
Sets and Tries
Kris Micinski

Set (ADT)

• add(set,element)

• contains(set,element)

• union(set,set)

• intersection(set,set)

Many possible implementations of
sets!

•Hash tables
•Balanced BSTs
•Lists

Sets as Hash Tables

• Exercise: How would you perform:

• Insert

• Lookup

• Union

• Intersection

• What is runtime (big-O) of each, assuming good hash function,
m buckets, and at most n values in each set

Sets as Hash Tables

• Exercise: How would you perform:

• Insert

• Lookup

• Union

• Intersection

• What is runtime (big-O) of each, assuming good hash function,
m buckets, and at most n values in each set

Assume you wanted a persistent version of
each operation, how do runtimes change?

Upshot: hash tables decent at many common set operations

(But better implementations exist)

Sets as BSTs

• Exercise: How would you perform:

• Insert

• Lookup

• Union

• Intersection

• What is runtime (big-O) of each? Assume n elements in set

(Imperative version..)

Sets as BSTs

• Exercise: How would you perform:

• Insert

• Lookup

• Union

• Intersection

• What is runtime (big-O) of each? Assume n elements in set

Assume you wanted a persistent version of
each operation, how do runtimes change?

Upshot: BSTs give us better persistent hash behavior

(But still better implementations exist!)

{Assume m buckets

On average, k links per bucket

Observation: if you have m*k items in table, lookup takes ~k time

{Assume m buckets

On average, k links per bucket

Question
If you want to lower per-item lookup time, what do you do?

Observation
More buckets = faster lookup

(To a point… Then you bottom out)

Exercise

• Load ~500k words into dictionary

• Then, perform ~500k lookups

• Not good benchmark of real-world use b/c uniform dist

• Expectation: bigger hash table = lower lookup time

• What real-world problem does this solve..?

Load `words.txt` into a hash table of size s
def loadIntoTable(s):
 print("loading words into table...")
 hashTable = HashTable(s)
 with open("words.txt", "r") as ins:
 for line in ins:
 words.append(line)
 hashTable.insert(line,True)
 return hashTable

Look up each word in the hash table
def lookupWords(table):
 print("looking up all words in dictionary")
 for word in words:
 table.lookup(word)

Load `words.txt` into a hash table of size s
def loadIntoTable(s):
 print("loading words into table...")
 hashTable = HashTable(s)
 with open("words.txt", "r") as ins:
 for line in ins:
 words.append(line)
 hashTable.insert(line,True)
 return hashTable

Look up each word in the hash table
def lookupWords(table):
 print("looking up all words in dictionary")
 for word in words:
 table.lookup(word)

Vary s by 10k, 20k, …

At first, not enough buckets to compensate

Later, not much added benefit for extra buckets..

Question
Why not just always use 100k buckets?

Observation: An optimal hash table requires knowing a
priori the number of elements stored in it

If we’re using less of the hash table than we need, we’re wasting
a lot of memory just on the buckets

Enter the trie…

A trie is a suffix tree that compactly
represents sets of strings

Let’s say we want to represent the following set…

{“Ali”, “Aly”, “Al”}

Let’s say we want to represent the following set…

{“ali”, “aly”, “al”}

a

l

i y

{“ali”, “aly”, “al”}

a

al

ali aly

a

l

i y

Trie shares common prefixes. In this example, blue
nodes indicate that the element is in the set

Get value by traversing down spine…

{“ali”, “aly”, “al”}

ali

a

l

i y

Trie shares common prefixes. In this example, blue
nodes indicate that the element is in the set

Get value by traversing down spine…

Start at root, read…
a, l, y

{“ali”, “aly”, “al”}

a

l

i y

Trie shares common prefixes. In this example, blue
nodes indicate that the element is in the set

Get value by traversing down spine…

Red node = no data at
that node

Draw Example Trie For…

• {“b”, “ba”, “bac”}

• {“alice”, “alicia”, “alejandro”}

• {“alice”, “bob”}

Building Tries

• Let’s say we want to build tries for
strings in the English lowercase
alphabet only

• I.e., 26 characters

• Obvious problems with this we
will fix later (e.g., “José”)

Building Tries

• Insight: represent trie as Node with
26 children buckets

a
b …

z

Child tries

Represent as array
of size 26

Lookup-next
constant time via
random access

class Trie:
 def __init__(self, buckets):
 self.content = False
 self.contents = [None] * buckets
 self.buckets = buckets

 def bucket(self,chr):
 return ord(chr) - ord('a')

As is common in data structures, I’ve just shown one
example formulation here, other equivalent ones exist..

