
Programming with Recursion
and Symbolic Expressions

!1

CIS 352 — Spring 2020
Kris Micinski

Example
((λ(x) (x x))

(λ(x) (x x)))

!2

Calculating factorial in Racket

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

Example
((λ(x) (x x))

(λ(x) (x x)))

!3

Calculating factorial in Racket

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

Defines base case

Example
((λ(x) (x x))

(λ(x) (x x)))

!4

Calculating factorial in Racket

and inductive / recursive case

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

Example
((λ(x) (x x))

(λ(x) (x x)))

!5

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”

> (factorial 2)

Example
((λ(x) (x x))

(λ(x) (x x)))
(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

!6

We can think of recursion as “substitution”

Copy defn, substitute for argument n

> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))

Example
((λ(x) (x x))

(λ(x) (x x)))

!7

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))
= (if #t 1 (* 2 (factorial (sub1 2))))

Evaluate if

Example
((λ(x) (x x))

(λ(x) (x x)))

!8

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))
= (if #t 1 (* 2 (factorial (sub1 2))))
= (* 2 (factorial (sub1 2)))

Example
((λ(x) (x x))

(λ(x) (x x)))

!9

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))
= (if #t 1 (* 2 (factorial (sub1 2))))
= (* 2 (factorial (sub1 2)))
= (* 2 (factorial 1))

Evaluate sub1

Example
((λ(x) (x x))

(λ(x) (x x)))

!10

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

We can think of recursion as “substitution”
> (factorial 2)
= (if (= 2 0)
 1
 (* 2 (factorial (sub1 2))))
= (if #t 1 (* 2 (factorial (sub1 2))))
= (* 2 (factorial (sub1 2)))
= (* 2 (factorial 1))
= (* 2 (if (= 1 0)
 1
 (* n (factorial (sub1 1))))

Substitute (again)

Example
((λ(x) (x x))

(λ(x) (x x)))

!11

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

= (* 2 (if (= 1 0)
 1
 (* 1 (factorial (sub1 1))))
= (* 2 (* 1 (factorial (sub1 1))))
= (* 2 (* 1 (factorial 0)))
= (* 2 (* 1 (if (= 0 0) 1 …)))
= (* 2 (* 1 (if #t 1 …)))
= (* 2 (* 1 1))
= (* 2 1)
= 2

Example
((λ(x) (x x))

(λ(x) (x x)))

!12

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (sub1 n)))))

= (* 2 (if (= 1 0)
 1
 (* 1 (factorial (sub1 1))))
= (* 2 (* 1 (factorial (sub1 1))))
= (* 2 (* 1 (factorial 0)))
= (* 2 (* 1 (if (= 0 0) 1 …)))
= (* 2 (* 1 (if #t 1 …)))
= (* 2 (* 1 1))
= (* 2 1)
= 2

This is “textual reduction” semantics
More on this later

Example
((λ(x) (x x))

(λ(x) (x x)))

!13

…
= (* 2 (if (= 2 0)
 1
 (* n (factorial (sub1 2))))
= (* 2 (factorial 1))
= …
= (* 2 (* 1 1))
= (* 2 1)
= 2 Notice we’re building a big

stack of calls to *
Then recursion “bottoms out:”
returns back to finish the work

(More on this next week…)

Exercise

!14

(define (log2 n)
 (if (= n 1) 0 (+ 1 (log2 (/ n 2)))))

Complete the following substitution for (log2 2)

 (log2 2)
= (if (= 2 1) 0 (+ 1 (log2 (/ 2 2))))
= ???
= …
= ???

Exercise

!15

(define (log2 n)
 (if (= n 1) 0 (+ 1 (log2 (/ n 2)))))

 (log2 2)
= (if (= 2 1) 0 (+ 1 (log2 (/ 2 2))))
= (+ 1 (log2 (/ 2 2)))
= (+ 1 (log2 1))
= (+ 1 (if (= 1 1) 0 (+ 1 (log2 (/ 1 2)…)
= (+ 1 (if #t 0 (+ 1 (log2 (/ 1 2)…)
= (+ 1 0)
= 1

Exercise

!16

fib(n) =
0 n = 0
1 n = 1
fib(n − 1) + fib(n − 2) otherwise

Write the definition of (fib n) in Racket
using the following definition:

Exercise

!17

(define (fib n)
 (if (or (= n 0) (= n 1))
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

Answer (one of many)

Exercise

!18

(define (fib n)
 (if (or (= n 0) (= n 1))
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

Question: what is the big-O time complexity of
this implementation?

