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Example
((λ(x) (x x))

(λ(x) (x x)))

!2

Calculating factorial in Racket

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))



Example
((λ(x) (x x))

(λ(x) (x x)))

!3

Calculating factorial in Racket

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

Defines base case



Example
((λ(x) (x x))

(λ(x) (x x)))

!4

Calculating factorial in Racket

and inductive / recursive case

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))



Example
((λ(x) (x x))

(λ(x) (x x)))

!5

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”

> (factorial 2) 



Example
((λ(x) (x x))

(λ(x) (x x)))
(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

!6

We can think of recursion as “substitution”

Copy defn, substitute for argument n

> (factorial 2) 
= (if (= 2 0) 
      1 
      (* 2 (factorial (sub1 2)))) 



Example
((λ(x) (x x))

(λ(x) (x x)))

!7

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2) 
= (if (= 2 0) 
      1 
      (* 2 (factorial (sub1 2)))) 
= (if #t 1 (* 2 (factorial (sub1 2)))) 

Evaluate if



Example
((λ(x) (x x))

(λ(x) (x x)))

!8

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2) 
= (if (= 2 0) 
      1 
      (* 2 (factorial (sub1 2)))) 
= (if #t 1 (* 2 (factorial (sub1 2)))) 
= (* 2 (factorial (sub1 2))) 



Example
((λ(x) (x x))

(λ(x) (x x)))

!9

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2) 
= (if (= 2 0) 
      1 
      (* 2 (factorial (sub1 2)))) 
= (if #t 1 (* 2 (factorial (sub1 2)))) 
= (* 2 (factorial (sub1 2))) 
= (* 2 (factorial 1)) 

Evaluate sub1



Example
((λ(x) (x x))

(λ(x) (x x)))

!10

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2) 
= (if (= 2 0) 
      1 
      (* 2 (factorial (sub1 2)))) 
= (if #t 1 (* 2 (factorial (sub1 2)))) 
= (* 2 (factorial (sub1 2))) 
= (* 2 (factorial 1)) 
= (* 2 (if (= 1 0) 
        1 
        (* n (factorial (sub1 1))))

Substitute (again)



Example
((λ(x) (x x))

(λ(x) (x x)))

!11

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

= (* 2 (if (= 1 0) 
        1 
        (* 1 (factorial (sub1 1)))) 
= (* 2 (* 1 (factorial (sub1 1)))) 
= (* 2 (* 1 (factorial 0))) 
= (* 2 (* 1 (if (= 0 0) 1 …))) 
= (* 2 (* 1 (if #t 1 …))) 
= (* 2 (* 1 1)) 
= (* 2 1) 
= 2



Example
((λ(x) (x x))

(λ(x) (x x)))

!12

(define (factorial n) 
  (if (= n 0) 
      1 
      (* n (factorial (sub1 n)))))

= (* 2 (if (= 1 0) 
        1 
        (* 1 (factorial (sub1 1)))) 
= (* 2 (* 1 (factorial (sub1 1)))) 
= (* 2 (* 1 (factorial 0))) 
= (* 2 (* 1 (if (= 0 0) 1 …))) 
= (* 2 (* 1 (if #t 1 …))) 
= (* 2 (* 1 1)) 
= (* 2 1) 
= 2

This is “textual reduction” semantics 
More on this later



Example
((λ(x) (x x))

(λ(x) (x x)))

!13

… 
= (* 2 (if (= 2 0) 
        1 
        (* n (factorial (sub1 2)))) 
= (* 2 (factorial 1)) 
= … 
= (* 2 (* 1 1)) 
= (* 2 1) 
= 2 Notice we’re building a big 

stack of calls to *
Then recursion “bottoms out:” 
returns back to finish the work

(More on this next week…)



Exercise

!14

(define (log2 n) 
  (if (= n 1) 0 (+ 1 (log2 (/ n 2)))))

Complete the following substitution for (log2 2)

  (log2 2) 
= (if (= 2 1) 0 (+ 1 (log2 (/ 2 2)))) 
= ??? 
= … 
= ???



