Y Combinator,
CC/CK machine,

and continuations
CS245 — Spring 2019

Authors: Kris Micinski + Thomas Gilray

(letrec ([x (lambda (x) e)]))
(lambda (x) e)

(e e)

X

<vars>

()

(N () (x x)) (A (X) (X x)))

Key: U takes a function and calls it on itself

()

(O () (x x)) (A (X)) (X X))

A
U

(define U (A (f) (f £)))

(letrec ([fib (lambda (x) (if (=x 0) 1 (* x (fib (- x 1)))))1)
(fib 3))

(let ([fib (U (lambda (f)
(lambda (x) (if (=x0) 1 (* x (... (- x IO

(fib 3)) *

What can | type right here to make fib work?

(Hint: the answer can be written in 5 characters)

(define U (A (f) (f £)))

(letrec ([fib (lambda (x) (if (=x 0) 1 (* x (fib (- x 1)))))1)
(fib 3))

(let ([fib (U (lambda (f)
(lambda (x) (if (=x0) 1 (* x (... (- x IO

(fib 3)) +

What can | type right here to make fib work?

(f 1)

Y combinator

(letrec ([fact (A (n)
(if (= n 0)
1

(* n (fact (- n 1)))))])
(fact 5))

Key idea: instead of

(let ([mk (A (mk) (A (n)
(if (= n 0)
1

(*n ((mk mk) (- n1))))))]1)
((mk mk) 5))

10

(Y) = f (Y f)

(It's a fixed-point combinator!)

VA

10

-2

-3

13

Three step process for deriving Y

(Y f) = (Y T)

Y = (A (T) (f (Y T))) 1. Treat as definition
mY = (A (mY)
(A () 2. Lift to mKk-Y,

(t C(mY mY) T)))) use self-application

mY = (A (mY) 3
(A (T)
(f (A (x) (((mY mY) f) x)))))

14

. Eta-expanad

U-combinator: (U U) is Omega

v

Y = (U (A (y) (A ()
(f (A (xX) (((y y) T) x)))))

15

v

(let ([fact (Y (A (fact) (A (n)
(if (= n 0)
1

(* n (fact (- n 1)))))])
(fact 5))

16

Try an examplel!!
(define Y (CCA (x) (x x)) (A (y) (A (F)
(t (A (x) Ay y)) x)))))))

(define (fib x)
(if Cor (=x 0) (= x 1))
1

(+ (fib (- x 1)) (fib (- x 2)))))

Rewrite this to use the Y combinator instead

e ::= (lambda (x) e)
(e €)
X

18

De-churching

(define (church->nat cv)

)

(define (church->11st cv)

(define (church->bool cv)

)

19

De-churching

(define (church->nat cv)
((cv addl) 0))

(define (church->11st cv)

(define (church->bool cv)

)

20

De-churching

(define (church->nat cv)
((cv addl) 0))

(define (church->11ist cv)
((cv (A (car)
(A (cdr)
(cons car
(church->11st cdr)))))

(A (na) “())))

(define (church->bool cv)

)

21

De-churching

(define (church->nat cv)
((cv addl) 0))

(define (church->11ist cv)
((cv (A (car)
(A (cdr)
(cons car
(church->11st cdr)))))

(A (na) “())))

(define (church->bool cv)
((cv (A () #t))
(A () #1)))

2

(letrec ([map (A (f 1st)
(if (null? 1st)
()
(cons (f (car 1lst))
(map f (cdr 1st)))))])

(map (A (x) (+ 1 x))
(05 3)))

23

(define 1st

(CCCCCCCA (Y-comb)
(A (church:null?)

(A (church:cons)
(A (church:car)
(A (church:cdr)
(A (church:+)
(A (church:*)
(A (church:not)
((A (map)
((map
(A (Xx)
((church:+ (A (f) (A (x) (f Xx))))
X)))
((church:cons (A (f) (A (X) X)))
((church:cons
(A (F)
(A (x) (f (f (f (f (f x))))))))
((church:cons

A (£) O () (F_(f (Fp0))
> (map church—(an(aﬂ'en-ég;qlaurcf\—gl1s lst))
| (A (when-null)

(1 64) (when-null (A (x) x)))))))))

C

Abstract Machine Zoo

Term-rewriting Machine

Evaluation contexts

Restrict the order in which we may simplify a program’s redexes

G .= (& e)
(v &) v 1= (A (X) e)
(left-to-right) CBV evaluation e ::= (A (X) e)
(e e)
G = (& e) X

(left-to-right) CBN evaluation

Context and redex

~ For CBV aredex must be (v v)
K For CVN, a redex must be (v e)
. ,,

S[(v v)] =

(CCA (X)) CCA Cy) y) X)) (A (2) z)) (A (W) w))

¢

(O (A (W) wW))

1
1

(A (x) (A (y) y) x)) (A (2) 2))

Context and redex

clr] =
(CCX (X)) (A (y) ¥y) X)) (A (2) 2)) (A (W) w))

¢

(O (A (W) wW))

1
1

(A (X) (A (y) y) X)) (A (z) z))
= ((A (y) y) (A (2) z))

Put the reduced redex back In Its
evaluation context...

