QuasiPatterns

We can also use quasiquoting in a match pattern
We call this a quasipattern

It turns out this lets us build an
implementation of a little language!

(define (interpret-binary-arith e)
(match e

[(+ ,el ,e2) (+ (interpret-binary-arith el)
(interpret-binary-arith e2))]

[(- ,el ,e2) (- (interpret-binary-arith el)
(1nterpret-binary-arith e2))]

[(? number? n) n]

[else (error “bad expression..”)]))

Exercise: call Lhterpret-binary-arith on the following...
3 (+ 2 3)

(+ G G235 G106 23)))

Quiz
What'’s the difference between the following two expressions!?

(interpret-binary-arith

(+ G235 10 23))))

(interpret-binary-arith

"+ G E23)5 G123

Answer:in one we're cheating.VWe're not really using our
interpreter, we're just using Racket

The Lambda Calculus

A system for calculating based entirely on computing with functions.

Developed as a foundation for mathematics (originally used to model
the natural numbers) by Alonzo Church in 1936.

Church’s thesis: “Every effectively calculable function (effectively
decidable predicate) is general recursive”, i.e., can be computed using
the A-calculus. Used to show there exist unsolvable problems.

One of the simplest Turing-equivalent languages!

e Church, with his student Alan Turing, proved the equivalent
expressiveness of Turing machines and the A-calculus (called
the Church-Turing thesis).

Still makes up the heart of all functional programming languages!

4

The Lambda Calculus

lambdas are just anonymous functions!

e € EXp ::= (14 (x) e) \-abstraction
‘ (6 6) function application
‘ X variable reference

x € Var ::= (variables)

Textual-reduction semantics

 One way of designing a formal semantics is as a relation over
terms in the language —one that reduces the term textually.

* This is usually small-step —each eval step must terminate
(meaning there are no premises above the line in our rules of
inference and no recursive use of the interpreter within a step.)

 Consider a small-step semantics for our arithmetic language:

ae€AEXp = n|la+al|la—-alaxa

n,m € Num ::= (integer constants)

Textual-reduction semantics
ae€ AEXp = n|la+a|la—-alaxXa
n,m € Num ::= (Iinteger constants)
* Rules to reduce terms in this language match operations that

have two numeric operands already and apply the operation,
textually substituting a numeric value for the operation; e.qg.:

where ap IS ngp and a1 IS n4
CZO X Cll — no * nl

e Forexample: 2*34+4*5=2%34+20=>64+20= 26

* |s there another way to evaluate 2*3 + 4*5 using similar rules?

The Lambda Calculus

lambdas are just anonymous functions!

e € EXp ::= (14 (x) e) \-abstraction
‘ (6 6) function application
‘ X variable reference

x € Var ::= (variables)

The Lambda Calculus

The lambda-calculus is the functional core of
Racket (as of other functional languages).

Just the following subset of Racket is Turing-equivalent!

e € EXp ::= (14 (x) e) (lambda (x) e)
| (e e) (e e)
 x :

x € Var ::= (variables)

Lambda Abstraction

An expression, abstracted over all possible values
for a formal parameter, in this case, Xx.

(4 (x) g)
RN

Formal parameter Function body

10

Application

When the first expression is evaluated to a value
(in this language, all values are functions!) it may be
invoked / applied on its argument.

(e ¢)

4

Expression in Expression in
function position argument position

11

Variable

Variables are only defined/assigned when a function
IS applied and its parameter bound to an argument.

x

Variable reference

12

(A (F) (F (F (A (X)) x)))) (A (X) X))

We define a rule for step-by-step
evaluation called Beta-reduction B

\4

(A (x) x) (A (X) x) (A (X) X)))

B

\4

((A (X) X) (A (X) X))

B

(A (X) X)

13

Textual substitution. This says:
replace every x in Eo with Ej.

(0 (x) Eo) E1) —p

N

regdex

(reducible expression)

14

((A (X) X) (A (X) X))

B

X[X < (A (X) X)]

15

((A (X) X) (A (X) X))

B

(A (X) X)

16

Try an example. Can you beta-reduce this term?
Can you beta-reduce it more than once?

(A (xX) (x x)) (A (X)) (X X)))

17

(A (x) (X X)) (A (X) (X X)))

B reduction may continue

indefinitely (i.e., in non- B
terminating programs) v
(A (X) (x X)) (A (X) (X X)))
B

v

(A (X)) (X X)) (A (X) (X X)))
&

\4

(A (x) (X X)) (A (X) (X X)))
B

(A (x) (X X)) (A (X) (X X)))

B

(A (xX) (x x)) (A (X)) (X X)))

This specific program is B
known as () (Omega)

v

(A (X)) (X X)) (A (X) (X X)))
&

\4

(A (x) (X X)) (A (X) (X X)))
B

(2 is the smallest non-
terminating program!

