Implementing Binary Search Trees & Dictionaries
BST: Binary Tree that has the...

Binary Search Property

Every item in left child $<$ parent, vice versa

Everything over here had better be $<$ 14
(Even in children of this node)
Implementing `lookup`

```python
# Assume t is a tree with .left, .right, and .elem
def lookup(t, i):
    if t == null: return false
    if t.elem == i: return true
    else if t.elem < i: return lookup(t.left, i)
    else if t.elem > i: return lookup(t.right, i)
```
Assume t is a tree with .left, .right, and .elem

def lookup(t,i):
 if t == null: return false
 if t.elem == i: return true
 else if t.elem < i: return lookup(t.left, i)
 else if t.elem > i: return lookup(t.right, i)

Challenge: Implement lookup w/ loops
Assume node(elem,left,right) is a constructor
def add(t,i):
 if t == null: new node(i,null,null)
 if t.elem == i: return t
 else if t.elem < i:
 return node(t.elem,add(t.left,i),t.right)
 else if t.elem > i:
 return node(t.elem,t.right,add(t.right,i))
Assume node(elem,left,right) is a constructor

def add(t,i):
 if t == null: new node(i,null,null)
 if t.elem == i: return t
 else if t.elem < i:
 return node(t.elem,add(t.left,i),t.right)
 else if t.elem > i:
 return node(t.elem,t.right,add(t.right,i))

Challenge: Implement add w/ loops
Observation: BSTs can store more than just numbers

Only need **total ordering** (any two can be compared)

- Strings
- Doubles
- Other user defined types
- Some langs allow overloading `<

Can also use as basis for other data structures (e.g., dictionary: nodes key/value pairs)
insert $O(\text{height})$

lookup $O(\text{height})$

$O(\log(\text{size}))$ when balanced
insert $O(\text{height})$

lookup $O(\text{height})$

$O(\log(\text{size}))$ when balanced

Naive insertion does not balance tree :(
Let’s say I start with a 1-element tree…
Then extend it…
Generally: inserting in sorted order is **bad**

My tree degenerates into a **list**

Insertion here takes $O(n)$, as does lookup
Question

Can we ensure good performance generally?

- Precompute **best** BST (dynamic programming)
- **Randomize** insertion order
- Build even **smarter** data structures:
 - Red-Black trees maintain “balanced-ish” trees
 - AVL trees “rebalance” the tree
Balanced Binary Trees

Almost as much stuff on left as right
Definition. A tree is “height-balanced” if:

- For each subtree
 - The height of the left subtree is within 1 of the right subtree
Definition. A tree is “height-balanced” if:
- For each subtree
 - The height of the left subtree is within 1 of the right subtree

Which of {A,B,C} are balanced?
Claim (Unproven): If you’re using a height-balanced tree, lookups are $O(\log(\text{height}))$
Observation: Inserting into a tree can cause it to become unbalanced

Trick: “Rebalance” the tree upon insertion
Note: I won’t ask questions about AVL trees / rebalancing on exam (but I might ask questions about whether trees are height-balanced)
Inserting 10 is ok...
Unbalanced!

Inserting 20 throws off balance of root
Trick: “Rebalance” the tree
Trick: “Rebalance” the tree
Trick: “Rebalance” the tree

Valid b/c this is still a BST!
This is called “rotation”
This is a Right-Right (RR) Rotation
Also need to consider RL rotation
And LL rotation
Last: LR rotation
Generally: AVL trees

- AVL trees are rebalancing binary trees that use rotations to ensure balance invariants.
- Generalizes these cases but this is the basic idea.
- To insert:
 - Perform BST insertion and then...
 - Go “back up” the spine balancing along the way.
- $O(\log(\text{height}))$ performance with higher constant factors.
- Rebalancing a node constant time.
Other options too..

- Red/Black trees:
 - “Colors” each node either red or black
 - Root is black
 - Every red node’s children must be black
 - Never two black nodes in a row
 - Less balanced, faster insertion, slower lookup
Observation

• Both red-black and AVL trees are **imperative**
• Rebalancing is an inherently imperative operation
 • Changes structure of tree
• Other ultra-fancy data structures fix some of this:
 • E.g., Hash Array-Mapped Trie (HAMT)
 • Will possibly see this later in class…
<table>
<thead>
<tr>
<th>Operation</th>
<th>Time Complexity</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>$O(1)$</td>
<td>✅</td>
<td>🙅</td>
</tr>
<tr>
<td>Lookup</td>
<td>$O(n)$</td>
<td>🙅</td>
<td>✅</td>
</tr>
</tbody>
</table>

List

- Simple
- Insertions frequent
- Lookups frequent
List

- **insert**: \(O(1) \)
- **lookup**: \(O(n) \)

Simple
- Insertions frequent
- Lookups frequent

Sorted Array

- **insert**: \(O(n) \)
- **lookup**: \(O(\log(n)) \)

Also allocates lots of memory
- Lookups frequent
- Insertions frequent
List

- **insert**: $O(1)$
- **lookup**: $O(n)$

Balanced Binary Tree

- **insert**: $\sim O(\log(n))$
- **lookup**: $\sim O(\log(n))$

Sorted Array

- **insert**: $O(n)$
- **lookup**: $O(\log(n))$

- **Simple**
- **Insertions frequent**
- **Lookups frequent**

- **Lookups frequent**
- **Insertions frequent**

- **Also allocates lots of memory**

- **Simple**
- **Lookups frequent**
- **Insertions frequent**

- **Maintaining balance hard**
Dictionaries
Definition: Dictionary

A dictionary is a key / value mapping
You can think of it as a mathematical function

Key -> Value

Two main operations
set(Key, Value)
get(Key) -> Value
This is the ADT of a dictionary
(Abstract Data Type)

How do we implement it?
(Many possible ways!!)
Implementation 1: Association Lists

Key idea: Store a list of pairs of keys and values

(In groups...) How would you implement insert / lookup?

What are their running times?

Are your operations imperative or persistent?
Implementation 2: Lambdas

Key idea: Actually create a function

```python
class LambdaDictionary:
    def __init__(self):
        self.f = (lambda key: 1/0)

    def get(self, data):
        return self.f(data)

    def set(self, key, value):
        self.f = (lambda k:
            value if k == key else self.f(key))
```

Why does this work..? What is the running time?
Implementation 3: Balanced BST

Key idea: Each node in BST stores (key,value) pair

Need to order tree in some way (lexicographic order here)

(BTW, lexicographic order essentially means alphabetical order..)
Three Implementations Contrasted

Association List / Functions

Insert $O(n)$
Lookup $O(n)$

Balanced BST

Insert $O(\log(n))$
Lookup $O(\log(n))$

Where n is number of inserted elements
Next Time: Better Solution via Hash-Tables

Hash tables get us a dictionary with..

Set \(\sim O(1) \)
Insert \(\sim O(1) \)

Under appropriate conditions