
Binary Search Trees
Implementing

^

& Dictionaries

BST: Binary Tree that has the…

Every item in left child < parent, vice versa

Binary Search Property

14

Everything over here had better be < 14
(Even in children of this node)

Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
 if t == null: return false
 if t.elem == i: return true
 else if t.elem < i: return lookup(t.left, i)
 else if t.elem > i: return lookup(t.right, i)

Implementing lookup

Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
 if t == null: return false
 if t.elem == i: return true
 else if t.elem < i: return lookup(t.left, i)
 else if t.elem > i: return lookup(t.right, i)

Challenge: Implement lookup w/ loops

Assume node(elem,left,right) is a constructor
def add(t,i):
 if t == null: new node(i,null,null)
 if t.elem == i: return t
 else if t.elem < i:
 return node(t.elem,add(t.left,i),t.right)
 else if t.elem > i:
 return node(t.elem,t.right,add(t.right,i))

Assume node(elem,left,right) is a constructor
def add(t,i):
 if t == null: new node(i,null,null)
 if t.elem == i: return t
 else if t.elem < i:
 return node(t.elem,add(t.left,i),t.right)
 else if t.elem > i:
 return node(t.elem,t.right,add(t.right,i))

Challenge: Implement add w/ loops

Observation: BSTs can store more than just numbers

 Only need total ordering (any two can be compared)

➡Strings
➡Doubles
➡Other user defined types
➡Some langs allow overloading <

Can also use as basis for other data structures
(e.g., dictionary: nodes key/value pairs)

insert O(height)

lookup O(height)

O(log(size)) when balanced

insert O(height)

lookup O(height)

O(log(size)) when balanced

Naive insertion does not balance tree :(

Let’s say I start with a 1-element tree…

0

Then extend it…

0

1

My tree degenerates into a list

0

1

…

nInsertion here takes O(n), as does lookup

Generally: inserting in sorted order is bad

Can we ensure good performance generally?

Precompute best BST (dynamic programming)
Randomize insertion order
Build even smarter data structures:

Red-Black trees maintain “balanced-ish” trees
AVL trees “rebalance” the tree

Question

Balanced Binary Trees

14

Almost as much stuff on left as right

Balanced Binary Trees

14

Definition. A tree is “height-balanced” if:
• For each subtree

• The height of the left subtree is within 1 of the right subtree

Definition. A tree is “height-balanced” if:
• For each subtree

• The height of the left subtree is within 1 of the right subtree

A B C

Which of {A,B,C} are balanced?

Claim (Unproven): If you’re using a height-balanced
tree, lookups are O(log(height))

Observation: Inserting into a tree can cause it to
become unbalanced

Trick: “Rebalance” the tree upon insertion

Note: I won’t ask questions about AVL trees /
rebalancing on exam (but I might ask questions about
whether trees are height-balanced)

5

3 7

5

3 7

10

Inserting 10 is ok…

5

3 7

10

Inserting 20 throws off balance of root

20

Unbalanced!

5

3 7

10

Trick: “Rebalance” the tree

20

5

3

7

10

Trick: “Rebalance” the tree

20

5

3

7

10

Trick: “Rebalance” the tree

20

Valid b/c this is still a BST!

5

3

7

10

This is called “rotation”

20

5

3 7

10

20

5

3

7

10

This is a Right-Right (RR) Rotation

20

5

3 7

10

20

5

3

7

8

Also need to consider RL rotation

10

5

3 7

10

8

5

2

1

7

And LL rotation

3

5

3 7

2

1

5

3

2

7

Last: LR rotation

4

5

4 7

2

3

Generally: AVL trees

•AVL trees are rebalancing binary trees that use
rotations to ensure balance invariants

•Generalizes these cases but this is the basic idea
•To insert:
•Perform BST insertion and then…
•Go “back up” the spine balancing along the way

•O(log(height)) performance w/ higher constant
factors
•Rebalancing a node constant time

Other options too..

•Red/Black trees:
•“Colors” each node either red or black
•Root is black
•Every red node’s children must be black
•Never two black nodes in a row
•Less balanced, faster insertion, slower lookup

Observation

•Both red-black and AVL trees are imperative
•Rebalancing is an inherently imperative operation
•Changes structure of tree

•Other ultra-fancy data structures fix some of this:
•E.g., Hash Array-Mapped Trie (HAMT)
•Will possibly see this later in class…

insert O(1)

lookup O(n)
👍
👎

Insertions frequent

Lookups frequent

👍 Simple

List

insert O(1)

lookup O(n)
👍
👎

Insertions frequent

Lookups frequent

insert O(n)

lookup O(log(n))

👍 Lookups frequent

Insertions frequent

Also allocates lots of memory
^

👍 Simple

List

Sorted Array

👎 👎

List

insert O(1)

lookup O(n)

Balanced Binary Tree

insert ~O(log(n))

lookup ~O(log(n))

👍
👎

Insertions frequent

Lookups frequent

👍
👎

Lookups frequent

Insertions frequent

balanced
^

Sorted Array

insert O(n)

lookup O(log(n))

👍
👎

Lookups frequent

Insertions frequent

Also allocates lots of memory
^

👎 Maintaining balance hard

👍 Simple

👎

👍

Dictionaries

Definition: Dictionary

A dictionary is a key / value mapping

You can think of it as a mathematical function

Key -> Value

Two main operations

set(Key, Value)

get(Key) -> Value

This is the ADT of a dictionary

set(Key, Value)

get(Key) -> Value

(Abstract Data Type)

How do we implement it?
(Many possible ways!!)

Implementation 1: Association Lists

Key idea: Store a list of pairs of keys and values

(“Alice”, 23) (“Bob”, 75) (“Marge”, 63) (“Keisha”, 25)

None

How would you implement insert / lookup?

(In groups…)

What are their running times?

Are your operations imperative or persistent?

Implementation 2: Lambdas

Key idea: Actually create a function

class LambdaDictionary:
 def __init__(self):
 self.f = (lambda key: 1/0)

 def get(self,data):
 return self.f(data)

 def set(self,key,value):
 self.f = (lambda k:
 value if k == key else self.f(key))

Why does this work..? What is the running time?

Implementation 3: Balanced BST

Key idea: Each node in BST stores (key,value) pair

(“Marge”, 23)

(“Bob”, 75) (“Piotr”, 63)

(“Keisha”, 25)(“Alicia”, 58)

Need to order tree in some way (lexicographic order here)

(BTW, lexicographic order essentially means alphabetical order..)

Three Implementations Contrasted

Insert O(n)
Lookup O(n)

Association List / Functions

Balanced BST

Where n is number of inserted elements

Insert O(log(n))
Lookup O(log(n))

Next Time: Better Solution via Hash-Tables

Set ~O(1)
Insert ~O(1)

Hash tables get us a dictionary with..

Under appropriate conditions