Note how it reduces to itself in a single step!

(A (X)) (X X)) (A (X) (X X)))

Evaluation with 3 reduction is nondeterministic!

(CA (W) W) (A (xX) X)) (N (y) y) (M (z) 2)))

B

!
(A (x) x) (A (y) y) (A (2) 2)))

21

Evaluation with 3 reduction is nondeterministic!

(CA (W) W) (A (xX) X)) (N (y) y) (M (z) 2)))

B

B or! |
(A (x) x) (A (y) y) (A (z) 2)))

(CCA (W) W) (A (X) X)) (A (Z) Z))

22

Try an example. Perform each possible B-reduction

(A (x) (A (y) (xy)) X)) (A (z) (2 2)))

How many different 3-reductions are possible from the above?

23

Answer

(A (x) [CCA Cy) (X y)) X)) (A (z) (z 2)))
B

!
(A (x) (X X)) (A (2) (z 2)))

Can reduce inner redex...

24

Answer

(A () (A (y) (xy)) x)) (A (z) (2 2)))
B

!
(A Cy) (A (2) (2 2)) y)) (M (z) (2 2)))

Or the outer redex.

25

Answer

(A () (A (y) (xy)) x)) (A (z) (2 2)))
B

!
(A Cy) (A (2) (2 2)) y)) (M (z) (2 2)))

/

Can’t reduce this since we don’t (yet) know about
the particular value (function) z in call position.

20

Free variables

FV : Exp — &(Var)

FV(x) £ {x)
FV((A (x) e,)) = FV(e,) \ {x)

FV(e; e,) = FV(e;) U FV(e,)

27

Free variables

FV((x y))={xyj}
FV((C(A (x) x) y))=1{y}
FV(((A (x) x) x))={x]
FV((C(A (y) (A (x) (z x)) x)))={z, %]

28

Try an example. What are the free
variables of each of the following terms?

(A (X) X) y)

(A (x) (X x)) (A (X) (X X)))

((A (X) (Zz y)) X)

29

Try an example. What are the free
variables of each of the following terms?

((A (X) X) Vy)
{v}

(A (x) (X x)) (A (X) (X X)))
{

((A (X) (Zz y)) X)
{x,y, z}

30

The problem with (naive) textual substitution

(CA (@) (A (a) a)) (A (b) D))

B

v

31

The problem with (naive) textual substitution

(CA (@) (A (a) a)) (A (b) D))

B

!
(A (a) a)la <« (A (b) b)]

32

The problem with (naive) textual substitution

(CA (@) (A (a) a)) (A (b) D))

B

v
(A (a) (x (b) b)) X

33

Capture-avoiding substitution

Ee[X < E1]

34

X[x—E|]=E

V[X—E|] =Yy where y # X

(Ee E1)[x < E] = (Ee[x + E] E1[x + E])
(A (x) Eo)[x+<E]= (N (x) Eo)

(A (y) Eo)[xeE]= (A (y) Eo[x+< E])

where Yy # X and y ¢ FV(E)
B-reduction cannot occur wheny € FV(E) —~

35

Capture-avoiding substitution

(CA (@) (A (a) a)) (A (b) D))

B
!

(A (a) a) \/

36

Try an example. How can you beta-

reduce the following expression using
capture-avoiding substitution?

((A (y)
((A (z) (A Cy) (Zy))) y))
(A (X) X))

37

Try an example. How can you beta-

reduce the following expression using
capture-avoiding substitution?

((A (y)
((A (z) (A Cy) (Zy))) y))
(A (X) X))

B

v

(A (z) (A (y) (2 y))) (A (X) X))

38

Try an example. How can you beta-

reduce the following expression using
capture-avoiding substitution?

(A (y) (A (2) (A (y) 2)) (A (X) y)))

39

Try an example. How can you beta-

reduce the following expression using
capture-avoiding substitution?

(A (y) (A (2) (A (y) z)) (A (X) ¥y)))

You cannot! This redex would require:

(A (y) z2)[z < (A (X) y)]

(v is free here, so it would be captured)

40

Try an example. How can you beta-

reduce the following expression using
capture-avoiding substitution?

(A (y) (A (2) (A (y) 2)) (A (X) y)))
Za (A (y) ((A (2) (A (W) Z2)) (A (X) ¥y)))

=g (A (y) (A (W) (A (X) y)))

Instead we alpha-convert first.

41

X -renaming

(A (x) (A (y) X)) (A (a) (A (b) a))

\

These two expressions are equivalent—they only differ by their
variable names (x = a; y = b)

42

X -renaming

(A (Xx) Eo) — (A (y) Eo[x < yl])

— X

‘)

0L renaming/conversions can be run backward,
SO you might think of it as an equivalence relation

43

X -renaming

0L renaming/conversions can be used to implement
capture-avoiding substitution

Rename variables that would break naive substitution!