Exercise

!15

(define (log2 n) 
  (if (= n 1) 0 (+ 1 (log2 (/ n 2)))))

  (log2 2) 
= (if (= 2 1) 0 (+ 1 (log2 (/ 2 2)))) 
= (+ 1 (log2 (/ 2 2))) 
= (+ 1 (log2 1)) 
= (+ 1 (if (= 1 1) 0 (+ 1 (log2 (/ 1 2)…) 
= (+ 1 (if #t 0 (+ 1 (log2 (/ 1 2)…) 
= (+ 1 0) 
= 1



Exercise

!16

fib(n) =
0 n = 0
1 n = 1
fib(n − 1) + fib(n − 2) otherwise

Write the definition of (fib n) in Racket 
using the following definition:



Exercise

!17

(define (fib n) 
  (if (or (= n 0) (= n 1)) 
      n 
      (+ (fib (- n 1)) (fib (- n 2)))))

Answer (one of many)



Exercise

!18

(define (fib n) 
  (if (or (= n 0) (= n 1)) 
      n 
      (+ (fib (- n 1)) (fib (- n 2)))))

Question: what is the big-O time complexity of 
this implementation?



Exercise

!19

(define (fib n) 
  (if (or (= n 0) (= n 1)) 
      n 
      (+ (fib (- n 1)) (fib (- n 2)))))

Answer: O(2n) or exponential 
(Fun fact: actually φn, where φ is the golden ratio)



Example
((λ(x) (x x))

(λ(x) (x x)))

!20

We say that this algorithm uses a “top-down” approach

(define (fib n) 
  (if (or (= n 0) (= n 1)) 
      n 
      (+ (fib (- n 1)) (fib (- n 2)))))

Because it calculates each number by first calculating the 
previous two fibonacci numbers



!21

(fib n)

(fib n-1) (fib n-2)

(fib n-2) (fib n-3) (fib n-3) (fib n-4)

(fib n-3) (fib n-4) (fib n-4) (fib n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)



!22

(fib n)

(fib n-1) (fib n-2)

(fib n-2) (fib n-3) (fib n-3) (fib n-4)

(fib n-3) (fib n-4) (fib n-4) (fib n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

etc…



!23

(fib n)

(fib n-1) (fib n-2)

(fib n-2) (fib n-3) (fib n-3) (fib n-4)

(fib n-3) (fib n-4) (fib n-4) (fib n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

Lots of redundant work
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Instead, use dynamic programming:  
design a recursive solution top-down, but implement 

as a bottom-up algorithm!

0 1

0 1 2 43 5 6 7 8

Start with first two, then build up
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0 1 1 2 3 5 8 13 21

0 1 2 43 5 6 7 8

…

…

Instead, use dynamic programming:  
design a recursive solution top-down, but implement 

as a bottom-up algorithm!
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Key idea: only need to look at two most recent numbers

0 1 1 2 3 5 8 13 21

0 1 2 43 5 6 7 8



Example
((λ(x) (x x))

(λ(x) (x x)))

!27

Accumulate via arguments

(define (fib-h i n0 n1) 
  (if (= i 0) 
      n0 
      (fib-h (- i 1) n1 (+ n0 n1)))) 

(define (fib n) (fib-h n 0 1))



Exercise

!28

(define (fib-h i n0 n1) 
  (if (= i 0) 
      n0 
      (fib-h (- i 1) n1 (+ n0 n1)))) 

(define (fib n) (fib-h n 0 1))

Question: what is the runtime complexity of fib?



