Church encoding,
the CC machine,

and the CK machine
CS245 — Fall 2019

Authors: Kris Micinski + Thomas Gilray

Writing a functional compiler

Functional compilers translate input expressions in
one intermediate representation (intermediate language)
iInto equivalent expressions in another, simpler IR.

translate : IRg -> IRj

compile or desugar

IR0

IR

interp

interp

Church encoding

Church encoding is the process of encoding all
values as lambda abstractions. E.g., Church
numerals are an encoding of numbers, 0O, 1, 2, ...,
as first-class functions. Church booleans are an
encoding of #t and #f as functions. Church lists are
an encoding of lists (pairs and null) as functions.

“If 1 only let you use the Lambda calculus, can you still write normal
programs (e.q., ones that use recursion/+/ U febe.. .)?”

Church encoding

Church encoding is the process of encoding all
values as lambda abstractions. E.g., Church
numerals are an encoding of numbers, 0O, 1, 2, ...,
as first-class functions. Church booleans are an
encoding of #t and #f as functions. Church lists are
an encoding of lists (pairs and null) as functions.

“If 1 only let you use the Lambda calculus, can you still write normal
programs (e.q., ones that use recursion/+/ U febe.. .)?”

Church encoding

Church encoding is the process of encoding all
values as lambda abstractions. E.g., Church
numerals are an encoding of numbers, 0O, 1, 2, ...,
as first-class functions. Church booleans are an
encoding of #t and #f as functions. Church lists are
an encoding of lists (pairs and null) as functions.

Project 4: Church compiler

Your goal is to compile a significant subset of Scheme
(with a few simplifications) down to the lambda calculus.
This requires you to desugar (simplify) most forms, to curry
all functions, and to church-encode all non-function values.

(letrec ([x (lambda (x ..) e)]))
(let ([x e] ..) e)

(lambda (x ..) e)

(e e ..)

X

(1f e e e)

(prim e e) | (prim e)

d

N | #t | #f | ° ()

<vars>

.=+ | - | * | not | cons | ..

e ::= (lambda (x) e)
(e e)
X

church-encode

Scheme IR

A-calculus

interp

interp

>

10

2
(A (T)
(A (X)

(t (f x))))

Today, we’ll start with:

(letrec ([x (lambda (x ..) e)]))
(let ([x e] ..) e)
(lambda (x ..) e)

(e e ...)

X

(1f e e e)

(+ee) | (* e e)

(cons e e) | (car e) | (cdr e)
d

N | #t | #1 | ()
<vars>

11

Desugaring Let

(let ([x e] ..) ebody)

13

(let ([x e] ..) ebody)

((A (X ..) ebody) e ..)

14

Currying

(A (X)

) > (A (y)
ey (A (z) e)))
(A (x) e) - (A (x) e)

(A () e) - (A () e)

16

(f a b c d) » ((((f a) b) c) d)

(t a) > (T a)

(1) > (T (A (X) X))

17

(letrec ([x (lambda (x) e)]))
(Lambda (x) e)

(e e)

X

(1f e e e)

((+ e) e) | ((* e) e)

((cons e) e) | (car e) | (cdr e)
d

N | #t | #f | ° ()

<vars>

18

Conditionals & Booleans

19

(1T #t er erf) (1T #f er er)

20

((A (t T) t) eT er) ((A (£t) T) et eF)

((N (t f) t) vr vi) ((AN (t f) f) vt V)

21

What Issues arise with
this encoding”

22

(A (Tt) t) er Q)

23

(A (t 1)

(t)) (A () er)

(A () er))

(A () Q))

(letrec ([x (lambda (x) e)]))
(lLambda (x) e)

(e e)

X

((+ e) e) | ((* e) e)

((cons e) e) | (car e) | (cdr e)
d

N[()

<vars?-

25

Natural Numbers

20

Hint: turn all nouns Into verpbs!

(Focus on the behaviors that are implicit in values.)

27

(A (F) (A (x) (TN x)))

(A (F) (A (X) X))
(A (F) (A (xX) (T X)))
(A (F) (A (x) (T (T x))))

(A (F) (A (x) (f (T (f X)))))

28

church+ = (A (n) (A (m)
(A (F) (A (X)
w))))

29

church+ = (A (n) (A (m)
(A (F) (A (X)
((n) ((m 1) x))))))

30

church* = (A (n) (A (m)
(A (F) (A (X)
w))))

31

church* = (A (n) (A (m)
(A (F) (A (X)
((n-(m 1)) x)))))

32

N — fN*M

33

(letrec ([x (lambda (x) e)]))
(lambda (x) e)

(e e)

X

((cons e) e) | (car e) | (cdr e)
d

()

<vars?-

34

| IStS

The fundamental problem:

We need to be able to case-split.

The solution:

We take two callbacks as with #t, #f!

36

“() = (A (when-cons) (A (when-null)
(when-null)))

(cons a b) = (A (when-cons) (A (when-null)
(when-cons a b)))

37

Try an Example. How can we define null?

38

Try an Example. How can we define null?

church:null? = (A (p)
(p (A (a b) #f1)
(A () #1)))

39

(letrec ([x (lambda (x) e)]))
(lambda (x) e)

(e e)

X

<vars>

40

()

(N () (x x)) (A (X) (X x)))

Key: U takes a function and calls it on itself

()

(O () (x x)) (A (X)) (X X))

A
U

(define U (A (f) (f £)))

(letrec ([fib (lambda (x) (if (=x 0) 1 (* x (fib (- x 1)))))1)
(fib 3))

(let ([fib (U (lambda (f)
(lambda (x) (if (=x0) 1 (* x (... (- x IO

(fib 3)) *

What can | type right here to make fib work?

