Programming with Recursion
and Symbolic Expressions

/)

CIS 352 — Spring 2020
Kris Micinski

Example |
(ﬁxoo(xxﬂ

@@@@ﬂ

Calculating factorial in Racket

(define (factorial n)
(if (= n Q)
1
(* n (factorial (subl n)))))

Example |
(ﬁxoo(xxﬂ

um@@ﬂ

Calculating factorial in Racket

(define (factorial n) ,
(if (= n Q) Defines base case

1
(* n (factorial (subl n)))))

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

Calculating factorial in Racket

(define (factorial n)
(if (= n Q)
1
(* n (factorial (subl n)))))

\

and inductive / recursive case

4

Example |
p ((}L(x) (x)

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

We can think of recursion as “substitution”

> (factorial 2)

Example
W(x) (x9)

(define (factorial n))
(if (= n Q)
1
(* n (factorial (subl n)))))

We can think of recursion as “substitution”

> (factorial 2)
= (if (= 2 0)
1
(x 2 (factorial (subl 2))))

Copy defn, substitute for argument n

Example |
p ((}L(x) (x)

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (1f (= 2 0)
1
(x 2 (factorial (subl 2))))
(if #t 1 (x 2 (factorial (subl 2))))

Evaluate 1

Example |
p ((}L(x) (x)

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
1
(x 2 (factorial (subl 2))))
(if #t 1 (x 2 (factorial (subl 2))))
(x 2 (factorial (subl 2)))

Example |
p ((Mx) (x)

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
1
(x 2 (factorial (subl 2))))
(if #t 1 (x 2 (factorial (subl 2))))
(x 2 (factorial (subl 2)))
(x 2 (factorial 1))

Evaluate subl

Example \
p ((}L(x) (x)

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
1
(x 2 (factorial (subl 2))))
(if #t 1 (x 2 (factorial (subl 2))))
(x 2 (factorial (subl 2)))
(x 2 (factorial 1))
(x 2 (if (=1 0) Substitute (again)
1
(* n (factorial (subl 1))))

Example |
((Mx) (x)

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

(x 2 (if (= 1 0)

1

(x 1 (factorial (subl 1)))
factorial (subl 1))))

)

= (x 2 (x 1 (

= (x 2 (x 1 (factorial 0)))

= (k2 (x1 (if (=0 0) 1 .)))
= (x 2 (x1 (if #t 1 ..)))

= (x2 (x11))

= (x 2 1)

= 2

11

Example
((Mx) (x x))

(define (factorial n))
(if (= n Q)
1
(x n (factorial (subl n)))))

2 (if (= 1 0)

1

(x 1 (factorial (subl 1)))
x 1 (factorial (subl 1))))
(factorial 0)))

gif (=00) 1.)))

1

[l
V3

)

if # 1 ..)))
))

N o =y =

This is “textual reduction” semantics
More on this later

¥ ¥ ¥ K ¥ ¥
NNMNNDNN
— ~ A~ S S~
— % ¥ ¥ ¥

I 1 T 1 A N 1 O
N — — — —~ — —

12

Example |
P (0 x))

(1) xm

(x 2 (if (= 2 0)

1

(*x n (factorial (subl 2))))
(x 2 (factorial 1))

(x 2 1)

2 Notice we're building a big
stack of calls to *

Then recursion “bottoms out:”
returns back to finish the work

(More on this next week...)

13
s

Exercise

Complete the following substitution for (log2 2)

(define (log2 n)
(if (=n1) @ (+1 (log2 (/ n 2)))))

(log2 2)
= (if (=2 1) @ (+ 1 (log2 (/ 2 2))))
= 777
_ 377

14

(define (log2 n) !

(if (=n 1) @ (+ 1 (log2 (/ n 2)))))

(log2 2)

(if (=21) 0 (+ 1 (log2 (/ 2 2))))

(+ 1 (log2 (/ 2 2)))

(+ 1 (log2 1))

1 (if (=1 1) @ (+ 1 (log2 (/ 1 2)..)
(+ 1 (if #t @ (+ 1 (log2 (/ 1 2)..)

(+ 1 0)

I 1 1 T O A 1 I
+

15

Write the definition of (fib n) in Racket
using the following definition:

0 n=20
fib(n) =< 1 n=1
fib(n — 1) + fib(n — 2) otherwise

16

Answer (one of many)

(define (fib n)
(if (or (= n 0) (=n 1))
n
(+ (fib (= n 1)) (fib (- n 2)))))

17

Question: what is the big-O time complexity of
this implementation?

