Church encoding,
the CC machine,
and the CK machine

CS245 — Fall 2019

Authors: Kris Micinski + Thomas Gilray

Writing a functional compiler

Functional compilers translate input expressions in one intermediate representation (intermediate language) into equivalent expressions in another, simpler IR.

translate : IR₀ -> IR₁

Church encoding

Church encoding is the process of encoding all values as lambda abstractions. E.g., Church numerals are an encoding of numbers, 0, 1, 2, ..., as first-class functions. Church booleans are an encoding of #t and #f as functions. Church lists are an encoding of lists (pairs and null) as functions.

"If I only let you use the lambda calculus, can you still write normal programs (e.g., ones that use recursion/+/if/etc...)?"

Church encoding

Church encoding is the process of encoding all values as lambda abstractions. E.g., Church numerals are an encoding of numbers, 0, 1, 2, ..., as first-class functions. Church booleans are an encoding of #t and #f as functions. Church lists are an encoding of lists (pairs and null) as functions.

"If I only let you use the lambda calculus, can you still write normal programs (e.g., ones that use recursion/+/if/etc...)?"

Church encoding

Church encoding is the process of encoding all values as lambda abstractions. E.g., Church numerals are an encoding of numbers, 0, 1, 2, ..., as first-class functions. Church booleans are an encoding of #t and #f as functions. Church lists are an encoding of lists (pairs and null) as functions.

Project 4: Church compiler

Your goal is to compile a significant subset of Scheme (with a few simplifications) down to the lambda calculus. This requires you to desugar (simplify) most forms, to curry all functions, and to church-encode all non-function values.

```
e ::= (letrec ([x (lambda (x ...) e)]))
     | (let ([x e] ...) e)
     | (lambda (x ...) e)
     l (e e ...)
    (if e e e)
     | (prim e e) | (prim e)
d ::= \mathbb{N} \mid \#t \mid \#f \mid `()
x ::= <vars>
prim ::= + | - | * | not | cons | ...
```


Today, we'll start with:

```
e ::= (letrec ([x (lambda (x ...) e)]))
     [ (let ([x e] ...) e)
     | (lambda (x ...) e)
     l (e e ...)
     | (if e e e)
     | (+ e e) | (* e e)
     (cons e e) | (car e) | (cdr e)
d ::= \mathbb{N} \mid \#t \mid \#f \mid `()
x ::= \langle vars \rangle
```

Desugaring Let

```
(let ([x e] ...) ebody)
```

Currying

$$(\lambda (x y z) e) \longrightarrow (\lambda (x) (\lambda (x) (\lambda (z) e))$$

$$(\lambda (x) e) \longrightarrow (\lambda (x) e)$$

$$(\lambda () e) \longrightarrow (\lambda (_) e)$$

 $(f \ a \ b \ c \ d) \longrightarrow ((((f \ a) \ b) \ c) \ d)$ $(f \ a) \longrightarrow (f \ a)$ $(f) \longrightarrow (f \ (\lambda \ (x) \ x))$

```
e ::= (letrec ([x (lambda (x) e)]))
    | (lambda (x) e)
    (e e)
    | (if e e e)
    | ((+ e) e) | ((* e) e)
    | ((cons e) e) | (car e) | (cdr e)
d ::= N | #t | #f | '()
x ::= <vars>
```

Conditionals & Booleans

What issues arise with this encoding?

$$((\lambda (t f) t) e_T \Omega)$$

```
((\lambda (t f) (t)) (\lambda () e_T) (\lambda () \Omega))
                    ((\lambda () e_T))
                            VT
```

```
e ::= (letrec ([x (lambda (x) e)]))
    | (lambda (x) e)
    (e e)
    | ((+ e) e) | ((* e) e)
    ((cons e) e) (car e) (cdr e)
     d
d ::= N | ()
x ::= <vars>
```

Natural Numbers

Hint: turn all nouns into verbs!

(Focus on the *behaviors* that are implicit in values.)

$$(\lambda (f) (\lambda (x) (f^N x)))$$

0: $(\lambda (f) (\lambda (x) x))$

1: $(\lambda (f) (\lambda (x) (f x))$

2: $(\lambda (f) (\lambda (x) (f (f x)))$

3: $(\lambda (f) (\lambda (x) (f (f x))))$

church+ =
$$(\lambda (n) (\lambda (m) (\lambda (x) (\lambda (f) (\lambda (x) ...)))$$

```
church+ = (\lambda (n) (\lambda (m) (\lambda (f) (\lambda (x) (n) (m f) x))))
```

church* =
$$(\lambda (n) (\lambda (m) (\lambda (x) (\lambda (f) (\lambda (x) ...)))$$

```
church* = (\lambda (n) (\lambda (m))
(\lambda (f) (\lambda (x))
((n (m f)) x))))
```

$$fN^{M} = fN^{*M}$$

Lists

The fundamental problem:

We need to be able to case-split.

The solution:

We take two callbacks as with #t, #f!

```
() = (λ (when-cons) (λ (when-null))
(when-null))
```

(cons a b) =
$$(\lambda \text{ (when-cons) } (\lambda \text{ (when-null)})$$

(when-cons a b)))

Try an Example. How can we define null?

Try an Example. How can we define null?

```
church:null? = (\lambda (p)

(p (\lambda (a b) #f)

(\lambda () #t)))
```


$$((\lambda (x) (x x)) (\lambda (x) (x x)))$$

Key: U takes a function and calls it on itself

$$((\lambda (x) (x x)) (\lambda (x) (x x)))$$

(define U (λ (f) (f f)))

What can I type right here to make fib work?

