
Hash Tables
(One of my favorite data structures)

Next Time: Better Solution via Hash-Tables

Set ~O(1)
Insert ~O(1)

Hash tables get us a dictionary with..

Under appropriate conditions

Last Time…

Hash Functions
A hash function is a function that takes
arbitrarily-length data as input and produces a
fixed-length output

You can think of it as “garbling” the data

https://passwordsgenerator.net/sha256-hash-generator/

(There are hundreds of different hash functions,
we’ll talk about the trade-offs)

Input Space Output Space

When two distinct inputs hash to the same
output, we call this a collision

For example, say your hash function is….

f(x) = x % 26

•What is the input space?
•What is the output space?
•Find 2 numbers that generate collisions for 13
•Is finding collisions easy, or hard?

Upshot: This is a crummy hash function

f(x) = x % 26
Nice properties for hash functions
•Good “dispersal”
•Things close together hash to things far apart

•Collision-resistant
•Should be hard to generate a collision

•Non-invertable
•Should be hard to learn something about
input from output

For performance we often just need dispersal,
for security we often want other two

For now, just use Python’s built-in
hash()

(If you ever have to do this for real, go read a book)

If you want to hash down to an output space of
size n, just do hash(key) % n

This is “okay” because builtin hash() has pretty good
dispersal properties and modding isn’t hurting much

But, again, literally a half of a book
about writing good hash functions

The Big Idea

•A hash table is an array of “buckets”
•To store something in table:
•Hash key, then put value in bucket

•To look up
•Hash key, go to bucket and find value

Empty

Empty

Empty

Empty

Empty

An empty hash table is an array of
empty buckets

class HashTable:
 def __init__(self,numBuckets):
 self.buckets = [None] * numBuckets
 self.numBuckets = numBuckets

 def hash(self,key):
 return hash(key) % self.numBuckets

 def insert(self,key,value):
 ...

 def lookup(self,key):
 ...

Empty

Empty

Empty

Empty

Empty

Let’s insert (“Kris”, 1990)

Hash key
hash("Kris") % 5 == 0

Our hash function will be…

def myhash(v):
 return hash(v) % 5

1990

Empty

Empty

Empty

Empty

Let’s insert (“Kris”, 1990)

Hash key
hash("Kris") % 5 == 0

Our hash function will be…

def myhash(v):
 return hash(v) % 5

Go to 0 and insert 1990

1990

Empty

Empty

Empty

Empty

Let’s lookup “Kris”

Again, hash “Kris”

Get 0

Return value from cell 0

Return 1990

Group Challenge
Write insert and lookup

Then work this example (inserting (“Kris”, 1990))

The Problem
This hash table doesn’t handle collisions

Brainstorm in groups: what can add to
work past this problem?

Challenge

Main Trick

• Back hash-table buckets by association lists

• Works like a hash table until you get to collisions, then works
like association list

Group Challenge
Rewrite insert and lookup

Using association list

(OK to just use regular Python list for now)

Question

Under what circumstance would a hash-table degenerate
into a linked list?

Choosing a Good hash
function

Depends on the application. Do you want:
 Performance (hash fn must be fast)
 Security (need a cryptographic hash)
 Often at odds w/ each other

Security-Relevant Example
Consider a server that stores all customer account balances in
a hash table

Hashing occurs by adding all of the characters of their name
and modding by table size

Question: How could you attack this?

Believe it or not, this is quite a common attack and most
languages do not provide cryptographically secure hashes by
default!

Examples of cryptographic
hashes

MD5 (now broken, collisions can be found in
seconds)

SHA-1 (the NSA can break this)

SHA-256 (considered secure, but maybe the NSA
can break it)