(A () (A (X) x)) (A (y) ¥))

44

X -renaming

0L renaming/conversions can be used to implement
capture-avoiding substitution

Rename variables that would break naive substitution!

((A (X< (x) x)) (A (y) y))

Can’t perform naive substitution w/o capturing Xx.

45

X -renaming

0L renaming/conversions can be used to implement
capture-avoiding substitution

Rename variables that would break naive substitution!

(A () (A (X) x)) (A (y) ¥))

T

FiX by Ol renaming to z

46

X -renaming

0L renaming/conversions can be used to implement
capture-avoiding substitution

Rename variables that would break naive substitution!

(A (x) (A (2) z)) (A (y) ¥))

T

FiX by Ol renaming to z

47

X -renaming

0L renaming/conversions can be used to implement
capture-avoiding substitution

Rename variables that would break naive substitution!

(A (x) (A (2) z)) (A (y) ¥))

T

Could now perform beta-reduction with naive substitution

48

N - reduction

(A (xX) (Ep X)) — Eo where x ¢ FV(Eop)

49

N - expansion

Eo — (A (X) (Eo X)) where x ¢ FV(Eo)

50

Readuction

reflexive/transitive closure

51

Evaluation

52

Evaluation to normal form

Eo

*

(A (X)) ..)

53

Evaluation to normal form

Eo

*

(A (X)) o (A (z) ((a ..) .)))

In normal form, no function position can be a lambda,;
this Iis to say: there are no unreduced redexes left!

54

Evaluation Strategy

Eo
E1 E>

95

Evaluation Strategy

(A (x) (A (y) y) X)) (A (z2) 2))
n (A (y) y) (A (2) 2))

B (A (z) z)

56

Evaluation Strategy

(A (xX) (A (y) y) X)) (A (z) z))
=g ((A (y) y) (A (z) 2))

B (A (z) z)

57

Evaluation Strategy

(A (x) A (y) y) X)) (A (z) 2))
=g ((A (X) xX) (A (Z) Z))

B (A (z) z)

58

Confluence

Diverging paths of evaluation must eventually join back together.

/ \
\ /

Church-Rosser Theorem

59

60

61

62

63

Confluence (i.e., Church-Rosser Theorem)

X X X

‘_’62‘_’63‘_’64‘_’65

C1o

64

Applicative evaluation order

Always evaluates the innermost lettmost redex first.

Normal evaluation order

Always evaluates the outermost leftmost redex first.

65

Applicative evaluation order

(O () (F () y) X)) (A (2) 2))

Normal evaluation order

66

Call-by-value (CBV) semantics

Applicative evaluation order, but not under lambadas.

Call-by-name (CBN) semantics

Normal evaluation order, but not under lambdas.

67

Try an example.

Write a lambda term other than Q2 which also does not terminate

(Hint: think about using some form of self-application)

68

Write a lambda term other than Q2 which also does not terminate

(A Cy) (A (X) (y X)) y))
(A (y) (A (X) (y X)) y)))

((A (u) (Cu u) u))
(A (u) ((u u) u)))

((A (X)) X)
((A (u) (u u))
(A (u) (u u))))

69

Evaluation contexts

Restrict the order in which we may simplify a program’s redexes

G .= (& e)
(v &) v 1= (A (X) e)
(left-to-right) CBV evaluation e ::= (A (X) e)
(e e)
G = (& e) X

(left-to-right) CBN evaluation

Context and redex

~ For CBV aredex must be (v v)
K For CVN, a redex must be (v e)
. ,,

S[(v v)] =

(CCA (X)) CCA Cy) y) X)) (A (2) z)) (A (W) w))

¢

(O (A (W) wW))

1
1

(A (x) (A (y) y) x)) (A (2) 2))

Context and redex

clr] =
(CCX (X)) (A (y) ¥y) X)) (A (2) 2)) (A (W) w))

¢

(O (A (W) wW))

1
1

(A (X) (A (y) y) X)) (A (z) z))
= ((A (y) y) (A (2) z))

Put the reduced redex back In Its
evaluation context...

G = (O (A (W) W)

r= (A (x) (A (y) y) X)) (M (z) z))
= ((A (y) y) (A (2) 2))

Elr]

\4

(CO (y) y) (A (2) 2)) (A (W) W))

Exercises—can you evaluate...

1) (O (y) y) (M (2) 2)) (A (W) W))

2) (A (u) (uwu)) (A (xX) (A (X) X)))

3) (C(A (X)) x) (A (y) vy))
(A (u) (uu)) (A (z) (z 2))))

74