(define (fib n)
(if (or (= n 0) (=n 1))
n
(+ (fib (= n 1)) (fib (- n 2)))))

18

Answer: O(2") or exponential
(Fun fact: actually ¢n, where @ is the golden ratio)

(define (fib n)
(if (or (= n 0) (=n 1))
n
(+ (fib (= n 1)) (fib (- n 2)))))

19

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

We say that this algorithm uses a “"top-down” approach

(define (fib n)
(if (or (= n 0) (=n 1))
n
(+ (fib (= n 1)) (fib (- n 2)))))

Because it calculates each number by first calculating the
previous two fibonacci numbers

20

(fib n)

VRN

(fib n-1) (fib n-2)
(fib n-2) (fib n- 3 (fib n-3) flb n—-4)

v /
(fib n-3) (fib n-4) (fib n-4) (flb n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

21

(fib n)

VRN

(fib n-1) (fib n-2)
(fib n-2) (fib n- 3 (fib n-3) flb n—-4)

v /
(fib n-3) (fib n-4) (fib n-4) (flb n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

etc...

22

(fib n)

VRN

(fib n-1) (fib n-=-2)
(fib n-2) (fib n- 3 (fib n-3) flb n—-4)

o/ /
(fib n-3) (fib n-4) (fib n-4) (flb n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

Lots of redundant work

23

Instead, use dynamic programming:
design a recursive solution top-down, but implement
as a bottom-up algorithm!

0 1 l 2 3 4 S 6 / 3

Start with first two, then build up

24

Instead, use dynamic programming:
design a recursive solution top-down, but implement

as a bottom-up algorithm!

25

Key idea: only need to look at two most recent numbers

of B Beflolc
0 1 2 3 4 S 6

/ 38

26

Example |
(ﬁxoo(xxﬂ

@@@@ﬂ

Accumulate via arguments

(define (fib-h i n@® n1)
(if (= 1 0)
no
(fib-h (- i 1) n1 (+ n@ nl1))))

(define (fib n) (fib-h n 0 1))

27

Exercise

(define (fib-h i n@ n1)
(if (= 1 0)
no
(fib-h (- i1 1) n1 (+ n@ nl1))))

(define (fib n) (fib—-h n 0 1))

Question: what is the runtime complexity of f1b?

28

Exercise

(define (fib-h i n@ n1)
(if (= 1 0)
no
(fib-h (- i1 1) n1 (+ n@ nl1))))

(define (fib n) (fib—-h n 0 1))

Answer: O(n), fib-helper runs from n to 0@

29

Consider how f1b—h executes

(define (fib-h i n@ n1)
(if (= 1 0)
no
(fib-h (- 1 1) n1 (+ n@ nl1))))

(define (fib n) (fib-h n 0 1))

30

L I U 1 | N 1 I |

fib-helper 3 0 1)
(if (=3 0) @ (fib-h (-3 1) 1 (+ 0 1)))

(fib-h

2 1 1)
(if (=2 0) 1 (fib-h\(-2 1) 1 (+ 1 1)))

(fib=h 1 1 2)

Notice that we don't get the “stacking” behavior:
recursive calls don’t grow the stack

31

This is because T1b—-h is tail recursive

(define (fib-h i n@® n1)
(if (= 1 0)
no
(fib-h (- i 1) n1 (+ n@ nl1))))

(define (fib n) (fib-h n 0 1))

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

(We call these tail calls)
32

This is because T1b—-h is tail recursive

Both of these are tail calls

(define (fib-h nd nl)
(if (= 1 0)
no
(fib-h (- i 1)/n1 (+ n@ nl1))))

(define (fib n) (fib-h n 0 1))

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

(We call these tail calls)
33

Tail calls / tail recursion

Unlike calls in general, tail calls do not affect the stack:
® Tail calls do not grow (or shrink) the stack.
® They are more like a goto/jump than a normal call.

A subexpression is in tail position it it's the |last subexpression to
run, whose return value is also the value for its parent expression:

® In (let ([x rhs]) body); body is in tail position...
® [n (if grd thn els); thn & els are in tail position...
A function is tail recursive if all recursive calls in tail position

Tail-recursive functions are analogous to loops in imperative langs

34

Exercise

Which of the following is tail recursive?