(Hint: the answer can be written in 5 characters)

(define U (λ (f) (f f)))

What can I type right here to make fib work?

Y combinator

Key idea: instead of

```
(let ([mk (\lambda (mk) (\lambda (n) (if (= n 0) 1 (* n ((mk mk) (- n 1))))))]) ((mk mk) 5))
```


$$(Y f) = f (Y f)$$

(It's a fixed-point combinator!)

Three step process for deriving Y

$$(Y f) = f (Y f)$$

$$Y = (\lambda (f) (f (Y f))) \qquad 1. \text{ Treat as definition}$$

$$mY = (\lambda (mY)) \qquad \qquad 2. \text{ Lift to mk-Y,}$$

$$(f ((mY mY) f)))) \text{ use self-application}$$

$$mY = (\lambda (mY)) \qquad \qquad 3. \text{ Eta-expand}$$

$$(\lambda (f)) \qquad \qquad (f (\lambda (x) ((mY mY) f) x))))$$

U-combinator: (U U) is Omega

$$Y = (U (\lambda (y) (\lambda (f) (f (\lambda (x) (((y y) f) x)))))$$

Try an example!!!

Rewrite this to use the Y combinator instead

```
(define (church->nat cv)
(define (church->list cv)
(define (church->bool cv)
```

```
(define (church->nat cv)
        ((cv add1) 0))
(define (church->list cv)
(define (church->bool cv)
```

```
(define (church->nat cv)
         ((cv add1) 0))
(define (church->list cv)
         ((cv (\lambda (car))
                 (\lambda (cdr)
                   (cons car
                      (church->list cdr))))
          (\lambda (na) ())
(define (church->bool cv)
```

```
(define (church->nat cv)
         ((cv add1) 0))
(define (church->list cv)
         ((cv (\lambda (car))
                  (\lambda (cdr)
                    (cons car
                       (church->list cdr))))
           (\lambda (na) ())
(define (church->bool cv)
         ((cv (\lambda () #t))
           (\lambda () \#f))
```

60

```
(define lst
              ((((((((((\lambda (Y-comb))
                                                                                              (λ (church:null?)
                                                                                                             (λ (church:cons)
                                                                                                                             (λ (church:car)
                                                                                                                                             (λ (church:cdr)
                                                                                                                                                            (λ (church:+)
                                                                                                                                                                            (λ (church:*)
                                                                                                                                                                                            (λ (church:not)
                                                                                                                                                                                                           ((\lambda (map))
                                                                                                                                                                                                                           ((map
                                                                                                                                                                                                                                           (\lambda (x)
                                                                                                                                                                                                                                                           ((church: + (\lambda (f) (\lambda (x) (f x))))
                                                                                                                                                                                                                                                                x)))
                                                                                                                                                                                                                                    ((church:cons (\lambda (f) (\lambda (x) x)))
                                                                                                                                                                                                                                           ((church:cons
                                                                                                                                                                                                                                                           (\lambda (f)
                                                                                                                                                                                                                                                                           (\lambda (x) (f (f (f (f x))))))
                                                                                                                                                                                                                                                   ((church:cons
                                                                             > (map church-\Re n_{ahen}^{(\lambda)} - (e_{ahen}^{(\lambda)} - e_{ahen}^{(\lambda)} - e_{a
                                                                                                                                                                                                                                                                          (\lambda \text{ (when-null)})
                                                                               '(1 6 4)
                                                                                                                                                                                                                                                                                           (when-null (\lambda (x) x)))))))))
                                                                                                                                                                                                            (Y-comb
```

Abstract Machine Zoo

C Term-rewriting Machine

Evaluation contexts

Restrict the order in which we may simplify a program's redexes

(left-to-right) CBV evaluation

(left-to-right) CBN evaluation

$$v := (\lambda (x) e)$$

$$e := (\lambda (x) e)$$

| (e e)
| x

Context and redex

For CBV a redex must be
$$(v \ v)$$
 For CVN, a redex must be $(v \ e)$
$$\mathscr{E} \left[\begin{array}{c} (v \ v) \end{array} \right] = ((\lambda \ (x) \ (\lambda \ (y) \ y) \ x)) \ (\lambda \ (z) \ z)) \ (\lambda \ (w) \ w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

Context and redex

$$\mathscr{E}[r] =$$

$$(((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z)) (\lambda (w) w))$$

$$\mathscr{E} = (\Box (\lambda (w) w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow_{\beta} ((\lambda (y) y) (\lambda (z) z))$$

Put the reduced redex back in its evaluation context...

$$\mathcal{E} = (\Box (\lambda (w) w))$$

$$r = ((\lambda (x) ((\lambda (y) y) x)) (\lambda (z) z))$$

$$\rightarrow \beta ((\lambda (y) y) (\lambda (z) z))$$

$$\downarrow \mathcal{E}[r]$$

$$(((\lambda (y) y) (\lambda (z) z)) (\lambda (w) w))$$

Exercises—can you evaluate...

1)
$$(((\lambda (y) y) (\lambda (z) z)) (\lambda (w) w))$$

2)
$$((\lambda (u) (u u)) (\lambda (x) (\lambda (x) x))$$

3)
$$(((\lambda (x) x) (\lambda (y) y))$$

 $((\lambda (u) (u u)) (\lambda (z) (z z))))$

Abstract Machine Zoo

C Term-rewriting Machine

CC Context and Redex Machine

CK Control / Continuation Machine

Next time...