
Principles of
Programming Languages

CS 245 — Spring 2019  
kmicinski.com/cs245

 1

Kristopher Micinski

Jocelyn Dunkley Myriam (Mimi) Benkoussa

http://kmicinski.com/cs245

 2

This class is about the principles
of programming languages:

what kinds of languages are there?
how do they work “under the hood”?

how are they implemented?

We’re also going to learn 4-8,
or more (depending on how we count),
different programming languages!

First, a bit of history…

Humans create tools to help them solve problems

Programming Languages allow us to precisely express
solutions to certain classes of problems

How do we (partially) formally specify what we want?

How do we write a program that does what we want?

How do we (partially) formally specify what we want?

How do we write a program that does what we want?

How do we (partially) formally specify what we want?

How do we run that program?

How do we write a program that does what we want?

How do we (partially) formally specify what we want?

How do we run that program?

How can we be convinced that program is correct?

~500 BC

~500 BC

Allows us to solve arithmetic problems (if you know how to use it)

Not really a program, but machine that allows us to perform computation

Jacquard Loom (1804)

Reads punched cards to build, e.g., tapestries

You write a program to build the material
https://www.youtube.com/watch?v=OlJns3fPItE

Analog targeting computer (USS North Carolina)
Helps aim guns given target distance / speed

Works using gears..

Analog targeting computer (USS North Carolina)
Helps aim guns given target distance / speed

Works using gears..

Not general purpose!!!

Ada Lovelace
Translated memoir describing general-purpose computer (1842)
Wrote notes of how to use this to compute Bernoulli numbers

Alonzo Church
Created lambda calculus (1936)

Alonzo Church
Created lambda calculus (1936)

Lambda calculus:
mathematically specified language

Notably: a general purpose
language

But ridiculously simple

e ::=
 x
| λx. e
| e e

At this time, there were no “computer scientists”
Most people studying this were mathematicians, engineers, etc…

Also, nobody had actually built a general-purpose computer

So we were free to think about what languages would look like
without thinking about hardware

Alan Turing (Church’s Student)

Invented Turing machines (1936)

Alan Turing

Model of computation that includes:
Read / Write Tape (memory)
Head (current position on tape)
Current state
Instructions

Alan Turing

Model of computation that includes:
Read / Write Tape (memory)
Head (current position on tape)
Current state
Instructions

Church-Turing Thesis:
Any computable function can be
computed by some Turing machine

Turing’s Bombe
Cracks enigma by semi-brute-force exploiting a flaw in

German code scheme

Even after his work cracking enigma, Turing was
prosecuted for his homosexuality

Alan Turing

He committed suicide at the age of 41

Several general-purpose languages came about, mainly
targeted at mechanical computers in the early 50s

These languages mostly resembled Turing machines and
grew into the assembly languages we see today!

Corrado Böhm

Wrote first meta-circular compiler (1951)

In only 114 lines of code

John Backus

1954 — FORTRAN invented at IBM

First general purpose language w/
compiler that had widespread use

Also invented BNF

Grace Hopper

1955—Writes FLOW-MATIC (inspires COBOL)

John McCarthy

1958—Invents LISP (inspiration for Scheme/Racket)

Gets variable scoping wrong because he failed
to read all of Church’s 1936 paper…

“To use functions as arguments, one needs a notation for functions, and
it seemed natural to use the λ-notation of Church (1941). I didn’t
understand the rest of his book, so I wasn’t tempted to try to
implement his more general mechanism for defining functions.”

http://jmc.stanford.edu/articles/lisp/lisp.pdf

—John McCarthy, History of Lisp, 1979

“I must confess that I regarded this difficulty as just a bug and expressed
confidence that Steve Russell would soon fix it. He did fix it but by inventing
the so-called FUNARG device that took the lexical environment along with
the functional argument. Similar difficulties later showed up in Algol 60, and
Russell’s turned out to be one of the more comprehensive solutions to the
problem.”