(define (length-0 1)
(if (null? 1)
0
(+ 1 (length-0 (cdr 1)))))

(define (length-1 1 n)
(if (null? 1)

N
(length-1 (cdr 1) (+ n 1))))

35

Exercise

Answer

(define (length-0 1) Not tail recursive

(if (null? 1)
0

(+ 1 (length-0 (cdr 1)))))

Adds (+ 1 _) operation to stack

(define (length-1 1 n) Is tail recursive!

i ?
(if (nu-Ll L Call to length-1 in tail position

(length -1 (cdr 1) (+ n 1))))

36

Structured Data

® A listis an example of a recursive data structure
® Defined via a base case and inductive case:
® A listis either the empty list / null / /()
® Or a cons cell of any element and another list
® \We can check whetherits null? or cons? or L1st?
® Can accessvia car and cdr; or first and rest

® Many recursive functions on lists built using these

37

Write a function to calculate the sum of a list

* (sum-1list ‘(1 2)) is 3
(define (sum-1list 1)

)

38

Write a function to calculate the sum of a list

* (sum-1list ‘(1 2)) is 3
(define (sum-list 1)

e)

Answer (one of many)

(define (sum-list 1)
(if (eg? 1 “‘())
0
(+ (car 1)
(sum-list (cdr 1)))))

39
s

Accumulator Passing

® Many functions can be written by passing an accumulator:
a value that is repeatedly extended to obtain a final value.

® Esp. in tail-recursive / looping algorithms; e.qg.:

(define (sum-1list 1)
(define (sum-loop 1 acc)
(if (empty? 1)
accC
(sum-1loop (rest 1)

(+ acc (first 1)))))
(sum—loop 1 0))

40

S—exprs (symbolic expressions)

® The S-expression is our parenthesized notation for a list
® Can use lists to group data common to some structure

® \We can tag expressions with a symbol to note its “type”
e ‘(point 2 3)
e ‘(square (point @ 1) 5)

® Can define “constructor” functions

(define (mk-point x y)
(list ‘point x y))

(define (mk-square pt@ 1len)
(list ‘square pt@ len))

41

quasi-guotes
Racket offers quasi-quotes to build S-expressions fast
"(,x y 3) isequivalentto (list x 'y 3)
® |.e., Racket splices in values that are unquoted via ,

® (quasiquote ...) will substitute any expression , € with
the return value of € within the quoted S-expression

Works multiple levels deep:
e “(square (point ,x@ ,y@) (point ,x1 ,y1l))
Can unquote entire expressions:

e (point ,(+ 1 x0) ,(- 1 y0))

42

Detine mk-point and mk-square using
Quasi-quotation:

(define (mk-point x y)
(list ‘point x y))

(define (mk-square pt@ pt1l)
(list ‘square pto ptl))

43

Detine mk-point and mk-square using
Quasi-quotation:

(define (mk-point x y)
(list ‘point x y))

(define (mk-square pt@ pt1l)
(list ‘square pto ptl))

Answer
(define (mk-point x y)
“(point ,x ,y))
(define (mk-square pt@ ptl)
“(square ,pt@ ,ptl))

44
e

Pattern Matching

Racket also has pattern matching

e (match e [pate bodyel [pati body:il..)
Evaluates e and then checks each pattern, in order
Pattern can bind variables, body can use pattern variables
Many patterns (check docs to learn various useful forms)
Patterns checked in order, first matching body is executed

® |ater bodies won't be executed, even if they also match!

E.g., (match ‘(1 2 3)

["(,a ,b) bl
[(,a . ,b) bl) ; returns ‘(2 3)

45

(match e
Matching a literal ————pp-[‘hello ‘goodbye]
[(? number? n) (+ n 1)]
[(? nonnegative-integer? n)
(+ n 2)]
[(cons x y) x]
[*(,a0 ,al ,a2) (+ al a2)l])

46

(binds n)

(match e ‘l
[“hello ‘goodbye]
"”’)y[(? number? n) (+ n 1)]
[(? nonnegative-integer? n)

Matches when e evaluates (+ n 2)]

,?
to some number” [(cons x y) «]

[*(,a0 ,al ,a2) (+ al a2)l])

47

(match e
[“hello ‘goodbye]
[(? number? n) (+ n 1)]
[(? nonnegative-integer? n)
(+ n 2)]
[(cons x y) x]
[*(,a0 ,al ,a2) (+ al a2)l])

Never matches!
Subsumed by previous case!

