QuasiPatterns

We can also use quasiquoting in a match pattern We call this a quasipattern

It turns out this lets us build an implementation of a **little language!**

Exercise: call interpret-binary-arith on the following...

Quiz

What's the difference between the following two expressions?

Answer: in one we're cheating. We're not really using our interpreter, we're just using Racket

The Lambda Calculus

- A system for calculating based entirely on computing with functions.
- Developed as a foundation for mathematics (originally used to model the natural numbers) by Alonzo Church in 1936.
- Church's thesis: "Every effectively calculable function (effectively decidable predicate) is general recursive", i.e., can be computed using the λ-calculus. Used to show there exist unsolvable problems.
- One of the simplest Turing-equivalent languages!
 - Church, with his student Alan Turing, proved the equivalent expressiveness of Turing machines and the λ-calculus (called the *Church-Turing thesis*).
- Still makes up the heart of all functional programming languages!

The Lambda Calculus

lambdas are just anonymous functions!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 λ -abstraction
$$| \ (e \ e)$$
 function application
$$| \ x$$
 variable reference

$$x \in Var ::= \langle variables \rangle$$

Textual-reduction semantics

- One way of designing a formal semantics is as a relation over terms in the language—one that reduces the term textually.
- This is usually small-step—each eval step must terminate
 (meaning there are no premises above the line in our rules of
 inference and no recursive use of the interpreter within a step.)
- Consider a small-step semantics for our arithmetic language:

$$a \in AExp ::= n \mid a+a \mid a-a \mid a \times a$$

$$n, m \in Num ::= \langle integer constants \rangle$$

Textual-reduction semantics

$$a \in \mathsf{AExp} ::= n \mid a + a \mid a - a \mid a \times a$$

 $n, m \in \mathsf{Num} ::= \langle \mathsf{integer\ constants} \rangle$

 Rules to reduce terms in this language match operations that have two numeric operands already and apply the operation, textually substituting a numeric value for the operation; e.g.:

where
$$a_0$$
 is n_0 and a_1 is n_1 $a_0 \times a_1 \Rightarrow n_0 * n_1$

- For example: $2*3+4*5 \Rightarrow 2*3+20 \Rightarrow 6+20 \Rightarrow 26$
- Is there another way to evaluate 2*3 + 4*5 using similar rules?

The Lambda Calculus

lambdas are just anonymous functions!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 \(\lambda\) -abstraction \(| (e \ e) \) function application \(| x \) variable reference

$$x \in Var ::= \langle variables \rangle$$

The Lambda Calculus

The lambda-calculus is the functional core of Racket (as of other functional languages).

Just the following subset of Racket is Turing-equivalent!

$$e \in \mathbf{Exp} ::= (\lambda \ (x) \ e)$$
 (lambda (x) e)
$$| \ (e \ e)$$
 (e e)
$$| \ x$$

$$x \in Var ::= \langle variables \rangle$$

Lambda Abstraction

An expression, *abstracted* over all possible values for a formal parameter, in this case, x.

Application

When the first expression is evaluated to a value (in this language, all values are functions!) it may be invoked / applied on its argument.

Variable

Variables are only defined/assigned when a function is applied and its parameter bound to an argument.

Variable reference

Textual substitution. This says: replace every x in E_0 with E_1 .

(reducible expression)

$$((\lambda (x) x) (\lambda (x) x))$$

$$\downarrow \beta$$

$$x[x \leftarrow (\lambda (x) x)]$$

$$((\lambda (x) x) (\lambda (x) x))$$

$$\downarrow \beta$$

$$(\lambda (x) x)$$

Try an example. Can you beta-reduce this term? Can you beta-reduce it more than once?

$$((\lambda (x) (x x)) (\lambda (x) (x x)))$$

```
((\lambda (x) (x x)) (\lambda (x) (x x)))
β reduction may continue
 indefinitely (i.e., in non-
 terminating programs)
           ((\lambda (x) (x x)) (\lambda (x) (x x)))
           ((\lambda (x) (x x)) (\lambda (x) (x x)))
           ((\lambda (x) (x x)) (\lambda (x) (x x)))
```

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$\beta$$

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$This specific program is known as Ω (Omega)
$$\beta$$

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$\beta$$

$$((\lambda \ (x) \ (x \ x)) \ (\lambda \ (x) \ (x \ x)))$$

$$\beta$$$$

```
((\lambda (x) (x x)) (\lambda (x) (x x))
          \Omega is the smallest non-
terminating program!
Note how it reduces to itself in a single step!
((\lambda (x) (x x)) (\lambda (x) (x x)))
((\lambda (x) (x x)) (\lambda (x) (x x))
```

Evaluation with β reduction is nondeterministic!

$$(((\lambda (w) w) (\lambda (x) x)) ((\lambda (y) y) (\lambda (z) z)))$$

$$\beta$$

$$((\lambda (x) x) ((\lambda (y) y) (\lambda (z) z)))$$

Evaluation with β reduction is nondeterministic!

