is to blame?