G = (O (A (W) W)

r= (A (x) (A (y) y) X)) (M (z) z))
= ((A (y) y) (A (2) 2))

Elr]

\4

(CO (y) y) (A (2) 2)) (A (W) W))

Exercises—can you evaluate...

1) (O (y) y) (M (2) 2)) (A (W) W))

2) (A (u) (uwu)) (A (xX) (A (X) X)))

3) (C(A (X)) x) (A (y) vy))
(A (u) (uu)) (A (z) (z 2))))

30

Abstract Machine Zoo

C Term-rewriting Machine

CC Context and Redex Machine
CK Control / Continuation Machine

Next time...

Continuations: first-class control

32

Continuations

A continuation is a return point, a call stack, or the remainder of
the program, viewed as a function.

In Scheme, continuations are first-class values that can be
captured using the language form call/cc and passed
around to be invoked later.

33

First-class continuations

We may consider several alternative
viewpoints on first-class continuations:

A continuation is a value encoding a saved return point to resume.
A continuation is a function encoding the remainder of the program.

A continuation is a function that never returns. When invoked on an
iInput value, it resumes a previous return point with that value, and
finishes the program from that return point until it exits.

Continuations generalize all known control constructs: gotos, loops,
return statements, exceptions, C’s 1ongjmp, threads/coroutines, etc

34

Continuations

Continuations are said to permit time travel, in the sense
that they permit jumping back to a saved dynamic
evaluation context: a previous call stack,

or point in time, or a future one!

35

(call/cc ep)
call with current continuation

call/cc takes a single argument, a callback, which it applies on
the current continuation —that is, the return from call/cc as a
first-class function that saves the full call stack under call/cc.

36

(+ 1 (call/cc (lambda (k) (k 2))))
,, => 3

Takes the call stack at the second argument expression of (+ ...)
and saves it, essentially as a function, bound to k, that can be
iInvoked on a value for that expression at a later point in time.

When Kk is invoked on the number 2, execution jumps back to the
saved return point for call/cc and returns 2, returning 3 from
the program as a whole.

37

(+ 1 (call/cc (lambda (k) (k 2))))
,, => 3

The program never returns from call (k 2) because
undelimited continuations run until the program exits.

call/cc gives us undelimited (a.k.a. full) continuations.

(+ 1 (call/cc (lambda (k) (k 2) (print 0))))
;. => 3 (print ©) 1is never reached

38

(+ 1 (call/cc (lambda (k) (k 2))))
,, => 3

This call/cc’s behavior is roughly the same as the application:

((lambda (k) (k 2))
(lambda (n) (exit (print (+ 1 n)))))
, => 3

Where the high-lit continuation (1ambda (n) ..) takes a
return value for the (call/cc ..) expression and finishes the program.

39

(let ([cc (call/cc (lambda (k) k))])

:)

A common idiom for call/cc is to
let-bind the current continuation.

40

(let ([cc (call/cc (lambda (k) k))])

)

Note that applying call/cc on the identity function is exactly
the same as applying it on the u-combinator!

(let ([cc (call/cc (lambda (k) (k k)))1)

)

Why is this the case?

41

call/cc makes atail call to (1ambda (k) ..), so the body of the
function is the same return point as the captured continuation k!

(let ([cc (call/cc (lambda (k) k))])

o 1 !

This return point ...Is the same as this one...

(let ([cc (call/cc (lambda (k) (k k)))1)

5 t

...and calling k on itself, returns k to itself!

Returning value v is the same as calling that saved return point on v.

42

(let ([cc (call/cc (lambda (k) k))])
,, lLoop body goes here

(1f (jump-to-top?)
(cc cc)
return-value))

Continuations can be used to jump back to a previous point.

Just as we could have invoked call/cc on the u-combinator,
to jump back to the let-binding of cc, returning cc, we call (cc cc).

43

(define (fun Xx)

(let ([y (if (p? X)
1)
(g X y)))

A simple use of continuations is to implement a
preemptive return.

What if we wanted to return from fun within the
right-hand-side of the 1et form?

44

Binds the return-point of the current call to fun to a continuation return.

(define (fun x) J
(call/cc (lambda (return)

(let ([y (if (p? Xx)

freturn X))])

(g X ¥)))))

Uses the continuation return to jump back to the return point
of fun and yield value x instead of binding y and calling g.

45

Try an example. What do each of these 3 examples return?
(Hint: Racket evaluates argument expressions left to right.)

(call/cc (lambda (kO)
(+ 1 (call/cc (lambda (k1)

(+ 1 (kO 3)))))))

(call/cc (lambda (kO)
(+ 1 (call/cc (lambda (k1)

(+ 1 (k0@ (k1 3))))))))

(call/cc (lambda (kO)
(+ 1
(call/cc (lambda (k1)
(+ 1 (k1 3))))

(kO 1))))

46

Try an example. What do each of these 3 examples return?
(Hint: Racket evaluates argument expressions left to right.)