(Hint: the answer can be written in 5 characters)

(define U (A (f) (f £)))

(letrec ([fib (lambda (x) (if (=x 0) 1 (* x (fib (- x 1)))))1)
(fib 3))

(let ([fib (U (lambda (f)
(lambda (x) (if (=x0) 1 (* x (... (- x IO

(fib 3)) +

What can | type right here to make fib work?

(f 1)

Y combinator

46

(letrec ([fact (A (n)
(if (= n 0)
1

(* n (fact (- n 1)))))])
(fact 5))

47

Key idea: instead of

(let ([mk (A (mk) (A (n)
(if (= n 0)
1

(*n ((mk mk) (- n1))))))]1)
((mk mk) 5))

48

(Y) = f (Y f)

(It's a fixed-point combinator!)

VA

10

-2

-3

51

Three step process for deriving Y

(Y f) = (Y T)

Y = (A (T) (f (Y T))) 1. Treat as definition
mY = (A (mY)
(A () 2. Lift to mKk-Y,

(t C(mY mY) T)))) use self-application

mY = (A (mY) 3
(A (T)
(f (A (x) (((mY mY) f) x)))))

52

. Eta-expanad

U-combinator: (U U) is Omega

v

Y = (U (A (y) (A ()
(f (A (xX) (((y y) T) x)))))

53

v

(let ([fact (Y (A (fact) (A (n)
(if (= n 0)
1

(* n (fact (- n 1)))))])
(fact 5))

54

Try an examplel!!
(define Y (CCA (x) (x x)) (A (y) (A (F)
(t (A (x) Ay y)) x)))))))

(define (fib x)
(if Cor (=x 0) (= x 1))
1

(+ (fib (- x 1)) (fib (- x 2)))))

Rewrite this to use the Y combinator instead

e ::= (lambda (x) e)
(e €)
X

56

De-churching

(define (church->nat cv)

)

(define (church->11st cv)

(define (church->bool cv)

)

57

De-churching

(define (church->nat cv)
((cv addl) 0))

(define (church->11st cv)

(define (church->bool cv)

)

58

De-churching

(define (church->nat cv)
((cv addl) 0))

(define (church->11ist cv)
((cv (A (car)
(A (cdr)
(cons car
(church->11st cdr)))))

(A (na) “())))

(define (church->bool cv)

)

59

De-churching

(define (church->nat cv)
((cv addl) 0))

(define (church->11ist cv)
((cv (A (car)
(A (cdr)
(cons car
(church->11st cdr)))))

(A (na) “())))

(define (church->bool cv)
((cv (A () #t))
(A () #1)))

(letrec ([map (A (f 1st)
(if (null? 1st)
()
(cons (f (car 1lst))
(map f (cdr 1st)))))])

(map (A (x) (+ 1 x))
(05 3)))

61

(define 1st

(CCCCCCCA (Y-comb)
(A (church:null?)

(A (church:cons)
(A (church:car)
(A (church:cdr)
(A (church:+)
(A (church:*)
(A (church:not)
((A (map)
((map
(A (Xx)
((church:+ (A (f) (A (x) (f Xx))))
X)))
((church:cons (A (f) (A (X) X)))
((church:cons
(A (F)
(A (x) (f (f (f (f (f x))))))))
((church:cons

A (£) O () (F_(f (Fp0))
> (map church—(an(aﬂ'en-ég;qlaurcf\—gl1s lst))
| (A (when-null)

(1 64) (when-null (A (x) x)))))))))

C

Abstract Machine Zoo

Term-rewriting Machine

Evaluation contexts

Restrict the order in which we may simplify a program’s redexes

G .= (& e)
(v &) v 1= (A (X) e)
(left-to-right) CBV evaluation e ::= (A (X) e)
(e e)
G = (& e) X

(left-to-right) CBN evaluation

Context and redex

~ For CBV aredex must be (v v)
K For CVN, a redex must be (v e)
. ,,

S[(v v)] =

(CCA (X)) CCA Cy) y) X)) (A (2) z)) (A (W) w))

¢

(O (A (W) wW))

1
1

(A (x) (A (y) y) x)) (A (2) 2))

Context and redex

clr] =
(CCX (X)) (A (y) ¥y) X)) (A (2) 2)) (A (W) w))

¢

(O (A (W) wW))

1
1

(A (X) (A (y) y) X)) (A (z) z))
= ((A (y) y) (A (2) z))

Put the reduced redex back In Its
evaluation context...

G = (O (A (W) W)

r= (A (x) (A (y) y) X)) (M (z) z))
= ((A (y) y) (A (2) 2))

Elr]

\4

(CO (y) y) (A (2) 2)) (A (W) W))

Exercises—can you evaluate...

1) (O (y) y) (M (2) 2)) (A (W) W))

2) (A (u) (uwu)) (A (xX) (A (X) X)))

3) (C(A (X)) x) (A (y) vy))
(A (u) (uu)) (A (z) (z 2))))

68

Abstract Machine Zoo

C Term-rewriting Machine

CC Context and Redex Machine
CK Control / Continuation Machine

Next time...

