I'he Rash Array-
Mapped Trie (HAMT)

Kris Micinski

|_ogistics

I'm (probably) gone next Tuesday
This Thursday: course / exam review

Next Thursday (probably): present projects /
competition

None of the HAMT particulars will be on the exam

HAMT — High-Level Benefit

* Persistent hash map / set with:
* Constant time insertion
* Constant time lookup

* Robust cache performance

Problems with other DS

Lookup / insertion for balancing binary trees:
* |og(n) with imperative version

* Not persistent data structure

Same thing with hash tables...

Coming up with persistent hash map is hard!

Motivation: phone books over time...

Keys Values

— (111) 111-1111
—p (222) 2222222
— (333) 333-3333

—> (444) 444-4444

Keys Values

—> (111) 111-1111

—p (222) 2222222

Sam —» (333) 333-3333

(444 4478 (555) 555-5555

Keys Values

—> (111) 111-1111

—p (222) 2222222

(333 335 ™ (666) 666-6666

(444 4478 (555) 555-5555

Aug 10

Aug 11

Aug 12

Keys Values

John — (111) 111-1111

Kelly —P (222) 222-2222

Sam —» (333) 333-3333

José |—> (444) 444-4444

Keys

Values

John

— (111) 111-1111

Kelly

—> (222) 222-2222

Sam

— (333) 333-3333

José

(444 444™ (555) 555-5555

Keys Values
John — (111) 111-1111
Kelly —> (222) 222-2222
Sam (333 33
José (444 44

(666) 666-6666
(555) 555-5555

Keys Values

- (111) 111-1111
—P (222) 222-2222

> (330) 333-0030

—> (444) 444-4444

: |
Values This takes O(n)!

— (111) 111-1111
—P (222) 222-2222
Copy Sam —» (333) 333-3333

(444 442™ (555) 555-5555

Inserting into association list: either O(1) or O(n)
Depends if you want time or space...

Kelly 22

= insert(al,"Kelly”, “77..”)

AN CIE
pE N O ESEN D
+Toe e [+

Balanced binary trees are good....

But unbalanced binary trees are not...!

Tl
n Kelly |(22..) E

(Naive insertion potentially leads to O(n)!)

What's one way to approximate
nalanced binary trees”

(l.e., If want to insert n names and end
up with an “almost” balanced tree?)

Insight: randomize insertion order

| can do this by storing a hash!

Now: each node of our binary tree
stores a hash and an association list

(Why do you need this?)

Observation 1

Store hashes as keys into a tree, back
it with association list

"~ Tonzersazd s [~

Kelly (22..)
n OxA1624F13 nn n 0xF031CA00 nn

"~ Tocosicaod s [+

(33..) n

Observation 2

Instead of tree, why not use a trie?

Ox1 OOOQOO1

Ox1 OOOQQOZ
Ox1 OOOQOOS
Ox1 OOQ}POO4

Ox1 0090005

n 0x00000001 nn
n 0x00000002 nn

n 0x00000003 nn
n 0x00000004 nn

-height =

ooo 0 / \ 100...0
000...0 /" N\(010..0 + N\ 110...0

{ ‘ *‘. ': \
¥

000...0 111...1

Now each successive bit in the trie indexes
a successive bit in the hash

(Of course, each leaf still needs to be backed
by assn. list!)

Observation 2

Now lookup takes at most 64!
(Because that's how long our hash is!)

Ergo: Insertion takes ~O(1) time!

Observation 3

64 is still pretty crummy constant factors!

And it always takes 64 if we use a trie!

How can we do better..?

How can we do better..?

ldea: store more than 1 bit per node!

0x00
Ox01
Ox01

Store 64 subtries 0x02
per node 030

Ox3D
Ox3E

Ox3F

(Can vary this up / down)

Now our trie looks like this!

To insert, walk over chunks of the hash!

(Walk through on board...)

Observation 3

Get better constant factors by storing more
subtries per node

(Downside: each node takes more memory)

Observation 4

Don't store the whole trie until we really need to

No other keys could possibly John =—»0x00...

be stored In this bucket!
Kelly =——»0x4A...

Sam —$0xA1...

José —»0OxFC...

So don’t store a subtrie! 0x00 [John, (11..)]
Ox01
Ox01

Takes up less memory, also 0x02

faster!
Ox3C
Ox3D

Ox3E ,
Ox3F [José, (44..)]

Question now: how do we implement insert?

Observation: form new subtries in case of
collision at some node

insert(map,”Sam”, “(33..”)
Sam —»0xFFF...
José¢ ——OQxFCO...

OxFFF = 111111 111111

OxFCO = 111111 000000
0Ox3C

Ox3D
Ox3E

Ox3F [José, (44..)]

Split!

Ox3C
Ox3D
Ox3E
Ox3F

insert(map,”Sam”, “(33..”)
Sam —»0xFFF...
José¢ ——OQxFCO...

OXFFF = 111111 111111
0XFCO = 111111 000000

[Joség, (44..)]

Split!

Observation 4

Don't store the whole trie until we really need to

(Reduces space the trie takes up! Storing fewer
keys = fewer places taken up!)

Observation 5

Storing 64 subtries is still very expensive!

Solution: store array of subtries, length of array
IS N where n is number of occupied buckets!

(Kris illustrates on board...)

|dea: use bitmap!

Old representation

0x00

Ox3F

@:: [José, ..
Sam,..

New representation

Ox3F 0x00
1 000... 1
bitmap | 0x8..1
e V¥V datafo] José, .
data[1]

Sam,..

Putting It all together

Store hashes as keys into a tree, back it with association
list

Instead of tree, use trie

Lower constant factors: store n (= 64 in our ex) subtries
(Con: more space for each subtrie!)

Two clever hacks:

 Don't store subtries until you absolutely need to
e Use bitmap to reduce the need for n subtries until needed

Result

*Fast persistent hash map!
* Great constant factors
*Low overhead when it's not storing much stufff

* Higher overhead as it fills up, but never far past
constant factor!

* Useful In implementing interpreters, any other place
when you need efficient hash map

* Most of the time a regular HT is probably fine, but
think of HAMT!