Remember this when we talk about closures :-)

Margret Hamilton

1960s: leads team that writes assembly code for
Apollo rockets / lunar module / command module

Margret Hamilton

Think of how much testing this required!
Amazing what people can do even w/ weak languages!

Start writing UNIX for fun to get away from their bad
code—First versions written in assembly in 1969

Mid 60s: Ken Thompson and Dennis Ritchie get fed up
hacking on the crummy code in MULTICS

Writing in assembly is error-prone, so they created the C programming
language—a derivative of BCPL (language around Bell labs at the time)

Early 70s: rewrite UNIX in C, create most famous operating system of all time

(My Mac’s kernel is based on UNIX!)

Barbara Liskov

Early 70s: CLU—classes, abstract types, iterators

Liskov Substitution Principle: subtyping!

Bjarne Stroustrup

1979—Extended C to add classes, creates
C++ (or C with classes)

And many others…!

Now, back to the lowest level…

Binary: The native language of the processor

• Modern processors are very fast
• (m/b)illions of instructions per sec

Processors execute a small number
of very basic instructions

MOV r1, r2 ADD r1, r2,r3

IFZERO r1, +20

These instructions written in a binary encoding
(Why?)

Binary: The native language of the processor

• Modern processors are very fast
• (m/b)illions of instructions per sec

Processors execute a small number
of very basic instructions

MOV r1, r2 ADD r1, r2,r3

IFZERO r1, +20

These instructions written in a binary encoding
(Why?)

Compact representation Quick to decode and execute

Thousands of different processors

Each speaks a different language

Called its architecture

Different versions of architecture add features, etc..

So I need to turn this into
something my i7 speaks…

To do that, I use a compiler

clang++ sumnums.cpp -o sumnums

“Compile a file named sumnums.cpp, and output
an executable file named sumnums”

clang++ sumnums.cpp -o sumnums

“Compile a file named sumnums.cpp, and output
an executable file named sumnums”

(Ton of options here, especially for large projects with
complex configs / multifiles)

Compiler

So, the compiler turns C++ into a
giant list of these instructions…

So, the compiler turns C++ into a
giant list of these instructions…

These are written in assembly
(Human-readable binary)

Let’s see what
assembly the

compiler generates…

clang++ -S sumnums.cpp

(Note I really used:
clang++ -S sumnums -fno-asynchronous-unwind-tables

This is because otherwise extra debugging overhead is inserted.)

Divided up by function

Divided up by function

Implementation of sum

Divided up by function

Implementation of main

Don’t worry that this
code is hard to

understand for now

(It also confuses me..)

I can manually transform the assembly
to the binary…

as sumnums.s

Crud…

Insight: my program
needs a lot of other

stuff to run…

For example: code to print to the screen

This is kept in a library

(But keep in mind, that’s also just code. Nothing
particularly magical)

Your code
lstdc++

lm
etc…

+

=

Executable file

 56

Syllabus

http://kmicinski.com/cs245/syllabus/

 57

A draft is freely available at: isocpp.org/tour

 58

Grade breakdown

50% : ~8 coding projects

10% : weekly labs

35% : Two midterms (~6 weeks in and ~12 weeks in)

5% : Participation (graded in various ways)

 59

Autograder

 60

Academic honesty

 61

+

All submissions are graded using Clang 5, Racket 7, Python 3.7
on an Ubuntu 18.04 LTR server.

If you have any trouble configuring this (or a compatible environment)
on your home machine, I highly recommend you develop with:

 62

What programming paradigms
have you heard of?

See if you know (or know of) any that
your neighbors don’t—or vice versa.

 63

Programming languages: paradigms

• Imperative languages emphasize issuing commands that tell the
machine what to do next at each step of evaluation.

• Structured languages emphasize structured control-flow (i.e., not
goto) that can be properly nested, especially sequencing, conditionals, and
looping constructs (while, for, do).

• Procedural programming is imperative programming with subroutines
—emphasizes abstracting behaviors over data.

• Object-oriented programming emphasizes encapsulation of behaviors
(methods) and data (fields) within classes, abstract modular schema for
program values, that are instantiated as objects at run-time. Inheritance
hierarchies used to promote code-reuse.