Exercise

!19

(define (fib n)
 (if (or (= n 0) (= n 1))
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

Answer: O(2n) or exponential
(Fun fact: actually φn, where φ is the golden ratio)

Example
((λ(x) (x x))

(λ(x) (x x)))

!20

We say that this algorithm uses a “top-down” approach

(define (fib n)
 (if (or (= n 0) (= n 1))
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

Because it calculates each number by first calculating the
previous two fibonacci numbers

!21

(fib n)

(fib n-1) (fib n-2)

(fib n-2) (fib n-3) (fib n-3) (fib n-4)

(fib n-3) (fib n-4) (fib n-4) (fib n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

!22

(fib n)

(fib n-1) (fib n-2)

(fib n-2) (fib n-3) (fib n-3) (fib n-4)

(fib n-3) (fib n-4) (fib n-4) (fib n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

etc…

!23

(fib n)

(fib n-1) (fib n-2)

(fib n-2) (fib n-3) (fib n-3) (fib n-4)

(fib n-3) (fib n-4) (fib n-4) (fib n-5)

(fib n-4) (fib n-5) (fib n-5) (fib n-6)

Lots of redundant work

!24

Instead, use dynamic programming:  
design a recursive solution top-down, but implement

as a bottom-up algorithm!

0 1

0 1 2 43 5 6 7 8

Start with first two, then build up

!25

0 1 1 2 3 5 8 13 21

0 1 2 43 5 6 7 8

…

…

Instead, use dynamic programming:  
design a recursive solution top-down, but implement

as a bottom-up algorithm!

!26

Key idea: only need to look at two most recent numbers

0 1 1 2 3 5 8 13 21

0 1 2 43 5 6 7 8

Example
((λ(x) (x x))

(λ(x) (x x)))

!27

Accumulate via arguments

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Exercise

!28

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Question: what is the runtime complexity of fib?

Exercise

!29

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Answer: O(n), fib-helper runs from n to 0

!30

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

Consider how fib-h executes

!31

(fib-helper 3 0 1)
= (if (= 3 0) 0 (fib-h (- 3 1) 1 (+ 0 1)))
= …
= (fib-h 2 1 1)
= (if (= 2 0) 1 (fib-h (- 2 1) 1 (+ 1 1)))
= …
= (fib-h 1 1 2)

Notice that we don’t get the “stacking” behavior:
recursive calls don’t grow the stack

!32

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

(We call these tail calls)

(define (fib-h i n0 n1)
 (if (= i 0)
 n0
 (fib-h (- i 1) n1 (+ n0 n1))))

(define (fib n) (fib-h n 0 1))

!33

This is because fib-h is tail recursive

Intuitively: a callsite is in tail-position if it is the
last thing a function will do before exiting

Both of these are tail calls

(We call these tail calls)

Tail calls / tail recursion
• Unlike calls in general, tail calls do not affect the stack:

• Tail calls do not grow (or shrink) the stack.

• They are more like a goto/jump than a normal call.

• A subexpression is in tail position if it’s the last subexpression to
run, whose return value is also the value for its parent expression:

• In (let ([x rhs]) body); body is in tail position…

• In (if grd thn els); thn & els are in tail position…

• A function is tail recursive if all recursive calls in tail position

• Tail-recursive functions are analogous to loops in imperative langs

!34

Exercise

Which of the following is tail recursive?

!35

(define (length-0 l)
 (if (null? l)
 0
 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)
 (if (null? l)
 n
 (length-1 (cdr l) (+ n 1))))

Exercise

!36

(define (length-0 l)
 (if (null? l)
 0
 (+ 1 (length-0 (cdr l)))))

(define (length-1 l n)
 (if (null? l)
 n
 (length-1 (cdr l) (+ n 1))))

Answer

Not tail recursive
Adds (+ 1 _) operation to stack

Is tail recursive!
Call to length-1 in tail position

Structured Data

• A list is an example of a recursive data structure

• Defined via a base case and inductive case:

• A list is either the empty list / null / ‘()

• Or a cons cell of any element and another list

• We can check whether it’s null? or cons? or list?

• Can access via car and cdr; or first and rest

• Many recursive functions on lists built using these

!37

Exercise

Write a function to calculate the sum of a list

!38

; (sum-list ‘(1 2)) is 3
(define (sum-list l)
 …)

Exercise

Write a function to calculate the sum of a list

!39

; (sum-list ‘(1 2)) is 3
(define (sum-list l)
 …)

(define (sum-list l)
 (if (eq? l ‘())
 0
 (+ (car l)
 (sum-list (cdr l)))))

Answer (one of many)

Accumulator Passing

• Many functions can be written by passing an accumulator:
a value that is repeatedly extended to obtain a final value.