48

(match e
[“hello ‘goodbye]
[(? number? n) (+ n 1)]
[(? nonnegative-integer? n)
(+ n 2)]
[(cons x y) x]
(,a0 ,al ,a2) (+ al a2)l])

Matches a cons cell, binds x and y

49

(match e
[“hello ‘goodbye]
[(? number? n) (+ n 1)]
[(? nonnegative-integer? n)
(+ n 2)]
[(cons x y) x]
[*(,a0 ,al ,a2) (+ al a2)l])

/

Matches a list of length three
Binds first element as a0, second as al, etc...
Called a "quasi-pattern”

Can also test predicates on bound vars:
“(,(? nonnegative-integer? x) ,(? positive? vy))

50

(match e
[“hello ‘goodbye]
[(? number? n) (+ n 1)]
[(? nonnegative-integer? n)
(+ n 2)]
[(cons x y) X]
[*(,a0 ,al ,a2) (+ al a2)]
[23])

T

Can also have a default case

51

Detine a function T00 that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” it it is anything else

(define (foo x)

(match x
[(? ..) ..]
))

52

Detine a function T00 that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” it it is anything else

Answer (one of many)

(define (foo x)
(match x
[(? number? n) (x n 2)]

[(,a ,b ,_) (,a ,b)]
["error"]))

53

Detine a function T00 that returns:

-twice its argument, if its argument is a number?

-the first two elements of a list, if its argument is a
list of length three, as a list

-the string “error” it it is anything else

Answer (one of many) e how quasipatterns and

(define (foo x) quasiquotes interact

(match x
[(7 number n 2)]
[(,a ,b , D)]

["error"]

54

Structural Recursion

Structural recursion

® Recurs on some smaller piece of the input obtained by
destructing (e.g., matching) on it.

Easy to prove termination

® Code is making input smaller at each recursive step,
thus will eventually bottom out

Much of the code you will write is structurally recursive

But some things cannot be expressed in a structurally
recursive way

® E.g., generative recursion, other algorithms, ...

95

Consider that we define trees as follows:

(define (tree? t)
(match t
- (leaf ,n) #t]

" (node ,(? tree? t0) ,(? tree? t1)) #t]
 #f]))

Assuming trees are sorted, write a recursive function using
match patterns, (least t) to get the smallest element in the
tree (i.e., bottom left leaf).

(least (node (leaf @) (leaf 1)) shouldbe @

(Hint: look at the definition of tree?)

56

Generative Recursion

® Generative recursion

® Recurs on some structure built / calculated from input
® Not as easy (in general) to prove termination

® How do we know it won't just loop forever?
® Strictly more powerful than structural recursion

® Some programs we can't write w/ just structural
recursion

® E.g., QuickSort

S7

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p

® Also, construct |” of the elements in | that are > p

® Now, return..
® QuickSort(l) ++ [p] ++ QuickSort(l")

58

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p

® Also, construct |” of the elements in | that are > p

® Now, return..
® QuickSort(l) ++ [p] ++ QuickSort(l")

Pivot

59

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p

® Also, construct |” of the elements in | that are > p

® Now, return...
® QuickSort(l") ++ [p] ++ QuickSort(l")

< < <

Pivot >

60

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p

® Also, construct |” of the elements in | that are > p

® Now, return...
® QuickSort(l") ++ [p] ++ QuickSort(l")

Now sort these! N Pivot >

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p
® Also, construct |” of the elements in | that are > p

® Now, return..
° Qu|c|<Sort(') ++ [p] ++ QuickSort(l")

Pivot Pivot >
62

Example
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p

® Also, construct |” of the elements in | that are > p

® Now, return...
® QuickSort(l") ++ [p] ++ QuickSort(l")

Now run quicksort on these - Pivot >

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p
® Also, construct |” of the elements in | that are > p

® Now, return..
° Qu|c|<Sort(') ++ [p] ++ QuickSort(l")

Pivot Pivot
64

Example
(ﬁxoo(xxﬂ

@m@ﬂﬂ

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

® To sort list |, first choose a pivot element (arbitrary), p, from |

® Next, construct |" of the elements in | that are < p

® Also, construct |” of the elements in | that are > p

® Now, return..
® Qu|c|<Sort(') ++ [p] ++ QuickSort(l")

Original pivot Just returns 2

Now all sorted!

Write a function which returns the elements in a
list, 1, which are less than some number n

(define (elements< 1 n)

)

Hint: use match

66

Write a function which returns the elements in a
list, 1, which are less than some number n

Answer (one of many)

(define (elements< 1 n)
(match 1
[() "()]
[*(,first ,rest ..)
#:when (< first n)
(cons first
(elements< rest n))]
[(elements< (rest 1) n)l))
67

Can also easily write e lements>

(define (elements< 1 n)
(match 1
['() '()]
[(,first ,rest ...) #:when (< first n)
(cons first (elements< rest n))]
[(elements< (rest 1) n)l))

(define (elements> 1 n) Redundant, will fix
(match 1 next week
['() "()]
["(,first ,rest ...) #:when (> first n)
(cons first (elements> rest n))]l
[(elements> (rest 1) n)]l))

68
s

Complete the definition

® To sort list |, first choose a pivot element (arbitrary), p, from |
® Next, construct I of the elements in | that are < p
® Also, construct |” of the elements in | that are > p