Exercise

!29

(define (fib-h i n0 n1) 
  (if (= i 0) 
      n0 
      (fib-h (- i 1) n1 (+ n0 n1)))) 

(define (fib n) (fib-h n 0 1))

Answer: O(n), fib-helper runs from n to 0



!30

(define (fib-h i n0 n1) 
  (if (= i 0) 
      n0 
      (fib-h (- i 1) n1 (+ n0 n1)))) 

(define (fib n) (fib-h n 0 1))

Consider how fib-h executes



!31

(fib-helper 3 0 1) 
= (if (= 3 0) 0 (fib-h (- 3 1) 1 (+ 0 1))) 
= … 
= (fib-h 2 1 1) 
= (if (= 2 0) 1 (fib-h (- 2 1) 1 (+ 1 1))) 
= … 
= (fib-h 1 1 2)

Notice that we don’t get the “stacking” behavior: 
recursive calls don’t grow the stack



!32

(define (fib-h i n0 n1) 
  (if (= i 0) 
      n0 
      (fib-h (- i 1) n1 (+ n0 n1)))) 

(define (fib n) (fib-h n 0 1))

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the 
last thing a function will do before exiting

(We call these tail calls)



(define (fib-h i n0 n1) 
  (if (= i 0) 
      n0 
      (fib-h (- i 1) n1 (+ n0 n1)))) 

(define (fib n) (fib-h n 0 1))

!33

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the 
last thing a function will do before exiting

Both of these are tail calls

(We call these tail calls)



Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack: 

• Tail calls do not grow (or shrink) the stack. 

• They are more like a goto/jump than a normal call. 

• A subexpression is in tail position if it’s the last subexpression to 
run, whose return value is also the value for its parent expression: 

• In (let ([x rhs]) body); body is in tail position… 

• In (if grd thn els); thn & els are in tail position… 

• A function is tail recursive if all recursive calls in tail position 

• Tail-recursive functions are analogous to loops in imperative langs

!34



Exercise

Which of the following is tail recursive?

!35

(define (length-0 l) 
  (if (null? l) 
      0 
      (+ 1 (length-0 (cdr l)))))

(define (length-1 l n) 
  (if (null? l) 
      n 
      (length-1 (cdr l) (+ n 1))))



Exercise

!36

(define (length-0 l) 
  (if (null? l) 
      0 
      (+ 1 (length-0 (cdr l)))))

(define (length-1 l n) 
  (if (null? l) 
      n 
      (length-1 (cdr l) (+ n 1))))

Answer

Not  tail recursive
Adds (+ 1 _) operation to stack

Is tail recursive!
Call to length-1 in tail position



Structured Data

• A list is an example of a recursive data structure 

• Defined via a base case and inductive case: 

• A list is either the empty list / null / ‘() 

• Or a cons cell of any element and another list 

• We can check whether it’s null? or cons? or list? 

• Can access via car and cdr; or first and rest 

• Many recursive functions on lists built using these

!37



Exercise

Write a function to calculate the sum of a list

!38

; (sum-list ‘(1 2)) is 3 
(define (sum-list l) 
  …)



Exercise

Write a function to calculate the sum of a list

!39

; (sum-list ‘(1 2)) is 3 
(define (sum-list l) 
  …)

(define (sum-list l) 
  (if (eq? l ‘())  
      0 
      (+ (car l)  
         (sum-list (cdr l)))))

Answer (one of many)



Accumulator Passing

• Many functions can be written by passing an accumulator: 
a value that is repeatedly extended to obtain a final value. 

• Esp. in tail-recursive / looping algorithms; e.g.:  
 
 
 
 

!40

(define (sum-list l) 
  (define (sum-loop l acc) 
    (if (empty? l)  
        acc 
        (sum-loop (rest l)  
                  (+ acc (first l))))) 
  (sum-loop l 0))



S-exprs (symbolic expressions)

• The S-expression is our parenthesized notation for a list 

• Can use lists to group data common to some structure 

• We can tag expressions with a symbol to note its “type” 

• ‘(point 2 3) 

• ‘(square (point 0 1) 5) 

• Can define “constructor” functions

!41

(define (mk-point x y) 
  (list ‘point x y))
(define (mk-square pt0 len)  
  (list ‘square pt0 len))



quasi-quotes
• Racket offers quasi-quotes to build S-expressions fast 

• `(,x y 3) is equivalent to (list x `y `3) 

• I.e., Racket splices in values that are unquoted via , 

• (quasiquote …) will substitute any expression ,e with 
the return value of e within the quoted S-expression 

• Works multiple levels deep: 