(call/cc (lambda (kO) 3//

(+ 1 (call/cc (lambda (k1)
(+ 1 (kO 3)))))))

(call/cc (lambda (k0O) 4
(+ 1 (call/cc (lambda (k1) 4//

(+ 1 (k0@ (k1 3))))))))

(call/cc (lambda (k©)

(+ 1 1
(call/cc (lambda (k1) //
(+ 1 (k1 3))))

(kO 1))))

47

Continue and break

A Python while loop on the left that supports continue and break
can be implemented using call/cc as the Scheme on the right.

(call/cc (A (break)
(letrec ([loop (A ()

while cond: (when cond
body (call/cc (A (continue)
else: body))
otherwise (loop)))])
(loop)

otherwise)))

48

Continuations and mutation

(let* ([n 2]
[cc (call/cc (lambda (k) k))])
(set! n (+ n 1))
(if (<= n 4)
(cc cc)

n))

Does this program terminate”? \What does it return”

49

Continuations and mutation

(let* ([n 2]
[cc (call/cc (lambda (k) k))])
(set! n (+ n 1))
(if (<= n 4)
(cc cc)

n))

This loop terminates and returns 5.

This illustrates that invoking a continuation resumes a previous
call stack, but does not revert mutations—changes made in the heap.

50

Try an example. What do each of these 2 examples return?
(Hint: Racket evaluates argument expressions left to right.)

(define n 3)
(+ n (call/cc
(Lambda (cc)
(set! n (+ n 1))
(cc 1))))

(define n 3)
(+ (call/cc
(Lambda (cc)
(set! n (+ n 1))
(cc 1)))

51

Try an example. What do each of these 2 examples return?
(Hint: Racket evaluates argument expressions left to right.)

(define n 3)
(+ n (call/cc 4
(Lambda (cc) A//
(set! n (+ n 1)) *
(cc 1))))

(define n 3)
(+ (call/cc

(lambda (cc) 5
(set! n (+ n 1)) -/
(cc 1))) |

52

Stack-passing (CEK) semantics
(implementing first-class continuations)

53

C Control-expression
Term-rewriting / textual reduction
Context and redex for deterministic eval

CE Control & Env machine
B1g-step, explicit closure creation

CES Store-passing machine

Passes addr->value map in evaluation order

CEK Stack-passing machine

Passes a list of stack frames, small-step

54

(eo, env) I ((A (x) e2), env) (e1, env) {J vi (e2, env'[x = v1i]) I vo

((ee e1),env) I vo

(A (x) e),env) L ((A (x) e),env)

(x, env) I env(x)

95

Previously...

(ep €1), env V

56

Previously...

57

(define (interp e env)
(match e
[(7?7 symbol? Xx)
(hash-ref env x)]

[(A (,X) ,e€0)
“(clo (A (,x) ,eq) ,env)]

[(,e0 ,€1)
(define ve (interp ep env))
(define vi (interp e; env))
(match v
[(clo (A (,X) ,e2) ,env)
(interp ez (hash-set env x v1))1)]))

58

e ::= (A (X)) e)

(e e)

X

(call/cc (A (X) e))

59

k ::= halt | ar(e, env, k)
| fn(v, k)

\/

(e e)

60

k ::= halt | ar(e, env, k)
| fn(v, k)

\/

61

((eo €1),env, k) = (e, env, ar(e, env, k))

(X, env, ar(e1, envy, k1)) = (e1, envy, fn(env(x), k1))

((A (x) e),env, ar(e1, envy, k1)) = (e1, envy, fn(((A (x) e), env), kq))

(x, env, fn(((A (Xx1) e1), envq), k1)) = (e1, envi[xi = env(x)], k1)

((A (x) e),env, In(((A (X1) e1), envy), k1))
— (e, envi[x1 = ((A (x) e), env)], k1)

62

call/cc semantics

((call/cc (A (x) ee)),env,k) = (eq, envixm K], k)

((A (X) ep),eny, fn(ko, k1)) = ((A (X) eo), env, ko)

(x, env, fn(ko, k1)) — (X, env, ko)

63

e ::= ... | (let ([X ee]) e1)

/'T
|l

| let(x, e, eny, k)

(X, env, let(x1, e1, envy, k1)) = (e1, envi[xs » env(x)], k1)

((A (X) e),eny, let(xq, e1, envy, k1)) = (e1, envi[xi1 = ((A (X) e), env)], k1)

64

(x, env, fn(((A (x1) e1), envi), k1)) = (e1, envi[x1 » env(x)], k1)

((A (x) e),env, fn(((A (x1) e1), envy), k1))
— (e1, envi[xi = ((A (x) e), env)], k1)

These are nearly identical because a let form is
just an iImmediate application of a lambdal

(X, env, let(x1, e1, envy, k1)) = (e1, envi[xs » env(x)], k1)

((A (X) e),eny, let(xq, e1, envy, k1)) = (e1, envi[xi1 = ((A (X) e), env)], k1)

65

CEK-machine evaluation

I

(X, env, halt) = env(x)

60

consider the following question.

s it possible to take an arbitrary Racket/Scheme program and
transform it systematically so that no function ever returns”

67