• Reactive programming emphasizes responding to events.

 64

Programming languages: paradigms

• Dynamic languages emphasize permitting arbitrary manipulation of
program values, control, and the environment at runtime. Primarily these
use duck typing / structural typing. A related paradigm is that of reflective
programming—dynamically modifying types at runtime.

• Static languages emphasize bounding program behavior ahead-of-time.
Primarily these use nominal typing and are type-checked.

• Array languages emphasize concisely manipulating arrays, matrices.

• Functional programming emphasizes immutability, like math. Programs
are constructed from pipelines of composed functions that transform
inputs to outputs without affecting their environment.

• Logic programming emphasizes declarations, propositions, logical
constraints. The programmer states what must be true of a solution.

 65

Programming languages: imperative paradigm

Place first board and rails
While fence incomplete:
 move half-a-foot to the left 
 position a new board
 position a nail
 hammer nail into top rail
 ...

 66

Programming languages: functional paradigm

function build_fence(len):
 if len == 1:
 return rails_and_first_picket()
 else:
 return add_one_picket(build_fence(len-1))

 67

Programming languages: logical paradigm

def fence. 
fence is 5 ft tall.
fence has two rails.
fence has 50 pickets,
 each picket is 4” wide
 every picket is 2” from at least one other.

 68

C/C++

C++ is a superset of C with
object-oriented features and generics/templates.

C/C++ is an example of the imperative, structured,
procedural, static, and object-oriented language paradigms.

Focusing on classic/vanilla C++
written from scratch…

 69

C/C++
Introduction to C++ syntax and semantics

The syntax of a language is the rules one must follow for a
program to be parsed correctly. E.g., braces must match {…},
identifiers begin with a character in [_A-Za-z], semi-colons, etc.

The semantics of a language is the rules by which programs are
run or evaluated to a result or behavior. E.g., operator precedence,
order of operations, dynamic dispatch (which method is it), etc.

 70

/* Multi-line or “C style” comments begin with a slash-star

 ...and end with star-slash */

// Single-line or “C++ style” comments start with two slashes
// and end with a newline

C++ syntax: comments

/* Multi-line comments cannot be nested 
 
 …like this: /* */ // <— this closes the whole comment

*/ // <— this dangles

 71

C++ syntax: identifiers, strings, numbers

x

IDs match [_a-zA-Z][_a-zA-Z0-9]*,
and are not reserved keywords

Numbers can take a number
of forms in C/C++… e.g.

2.0, 2f

0xffff00ff

30500ULL

Characters are between single-quotes: e.g., ’a’, ‘\n’
Strings are between double-quotes: “Hello World\n”

Strings in C/C++ are just arrays of chars: e.g., char[16]

_0123

A_0

a12

(The basics are very similar to Java, as Java was designed to have C-like syntax.)

 72

constexpr 
const_cast 
continue 
decltype 
default
delete 
do  
double 
dynamic_cast 
else 
enum 
explicit 
export 
extern 
false 
float 
for 
friend 
goto 
if  
import

C++ syntax: reserved keywords
alignas  
alignof  
and 
and_eq 
asm 
auto(1) 
bitand 
bitor 
bool 
break 
case 
catch 
char 
char8_t 
char16_t  
char32_t  
class(1) 
compl 
concept 
const 
consteval 

inline 
int 
long 
mutable 
namespace 
new 
noexcept 
not 
not_eq 
nullptr 
operator 
or  
or_eq 
private 
protected 
public
reflexpr 
register 
reinterpret_cast 
requires 
return 

short 
signed 
sizeof 
static 
static_assert 
static_cast 
struct 
switch 
synchronized 
template 
this 
thread_local  
throw 
true 
try 
typedef 
typeid 
typename 
union 
unsigned 
using

 
virtual 
void 
volatile 
wchar_t 
while 
xor 
xor_eq

 73

C++ semantics: memory model

Each variable in C++ exists
somewhere in memory

Memory
C++ thinks of this as a giant array

of bytes

 74

C++ semantics: memory model

1 bytechar

1 byteint 1 byte 1 byte 1 byte

u16 1 byte 1 byte

(for a 32-bit architecture…)

1 bytelong long 1 byte 1 byte 1 byte

1 byte 1 byte 1 byte 1 byte

Note: some lengths differ
depending on architecture

 75

C++ syntax: includes and macros

#include “path/to/file.h”

By convention, .cpp files are used for source, .h for libraries/declarations.