Try an example. Perform each possible β-reduction

$$((\lambda (x) ((\lambda (y) (x y)) x)) (\lambda (z) (z z)))$$

How many different β-reductions are possible from the above?

Answer

$$((\lambda (x) (\lambda (y) (x y)) x)) (\lambda (z) (z z)))$$

$$\downarrow \beta$$

$$((\lambda (x) (x x)) (\lambda (z) (z z)))$$

Can reduce inner redex...

Answer

$$((\lambda \ (x) \ ((\lambda \ (y) \ (x \ y)) \ x)) \ (\lambda \ (z) \ (z \ z)))$$

$$\downarrow \beta$$

$$((\lambda \ (y) \ ((\lambda \ (z) \ (z \ z)) \ y)) \ (\lambda \ (z) \ (z \ z)))$$

Or the outer redex.

Answer

$$((\lambda (x) ((\lambda (y) (x y)) x)) (\lambda (z) (z z)))$$

$$\downarrow \beta$$

$$((\lambda (y) ((\lambda (z) (z z)) y)) (\lambda (z) (z z)))$$

Can't reduce this since we don't (yet) know about the particular value (function) z in call position.

Free variables

$$FV : Exp \rightarrow \mathscr{P}(Var)$$

$$\mathbf{FV}(x) \stackrel{\Delta}{=} \{x\}$$

$$\mathbf{FV}((\lambda \ (x) \ e_b)) \stackrel{\Delta}{=} \mathbf{FV}(e_b) \setminus \{x\}$$

$$\mathbf{FV}(e_f \ e_a)) \stackrel{\Delta}{=} \mathbf{FV}(e_f) \ \cup \ \mathbf{FV}(e_a)$$

Free variables

$$FV((x y)) = \{x, y\}$$

$$FV(((\lambda (x) x) y)) = \{y\}$$

$$FV(((\lambda (x) x) x) = \{x\}$$

$$FV(((\lambda (y) ((\lambda (x) (z x)) x))) = \{z, x\}$$

Try an example. What are the free variables of each of the following terms?

$$((\lambda (x) x) y)$$
 $((\lambda (x) (x x)) (\lambda (x) (x x)))$
 $((\lambda (x) (z y)) x)$

Try an example. What are the free variables of each of the following terms?

The problem with (naive) textual substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

The problem with (naive) textual substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

$$\downarrow \beta$$

$$(\lambda (a) a) [a \leftarrow (\lambda (b) b)]$$

The problem with (naive) textual substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

$$\beta$$

$$(\lambda (a) (\lambda (b) b))$$

$$(\lambda (a) (\lambda (b) b))$$

Capture-avoiding substitution

$$E_0[x \leftarrow E_1]$$

$$x[x \leftarrow E] = E$$

$$y[x \leftarrow E] = y \text{ where } y \neq x$$

$$(E_0 E_1)[x \leftarrow E] = (E_0[x \leftarrow E] E_1[x \leftarrow E])$$

$$(\lambda (x) E_0)[x \leftarrow E] = (\lambda (x) E_0)$$

$$(\lambda (y) E_0)[x \leftarrow E] = (\lambda (y) E_0[x \leftarrow E])$$

where $y \neq x$ and $y \notin FV(E)$

 β -reduction cannot occur when $y \in FV(E)$

Capture-avoiding substitution

$$((\lambda (a) (\lambda (a) a)) (\lambda (b) b))$$

$$\beta$$

$$(\lambda (a) a)$$

$$(\lambda (a) a)$$

$$((\lambda (y) ((\lambda (z) (\lambda (y) (z y))) y))$$

 $(\lambda (x) x))$

$$(\lambda (y) ((\lambda (z) (\lambda (y) z)) (\lambda (x) y))$$

$$(\lambda (y) ((\lambda (z) (\lambda (y) z)) (\lambda (x) y))$$

You cannot! This redex would require:

$$(\lambda (y) z)[z \leftarrow (\lambda (x) y)]$$

(y is free here, so it would be captured)

$$(λ (y) ((λ (z) (λ (y) z)) (λ (x) y)))$$
 $→_α (λ (y) ((λ (z) (λ (w) z)) (λ (x) y)))$
 $→_β (λ (y) (λ (w) (λ (x) y)))$

Instead we alpha-convert first.

$$(\lambda (x) (\lambda (y) x))$$
 $(\lambda (a) (\lambda (b) a))$

These two expressions are equivalent—they only differ by their variable names (x = a; y = b)

$$(\lambda (x) E_{\theta}) \rightarrow_{\alpha} (\lambda (y) E_{\theta}[x \leftarrow y])$$

$$=_{\alpha}$$

 α renaming/conversions can be run backward, so you might think of it as an equivalence relation

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (x) x)) (\lambda (y) y))$$

\alpha - renaming

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (x) x)) (\lambda (y) y))$$

Can't perform naive substitution w/o capturing x.

