Binary Search Trees & Dictionaries

BST: Binary Tree that has the...

Binary Search Property

Every item in left child < parent, vice versa

Everything over here had better be < 14 (Even in children of this node)

Implementing Lookup

```
# Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
    if t == null: return false
    if t.elem == i: return true
    else if t.elem < i: return lookup(t.left, i)
    else if t.elem > i: return lookup(t.right, i)
```

Assume t is a tree with .left, .right, and .elem
def lookup(t,i):

if t == null: return false
if t.elem == i: return true
else if t.elem < i: return lookup(t.left, i)
else if t.elem > i: return lookup(t.right, i)

Challenge: Implement lookup w/ loops

```
# Assume node(elem,left,right) is a constructor
def add(t,i):
    if t == null: new node(i,null,null)
    if t.elem == i: return t
    else if t.elem < i:
        return node(t.elem,add(t.left,i),t.right)
    else if t.elem > i:
        return node(t.elem,t.right,add(t.right,i))
```

```
# Assume node(elem,left,right) is a constructor
def add(t,i):
    if t == null: new node(i,null,null)
    if t.elem == i: return t
    else if t.elem < i:
        return node(t.elem,add(t.left,i),t.right)
    else if t.elem > i:
        return node(t.elem,t.right,add(t.right,i))
```

Challenge: Implement add w/ loops

Observation: BSTs can store more than just numbers

Only need **total ordering** (any two can be compared)

- ➡ Strings
- ➡Doubles
- Other user defined types
 Some langs allow overloading

Can also use as basis for other data structures (e.g., dictionary: nodes key/value pairs)

insert O(height) lookup O(height)

O(log(size)) when balanced

insert O(height)
lookup O(height)

O(log(size)) when balanced

Naive insertion does not balance tree :(

Let's say I start with a I-element tree...

Then extend it...

Generally: inserting in sorted order is **bad**

Can we ensure good performance generally?

- Precompute **best** BST (dynamic programming)
 Randomize insertion order
- Build even smarter data structures:
 - Red-Black trees maintain "balanced-ish" trees
 - AVL trees "rebalance" the tree

Balanced Binary Trees

Almost as much stuff on left as right

Balanced Binary Trees

Definition. A tree is "height-balanced" if:

- For each subtree
 - The height of the left subtree is within 1 of the right subtree

Definition. A tree is "height-balanced" if:

- For each subtree
 - The height of the left subtree is within 1 of the right subtree

Claim (Unproven): If you're using a height-balanced tree, lookups are O(log(height))

Observation: Inserting into a tree can cause it to become unbalanced

Trick: "Rebalance" the tree upon insertion

Note: I won't ask questions about AVL trees / rebalancing on exam (but I might ask questions about whether trees are height-balanced)

Inserting 10 is ok...

Trick: "Rebalance" the tree

Trick: "Rebalance" the tree

Trick: "Rebalance" the tree

This is a Right-Right (RR) Rotation

Also need to consider RL rotation

And LL rotation

Last: LR rotation

Generally: AVL trees

- AVL trees are rebalancing binary trees that use rotations to ensure balance invariants
- •Generalizes these cases but this is the basic idea
- To insert:
 - •Perform BST insertion and then...
 - •Go "back up" the spine balancing along the way
- O(log(height)) performance w/ higher constant factors
 - •Rebalancing a node constant time

Other options too..

- Red/Black trees:
 - "Colors" each node either red or black
 - Root is black
 - Every red node's children must be black
 - Never two black nodes in a row
 - Less balanced, faster insertion, slower lookup

Observation

- Both red-black and AVL trees are **imperative**
- Rebalancing is an inherently imperative operation
 Changes structure of tree
- •Other ultra-fancy data structures fix some of this:
 - E.g., Hash Array-Mapped Trie (HAMT)
 - •Will possibly see this later in class...

Dictionaries

Definition: Dictionary

A dictionary is a key / value mapping You can think of it as a mathematical function

Key -> Value

Two main operations

set(Key, Value)
get(Key) -> Value

set(Key, Value) get(Key) -> Value

This is the ADT of a dictionary

(Abstract Data Type)

How do we implement it?

(Many possible ways!!)

Implementation I: Association Lists

Key idea: Store a list of pairs of keys and values

(In groups...)

How would you implement insert / lookup? What are their running times? Are your operations imperative or persistent?

Implementation 2: Lambdas

Key idea: Actually create a function

Why does this work..? What is the running time?

Implementation 3: Balanced BST

Key idea: Each node in BST stores (key,value) pair

Need to order tree in some way (lexicographic order here)

(BTW, lexicographic order essentially means alphabetical order..)

Three Implementations Contrasted

Association List / Functions

Insert O(n) Lookup O(n)

Balanced BST

InsertO(log(n))LookupO(log(n))

Where n is number of inserted elements

Next Time: Better Solution via Hash-Tables

Hash tables get us a dictionary with..

Set
$$\sim O(I)$$

Insert $\sim O(I)$

Under appropriate conditions