#include will textually replace this line with the entire contents of a file.

#include <library>

#define defines a macro: in this case,
textually replace occurrences of “MAX” with “255”.

#define MAX 255

 76

C++ syntax: anatomy of a function

int main()
{
 return 0;
}

The smallest valid C program.

 77

C++ syntax: anatomy of a function

int main()
{
 return 0;
}

The smallest valid C program.

Returns status code 0, success.

All statements end with a
semi-colon, as in Java.

main(…) is the entry-point of the program

In C/C++ the preferred style is for curly braces
to line up on the same row or column.  

As in Java though, whitespace only separates tokens
and is not otherwise meaningful.

 78

C++ syntax: anatomy of a function

#include <iostream>

int main()
{
 std::cout << “Hello World”
 << std::endl;
 return 0;
}

“Hello World”

 79

Clang++: compiling and running

$ clang++ -o hello hello.cpp 
$ ls 
hello hello.cpp 
$./hello 
Hello World 
$

“Hello World”

-g compiles for debugging, 
-std=c++14 compiles with c++14 features  

-O2 compiles with optimization level 2

 80

C++ syntax: arrays, dereferencing a pointer

int main()
{
 int* iarr = new int[5];
 *iarr = 99;
 // is the same as
 iarr[0] = 99;
 // ...
}

Using the prefix, unary operator * will explicitly dereference a pointer.  
if a is of type int*, then *a is of type int.

An array (len=5) can be allocated on the stack using syntax T a[5];  
or on the heap using syntax T* a = new T[5];

 81

C++ syntax: structs

struct Point
{
 int x;
 int y;
};

int main()
{
 Point p;
 p.x = 5; // field access
 //...
}

A custom type containing two publicly visible fields: x, and y.

 82

C++ syntax: new and delete

struct Point
{
 int x;
 int y;
};

int main()
{
 Point* p = new Point();
 p->x = 5; // Same as (*p).x = 5
 delete p;
 //...
}

keyword “new” allocates an object on the heap, “delete” frees it

 83

C++ syntax: pass by reference

bool x_gt_y(const P& p)
{
 return p.x > p.y;
}

Using T& in place of T* means the pointer itself cannot be manipulated
and dereference is implicit! These are called references.

 84

C++ semantics: reading command-line
arguments

#include <iostream>

int main(int argc, const char** argv)
{
 if (argc <= 1) return 1; // failure
 std::cout << argv[1]
 << std::endl;
 return 0; // success
}

Give main arguments argc and argv as below.

 85

C++ semantics: pointers

A type T* means a pointer to something of type T.

For example, an int* is a word of memory containing the location, in
memory, of an integer. An int** is an address pointing to a location

containing an address to an integer.

0xffbc0a00

int**

0xffad1c20

int*

5

int

 86

C++ semantics: pointers

Pointers in C do not have lengths. You can read as many words 
or bytes at the location as you wish. Thus pointers are all really

arrays of length 1 or greater.

A string in C is just an array of chars, or a char*

0xefc11c40

char*

‘H’

char

‘e’

char

‘l’

char

‘l’

char

‘o’

char

 87

C++ semantics: const pointers

A type may be preceded by keyword const, this tells the
compiler to check that the value cannot be modified!

A const string in C is a const char*

0xefc11c40

const char*

‘H’

const char

‘e’ ‘l’ ‘l’ ‘o’

If the pointer itself is also const, then it is a const char* const

const char const char const char const char

 88

Let’s try out some examples