Trie Lookup

a
a

l

i y

Let’s lookup aly

• Start at root
• Go to “a” bucket

b
c

None
None
…

a
a

l

i y

• Start at root
• Go to “a” bucket
• Keep going to l

Let’s lookup aly

Trie Lookup

a
a

l

i y

• Start at root
• Go to “a” bucket
• Keep going to l
• Keep going to y

Let’s lookup aly

Trie Lookup

a
a

l

i y

• Start at root
• Go to “a” bucket
• Keep going to l
• Keep going to y
• Return color == blue

Let’s lookup aly

Trie Lookup

a
a

l

i y

What is running time of lookup?

Trie Lookup

a
a

l

i y

What is running time of lookup?

Trie Lookup

O(len(key))

Exercise: Write pseudo-code for lookup

 def lookupHelper(self,string,i,m):
 if (i >= m):
 return self.content
 else:
 bucket = self.contents[self.bucket(string[i])]
 return bucket != None
 and bucket.lookupHelper(string,i+1,m)

 def lookup(self,string):
 return self.lookupHelper(string,0,len(string))

Can write slightly-more-optimized version of this with loops…

Exercise: Write pseudo-code for insert

 def insertHelper(self,string,i,m):
 if (i >= m):
 # Set this bucket to True
 self.content = True
 else:
 if (self.contents[self.bucket(string[i])] == None):
 self.contents[self.bucket(string[i])] = Trie(self.buckets)

 self.contents[self.bucket(string[i])].insertHelper(string,i+1,m)

 def insert(self,string):
 self.insertHelper(string,0,len(string))

Construct new child trie if one doesn’t exist!

Question
What would persistent insert look like for tries..?

Binary Tries

• Insight: one simple lexicographic
order is binary numbers

0 1

0 1

0

What set of binary strings does
this trie represent?

Binary Tries

Question: in general, are
binary tries a good idea?

Assuming random binary
strings: better / worse than
binary tree?

Assuming binary strings w/
common prefix?

0 1

0 1

0

a
b

z

0 1

0 1

00000

00001
c
00011

11001

…

0 1

… … …

Transmorgify!

Because we can treat any alphabet as the binary alphabet with the
necessary transformations, binary tries are always an option!

Kris speaks extemporaneously about the cache…

Binary Tries: Crummy Cache?

Your computer “caches”
recently-used memory

Every time your computer
needs to touch memory it
hasn’t seen recently it’s slower

Upshot: binary trie causes
potentially-lots of memory
access

0 1

0 1

0

Tries vs. BSTs

• Trie leverages prefix-ordering—e.g., lexicographic

• E.g., for dictionaries, O(len(word)) rather than O(log(words))

• Also, in practice, most words are small, so this is even better!

• Downside: not always useful prefix ordering

• E.g., storing floating-point numbers in a trie is naïve

• Tries do use more memory when implemented naively!

Bait + Switch

• First motivated tries by saying they saved memory—but tries
still allocate lots of potentially-empty buckets

• What gives!?

• Are tries more “compact” (memory efficient) vs hash tables?

• Under what circumstances?

Going into the Future

• Tries: useful representing sets w/ dense common-prefixes

• Tries are good adaptive data structures: “resize” automatically

• (Hash Tbls don’t do this! “Fill up” with data, becomes slow)

• As we implemented them now, not amazing performance:

• But, basis for many other optimized implementations

• 10000 race participants are assigned numbers from 1 to 10000,
but some drop out the day of the race. I would use a (trie /
hash table)

• 2000 500-character strings come in over the network and need
to be remembered, there is no apparent structure to their
contents (trie / hash table)

Sets vs. Maps

• Most of these data structures
can be used to store sets or
maps (i.e., key/value
associations)

• Trivial impl of set from map:
just make key True

• To implement map from set
(often): add place for value

a
a

l

i y
23

48 119

{al |-> 23, ali |-> 48, aly |-> 119}

Sets vs. Maps

a
a

l

i y
23

48 119

Can often get “cheaper” implementation by
playing low-level tricks if we know it’s just a

set versus a map

(E.g., bitmaps for efficiency)

Deciding Between Them

• BST: elements not prefix-oriented, want adaptive memory
usage, okay with imperative data structure

• Self-balancing trees (necessary for O(log(elems)) behavior)
like R/B and AVL are imperative

• Trie: prefix-oriented data, want persistence, ok w/ more
overhead than BST

• Hash table: You know roughly how much data you have (to
avoid resizing), keys unordered, don’t need persistence

Still not fast as it could be!

Come back next time for bloom filters

(Blazing-fast probabilistic set)

Exercises (for exam)

• Think about how you would implement union / intersection

• For hash tables

• For BSTs

• For Tries

• Which one is best in principle? Which do you suspect would be
best in practice?