• `(square (point ,x0 ,y0) (point ,x1 ,y1)) 

• Can unquote entire expressions: 

• `(point ,(+ 1 x0) ,(- 1 y0))

!42



Exercise

Define mk-point and mk-square using 
Quasi-quotation:

!43

(define (mk-point x y) 
  (list ‘point x y))
(define (mk-square pt0 pt1)  
  (list ‘square pt0 pt1))



Exercise

!44

(define (mk-point x y) 
  (list ‘point x y))
(define (mk-square pt0 pt1)  
  (list ‘square pt0 pt1))

(define (mk-point x y) 
  `(point ,x ,y))
(define (mk-square pt0 pt1)  
  `(square ,pt0 ,pt1))

Answer

Define mk-point and mk-square using 
Quasi-quotation:



Pattern Matching
• Racket also has pattern matching 

• (match e [pat0 body0] [pat1 body1]…) 

• Evaluates e and then checks each pattern, in order 

• Pattern can bind variables, body can use pattern variables 

• Many patterns (check docs to learn various useful forms) 

• Patterns checked in order, first matching body is executed 

• Later bodies won’t be executed, even if they also match! 

• E.g., (match ‘(1 2 3) 
           [`(,a ,b) b] 
           [`(,a . ,b) b])  ; returns ‘(2 3)

!45



!46

(match e 
  [‘hello ‘goodbye] 
  [(? number? n) (+ n 1)] 
  [(? nonnegative-integer? n) 
    (+ n 2)] 
  [(cons x y) x] 
  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matching a literal



!47

(match e 
  [‘hello ‘goodbye] 
  [(? number? n) (+ n 1)] 
  [(? nonnegative-integer? n) 
    (+ n 2)] 
  [(cons x y) x] 
  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches when e evaluates 
to some number?

(binds n)



!48

(match e 
  [‘hello ‘goodbye] 
  [(? number? n) (+ n 1)] 
  [(? nonnegative-integer? n) 
    (+ n 2)] 
  [(cons x y) x] 
  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Never matches!  
Subsumed by previous case!



!49

(match e 
  [‘hello ‘goodbye] 
  [(? number? n) (+ n 1)] 
  [(? nonnegative-integer? n) 
    (+ n 2)] 
  [(cons x y) x] 
  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a cons cell, binds x and y



!50

(match e 
  [‘hello ‘goodbye] 
  [(? number? n) (+ n 1)] 
  [(? nonnegative-integer? n) 
    (+ n 2)] 
  [(cons x y) x] 
  [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a list of length three 
Binds first element as a0, second as a1, etc… 

Called a “quasi-pattern”

Can also test predicates on bound vars: 
`(,(? nonnegative-integer? x) ,(? positive? y))
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(match e 
  [‘hello ‘goodbye] 
  [(? number? n) (+ n 1)] 
  [(? nonnegative-integer? n) 
    (+ n 2)] 
  [(cons x y) x] 
  [`(,a0 ,a1 ,a2) (+ a1 a2)] 
  [_ 23])

Can also have a default case



Exercise

Define a function foo that returns: 
- twice its argument, if its argument is a number? 
- the first two elements of a list, if its argument is a 
list of length three, as a list 

- the string “error” if it is anything else

!52

(define (foo x) 
  (match x 
    [(? …) …] 
    …))



Exercise

!53

(define (foo x) 
  (match x 
    [(? number? n) (* n 2)] 
    [`(,a ,b ,_) `(,a ,b)] 
    [_ "error"]))

Answer (one of many)

Define a function foo that returns: 
- twice its argument, if its argument is a number? 
- the first two elements of a list, if its argument is a 
list of length three, as a list 

- the string “error” if it is anything else



Exercise

!54

(define (foo x) 
  (match x 
    [(? number? n) (* n 2)] 
    [`(,a ,b ,_) `(,a ,b)] 
    [_ "error"]))

Observe how quasipatterns and 
quasiquotes interact

Answer (one of many)

Define a function foo that returns: 
- twice its argument, if its argument is a number? 
- the first two elements of a list, if its argument is a 
list of length three, as a list 

- the string “error” if it is anything else



Structural Recursion
• Structural recursion 

• Recurs on some smaller piece of the input obtained by 
destructing (e.g., matching) on it. 