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (x) x)) (\lambda (y) y))$$

Fix by α renaming to z

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (z) z)) (\lambda (y) y))$$

Fix by α renaming to z

α renaming/conversions can be used to implement capture-avoiding substitution

Rename variables that would break naive substitution!

$$((\lambda (x) (\lambda (z) z)) (\lambda (y) y))$$

Could now perform beta-reduction with naive substitution

η - reduction

$$(\lambda (x) (E_0 x)) \rightarrow_{\eta} E_0 \text{ where } x \notin FV(E_0)$$

$$E_0 \longrightarrow_{\eta} (\lambda (x) (E_0 x)) \text{ where } x \notin FV(E_0)$$

Reduction

$$(\rightarrow) = (\rightarrow_{\beta}) \cup (\rightarrow_{\alpha}) \cup (\rightarrow_{\eta})$$

$$(\rightarrow^*)$$

reflexive/transitive closure

Evaluation

Evaluation to normal form

Evaluation to normal form

In *normal form*, no function position can be a lambda; this is to say: *there are no unreduced redexes left*!

$$(\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow_{\eta} ((\lambda (y) y) (\lambda (z) z))$$

$$\rightarrow_{\beta} (\lambda (z) z)$$

$$((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (y) y) (\lambda (z) z))$$

$$\rightarrow \beta (\lambda (z) z)$$

$$((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (x) x) (\lambda (z) z))$$

$$\rightarrow \beta (\lambda (z) z)$$

Confluence

Diverging paths of evaluation must eventually join back together.

Church-Rosser Theorem

$$e_0 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_1 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_2 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_3 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_4 \quad \stackrel{\alpha}{\longleftrightarrow} \quad e_5$$

Confluence (i.e., Church-Rosser Theorem)

Applicative evaluation order

Always evaluates the *innermost* leftmost redex first.

Normal evaluation order

Always evaluates the *outermost* leftmost redex first.

Applicative evaluation order

$$((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

Normal evaluation order

$$(((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z)) (\lambda (w) w))$$

Call-by-value (CBV) semantics

Applicative evaluation order, but not under lambdas.

Call-by-name (CBN) semantics

Normal evaluation order, but not under lambdas.

Try an example.

Write a lambda term other than Ω which also does not terminate

(Hint: think about using some form of self-application)

Write a lambda term other than Ω which also does not terminate

Evaluation contexts

Restrict the order in which we may simplify a program's redexes

(left-to-right) CBV evaluation

(left-to-right) CBN evaluation

$$v := (\lambda (x) e)$$

$$e := (\lambda (x) e)$$

| (e e)
| x

Context and redex

For CBV a redex must be
$$(v \ v)$$
 For CVN, a redex must be $(v \ e)$
$$\mathscr{E} \left[\begin{array}{c} (v \ v) \end{array} \right] =$$

$$((\lambda \ (x) \ (\lambda \ (y) \ y) \ x)) \ (\lambda \ (z) \ z)) \ (\lambda \ (w) \ w)$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

Context and redex

$$\mathscr{E}[r] =$$

$$(((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z)) (\lambda (w) w))$$

$$\mathscr{E} = (\Box (\lambda (w) w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow_{\beta} ((\lambda (y) y) (\lambda (z) z))$$

Put the reduced redex back in its evaluation context...

$$\mathcal{E} = (\Box (\lambda (w) w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (y) y) (\lambda (z) z))$$

$$\downarrow \mathcal{E}[r]$$

$$(((\lambda (y) y) (\lambda (z) z)) (\lambda (w) w))$$

Exercises—can you evaluate...

1)
$$(((\lambda (y) y) (\lambda (z) z)) (\lambda (w) w))$$

2)
$$((\lambda (u) (u u)) (\lambda (x) (\lambda (x) x))$$

3)
$$(((\lambda (x) x) (\lambda (y) y))$$

 $((\lambda (u) (u u)) (\lambda (z) (z z))))$