
Objects

“say something to express one's disapproval of or disagreement with something.”

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

Fields

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

Constructor

Constructor

• Must be named __init__

• Not necessary (by default
do nothing)

• Always called when object
created

 def __init__(self, name, age):
 self.name = name
 self.age = age

self argument

• Gives access to receiving object

• A method is always called “on” an object

• Every method takes at least one parameter

• Can be named anything, self is convention

 def __init__(self, name, age):
 self.name = name
 self.age = age

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def foo(): return self.age

p1 = Person("John", 36)

Do not do this

foo expects at least one parameter

A class is like a blueprint for making objects

An object is a collection of:

- properties (fields)

- methods

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

[Draw runtime representation on board..]

Definitions..

• Dynamic: relating to the runtime execution of the program

• Static: relating to the source of the program alone

• I.e., not at runtime

Objects are the dynamic representation

Classes are the static representation

Example: Pair
• Design a “Pair” class

• Should have two properties: left and right

• Build these in constructor

• Two “accessor” methods:

• getLeft()

• getRight()

Message Passing

• An object’s methods respond to messages

• Calling an object method analogous to sending message

• Messages can change object’s state

Message Passing Qs

• In example, which messages could the object receive?

• [Draw example on board of where object is represented]

Example: Rectangle

• Build a class with the following
properties / fields:

• Width

• Height

• And the following methods:

• __init__(self,width,height)

• calculateArea(self)

• setHeight(self,height)

• setWidth(self,width)

• getWidth(self)

• getHeight(self)

Example: Using Rectangle
• Construct 2 rectangles:

• 8 x 12

• 4 x 4

• Calculate their areas

Example: Caching Area
• Might not want to recompute area every time

• Add another field (in __init__) called cachedArea

• Set it to None initially

• When area() called, check if cachedArea == None

• If so, calculate area and set cachedArea

• If not, return cachedArea

Information Hiding
• The principle that program components should hide their

underlying representations

• OO enables information hiding in many ways:

• One is accessors / getters / setters

• Nothing in Python prevents you from accessing fields outside
of object

• But—by convention—it is often a bit faux pas

• Other languages do forbid this (e.g., private fields in Java)

Types for Objects

• Basically: Python has no real concept of an object’s type

• Simply regarded as the collection of fields / methods

• Equivalently: the set of messages to which it responds

• This concept called “duck typing”

Types for Objects

• Basically: Python has no real concept of an object’s type

• Simply regarded as the collection of fields / methods

• Equivalently: the set of messages to which it responds

• This concept called “duck typing”

"If it walks like a duck and it quacks like
a duck, then it must be a duck"

Example: Circle Object

• Create a “circle” object

• Needs a “center”

• Can either have a radius or a diameter (you pick)

• Must support “area” message

Example: ShapeList
• Create an object ShapeList:

• One field: underlying list (call this list)

• __init__(self):

• Initialize list (to empty list)

• length(self): calculates the length of the list

• add(self,shape):

• Adds a shape to the underlying list

• sumOfAreas(self):

• Sum of the areas of all of the shapes

Testing ShapeList

• Create empty ShapeList

• Add a 8 x 12 rectangle

• Add an 4 x 5 CachedRectangle

• Add a circle centered at (1,3) whose radius is 2

• Call sumOfAreas

• Static vs. dynamic property

• Class vs. Object

• What are fields

• What is a constructor

• What is duck typing

• Concept of treating object’s type as set of methods to
which it responds (and their behaviors)

Things to know…