• Easy to prove termination 

• Code is making input smaller at each recursive step, 
thus will eventually bottom out 

• Much of the code you will write is structurally recursive 

• But some things cannot be expressed in a structurally 
recursive way 

• E.g., generative recursion, other algorithms, …

!55



Exercise

Consider that we define trees as follows: 

(define (tree? t) 
  (match t 
    [`(leaf ,n) #t] 
    [`(node ,(? tree? t0) ,(? tree? t1)) #t] 
    [_ #f])) 

Assuming trees are sorted, write a recursive function using 
match patterns, (least t) to get the smallest element in the 
tree (i.e., bottom left leaf). 
(least (node (leaf 0) (leaf 1)) should be 0 
(Hint: look at the definition of tree?)

!56



Generative Recursion
• Generative recursion 

• Recurs on some structure built / calculated from input 

• Not as easy (in general) to prove termination 

• How do we know it won’t just loop forever? 

• Strictly more powerful than structural recursion 

• Some programs we can’t write w/ just structural 
recursion 

• E.g., QuickSort

!57



Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!58

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3 -5 2 0 1



Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!59

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3 -5 2 0 1

Pivot < > < < 



Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!60

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot< >< < 



Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!61

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot >Now sort these!



Example
((λ(x) (x x))

(λ(x) (x x)))

< < Pivot

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!62

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot >



Example
((λ(x) (x x))

(λ(x) (x x)))

Now run quicksort on these

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!63

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot >



Example
((λ(x) (x x))

(λ(x) (x x)))

Pivot

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!64

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot>



Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting 
comparative sorting algorithm with O(n*log(n)) 
complexity

!65

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Original pivot Just returns 2

Now all sorted!



Exercise

Write a function which returns the elements in a 
list, l, which are less than some number n 

(define (elements< l n) 
  …) 

Hint: use match

!66



Exercise

Write a function which returns the elements in a 
list, l, which are less than some number n 

!67

(define (elements< l n) 
  (match l 
    ['() '()] 
    [`(,first ,rest …) 
       #:when (< first n) 
      (cons first  
            (elements< rest n))] 
    [_ (elements< (rest l) n)]))

Answer (one of many)



Exercise

!68

(define (elements< l n) 
  (match l 
    ['() '()] 
    [`(,first ,rest ...) #:when (< first n) 
      (cons first (elements< rest n))] 
    [_ (elements< (rest l) n)])) 

(define (elements> l n) 
  (match l 
    ['() '()] 
    [`(,first ,rest ...) #:when (> first n) 
      (cons first (elements> rest n))] 
    [_ (elements> (rest l) n)]))

Can also easily write elements>

Redundant, will fix 
next week



Exercise

!69

•To sort list l, first choose a pivot element (arbitrary), p, from l 
•Next, construct l’ of the elements in l that are < p 
•Also, construct l’’ of the elements in l that are > p 
•Now, return… 

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

(define (quicksort l) 
  (if (empty? l) 
      '() 
      (let* ([pivot (first l)] 
             [restl (rest l)] 
             [elements-lt (elements< restl pivot)] 
             [elements-gt (elements> restl pivot)]) 
       …)))

Complete the definition



Exercise

!70

(define (quicksort l) 
  (if (empty? l) 
      '() 
      (let* ([pivot (first l)] 
             [restl (rest l)] 
             [elements-lt (elements< restl pivot)] 
             [elements-gt (elements> restl pivot)]) 
        (append 
         (quicksort elements-lt) 
         (list pivot) 
         (quicksort elements-gt)))))

Unfortunately, our implementation still has a bug!