® Now, return...
® QuickSort(I') ++ [p] ++ QuickSort(l")

(define (quicksort 1)
(if (empty? 1)

‘()

(letx ([pivot (first 1)]
restl (rest 1).
‘elements-1t (elements< restl pivot)]
‘elements—gt (elements> restl pivot)])

w)))
69
s

(define (quicksort 1)
(if (empty? 1)
‘()
(letx ([pivot (first 1)]
restl (rest 1)]
‘elements-1t (elements< restl pivot)]
elements—gt (elements> restl pivot)])
(append
(quicksort elements-1t)
(list pivot)
(quicksort elements—gt)))))

Unfortunately, our implementation still has a bug!

70

Exercise: find a list | such that

(not (equal? (sort 1 <) (quicksort 1)))

(define (quicksort 1)
(if (empty? 1)
()
(letx ([pivot (first 1)]
restl (rest 1)]
‘elements-1t (elements< restl pivot)]
‘elements—gt (elements> restl pivot)])
(append
(quicksort elements-1t)
(list pivot)
(quicksort elements—gt)))))

71

Our QuickSort “drops” numbers

(not (equal? (sort ‘(1 1) <)
(quicksort ‘(1 1))))

(define (quicksort 1)
(if (empty? 1)
()
(letx ([pivot (first 1)]
restl (rest 1)]
‘elements-1t (elements< restl pivot)]
‘elements—gt (elements> restl pivot)])
(append
(quicksort elements-1t)
(list pivot)
(quicksort elements—gt)))))

72

Solution is to make pivot a list!

(define (quicksort 1)
(if (empty? 1)
()
(letx ([pivot (fir)]
pivot-list (elements= 1 pivot)]
restl (remgve pivot 1)]
‘elements-At (elements< restl pivot)]
elements/gt (elements> restl pivot)])
(append
(quicksort
pivot-list
(quicksort elements—gt)))))
73

lements-1t)

Observe: QuickSort recursive on data built from input
Thus, QuickSort uses generative recursion

(define (quicksort 1)
(if (empty? 1)
‘()
(letx ([pivot (first 1)]
pivot-list (elements= 1 pivot)]
restl (remove pivot 1)]
‘elements-1t (elements< restl pivot)]
‘elements—gt (elements> restl pivot)])
(append
(quicksort elements-1t)
pivot-list
(quicksort elements—gt)))))
74

Differential / Random Testing

e \Want to be very sure our code is right
® One strategy: fuzzing (“fuzz testing”)
® Generate huge amounts of input, throw it at our code
® One issue: need to check answer is correct
® |dea one: compare against known good version
® This is “differential” testing
® Sometimes want a “slow” and "“fast” version
® Slow is obviously-correct but slow
® |dea two: just check some properties of output

® Property-based testing

75

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

Let's write a differential fuzzer for our
QuickSort algorithm

(define (random-1list i n)
(if (= 1 9)
'()
(cons (random 0 n)
(random-1list (- i 1) n))))

Generate random list of length 1, whose
elements are all in [0, n-1]

/6

Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

(define (counterexamples num-tries list-size max-n)
(define (loop i 1)
(if (= 1 0)
1
(letx ([lst (random-list list-size max-n)]
sorted-via-sort (sort lst <)]
sorted-via—-qsort (quicksort 1st)])
(if (equal? sorted-via-sort sorted-via—gsort)
(loop (- 1 1) 1)
(loop (- i 1) (cons 1st 1))))))
(loop num-tries '()))

77

Example
(0)

(Alx) & xﬂ)

Compare our quicksort against Racket's sort

(define (counterexamples nukh-tries list-size max-n)
(define (loop i 1)
(if (= 1 0)
1
(letx ([lst (random-Mst list-size max-n)]
sorted-via-sort (sort lst <)]
sorted-via—-qsort (quicksort 1st)])
(if (equal? sorted-via-sort sorted-via—-gsort)
(loop (- 1 1) 1)
(loop (- i 1) (cons 1st 1))))))
(loop num-tries '()))

/8

Example
(ﬁxoo(xxﬂ

@@u@ﬂ

(define (counterexamples num-tries list-size max-n)
(define (loop i 1)
(if (= 1 0)
1
(letx ([lst (random-list list-size max-n)]
sorted-via-sort (sort lst <)]
sorted-via—-qsort (quicksort 1st)])
(if (equal? sorted-via-sort sorted-via—gsort)
(loop (- 1 1) 1)
(loop (- i 1) (cons 1st 1))))))
(loop num-tries '()))

(counterexamples 300 300 1000)

79
s