Exercise

!71

(define (quicksort l) 
  (if (empty? l) 
      '() 
      (let* ([pivot (first l)] 
             [restl (rest l)] 
             [elements-lt (elements< restl pivot)] 
             [elements-gt (elements> restl pivot)]) 
        (append 
         (quicksort elements-lt) 
         (list pivot) 
         (quicksort elements-gt)))))

Exercise: find a list l such that 

(not (equal? (sort l <) (quicksort l)))



Exercise

!72

(define (quicksort l) 
  (if (empty? l) 
      '() 
      (let* ([pivot (first l)] 
             [restl (rest l)] 
             [elements-lt (elements< restl pivot)] 
             [elements-gt (elements> restl pivot)]) 
        (append 
         (quicksort elements-lt) 
         (list pivot) 
         (quicksort elements-gt)))))

Our QuickSort “drops” numbers
(not (equal? (sort ‘(1 1) <)  
             (quicksort ‘(1 1))))



Exercise
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(define (quicksort l) 
  (if (empty? l) 
      '() 
      (let* ([pivot (first l)] 
             [pivot-list (elements= l pivot)] 
             [restl (remove pivot l)] 
             [elements-lt (elements< restl pivot)] 
             [elements-gt (elements> restl pivot)]) 
        (append 
         (quicksort elements-lt) 
         pivot-list 
         (quicksort elements-gt)))))

Solution is to make pivot a list!



Exercise
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(define (quicksort l) 
  (if (empty? l) 
      '() 
      (let* ([pivot (first l)] 
             [pivot-list (elements= l pivot)] 
             [restl (remove pivot l)] 
             [elements-lt (elements< restl pivot)] 
             [elements-gt (elements> restl pivot)]) 
        (append 
         (quicksort elements-lt) 
         pivot-list 
         (quicksort elements-gt)))))

Observe: QuickSort recursive on data built from input 
Thus, QuickSort uses generative recursion



Differential / Random Testing
• Want to be very sure our code is right 

• One strategy: fuzzing (“fuzz testing”) 

• Generate huge amounts of input, throw it at our code 

• One issue: need to check answer is correct 

• Idea one: compare against known good version 

• This is “differential” testing 

• Sometimes want a “slow” and “fast” version  

• Slow is obviously-correct but slow 

• Idea two: just check some properties of output 

• Property-based testing
!75



Example
((λ(x) (x x))

(λ(x) (x x)))

Let’s write a differential fuzzer for our 
QuickSort algorithm

!76

(define (random-list i n) 
  (if (= i 0) 
      '() 
      (cons (random 0 n) 
            (random-list (- i 1) n))))

Generate random list of length i, whose 
elements are all in [0,n-1]



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (counterexamples num-tries list-size max-n) 
  (define (loop i l) 
    (if (= i 0) 
        l 
        (let* ([lst (random-list list-size max-n)] 
               [sorted-via-sort (sort lst <)] 
               [sorted-via-qsort (quicksort lst)]) 
          (if (equal? sorted-via-sort sorted-via-qsort) 
              (loop (- i 1) l) 
              (loop (- i 1) (cons lst l)))))) 
  (loop num-tries '()))

!77



Example
((λ(x) (x x))

(λ(x) (x x)))

!78

(define (counterexamples num-tries list-size max-n) 
  (define (loop i l) 
    (if (= i 0) 
        l 
        (let* ([lst (random-list list-size max-n)] 
               [sorted-via-sort (sort lst <)] 
               [sorted-via-qsort (quicksort lst)]) 
          (if (equal? sorted-via-sort sorted-via-qsort) 
              (loop (- i 1) l) 
              (loop (- i 1) (cons lst l)))))) 
  (loop num-tries '()))

Compare our quicksort against Racket’s sort



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (counterexamples num-tries list-size max-n) 
  (define (loop i l) 
    (if (= i 0) 
        l 
        (let* ([lst (random-list list-size max-n)] 
               [sorted-via-sort (sort lst <)] 
               [sorted-via-qsort (quicksort lst)]) 
          (if (equal? sorted-via-sort sorted-via-qsort) 
              (loop (- i 1) l) 
              (loop (- i 1) (cons lst l)))))) 
  (loop num-tries '()))

!79

(counterexamples 300 300 1000)