• Esp. in tail-recursive / looping algorithms; e.g.:  
 
 
 
 

!40

(define (sum-list l)
 (define (sum-loop l acc)
 (if (empty? l)
 acc
 (sum-loop (rest l)
 (+ acc (first l)))))
 (sum-loop l 0))

S-exprs (symbolic expressions)

• The S-expression is our parenthesized notation for a list

• Can use lists to group data common to some structure

• We can tag expressions with a symbol to note its “type”

• ‘(point 2 3)

• ‘(square (point 0 1) 5)

• Can define “constructor” functions

!41

(define (mk-point x y)
 (list ‘point x y))
(define (mk-square pt0 len)
 (list ‘square pt0 len))

quasi-quotes
• Racket offers quasi-quotes to build S-expressions fast

• `(,x y 3) is equivalent to (list x `y `3)

• I.e., Racket splices in values that are unquoted via ,

• (quasiquote …) will substitute any expression ,e with
the return value of e within the quoted S-expression

• Works multiple levels deep:

• `(square (point ,x0 ,y0) (point ,x1 ,y1))

• Can unquote entire expressions:

• `(point ,(+ 1 x0) ,(- 1 y0))

!42

Exercise

Define mk-point and mk-square using
Quasi-quotation:

!43

(define (mk-point x y)
 (list ‘point x y))
(define (mk-square pt0 pt1)
 (list ‘square pt0 pt1))

Exercise

!44

(define (mk-point x y)
 (list ‘point x y))
(define (mk-square pt0 pt1)
 (list ‘square pt0 pt1))

(define (mk-point x y)
 `(point ,x ,y))
(define (mk-square pt0 pt1)
 `(square ,pt0 ,pt1))

Answer

Define mk-point and mk-square using
Quasi-quotation:

Pattern Matching
• Racket also has pattern matching

• (match e [pat0 body0] [pat1 body1]…)

• Evaluates e and then checks each pattern, in order

• Pattern can bind variables, body can use pattern variables

• Many patterns (check docs to learn various useful forms)

• Patterns checked in order, first matching body is executed

• Later bodies won’t be executed, even if they also match!

• E.g., (match ‘(1 2 3) 
 [`(,a ,b) b] 
 [`(,a . ,b) b]) ; returns ‘(2 3)

!45

!46

(match e
 [‘hello ‘goodbye]
 [(? number? n) (+ n 1)]
 [(? nonnegative-integer? n)
 (+ n 2)]
 [(cons x y) x]
 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matching a literal

!47

(match e
 [‘hello ‘goodbye]
 [(? number? n) (+ n 1)]
 [(? nonnegative-integer? n)
 (+ n 2)]
 [(cons x y) x]
 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches when e evaluates
to some number?

(binds n)

!48

(match e
 [‘hello ‘goodbye]
 [(? number? n) (+ n 1)]
 [(? nonnegative-integer? n)
 (+ n 2)]
 [(cons x y) x]
 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Never matches!
Subsumed by previous case!

!49

(match e
 [‘hello ‘goodbye]
 [(? number? n) (+ n 1)]
 [(? nonnegative-integer? n)
 (+ n 2)]
 [(cons x y) x]
 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a cons cell, binds x and y

!50

(match e
 [‘hello ‘goodbye]
 [(? number? n) (+ n 1)]
 [(? nonnegative-integer? n)
 (+ n 2)]
 [(cons x y) x]
 [`(,a0 ,a1 ,a2) (+ a1 a2)])

Matches a list of length three
Binds first element as a0, second as a1, etc…

Called a “quasi-pattern”

Can also test predicates on bound vars:
`(,(? nonnegative-integer? x) ,(? positive? y))

!51

(match e
 [‘hello ‘goodbye]
 [(? number? n) (+ n 1)]
 [(? nonnegative-integer? n)
 (+ n 2)]
 [(cons x y) x]
 [`(,a0 ,a1 ,a2) (+ a1 a2)]
 [_ 23])

Can also have a default case

Exercise

Define a function foo that returns:
- twice its argument, if its argument is a number?
- the first two elements of a list, if its argument is a
list of length three, as a list

- the string “error” if it is anything else

!52

(define (foo x)
 (match x
 [(? …) …]
 …))

Exercise

!53

(define (foo x)
 (match x
 [(? number? n) (* n 2)]
 [`(,a ,b ,_) `(,a ,b)]
 [_ "error"]))

Answer (one of many)

Define a function foo that returns:
- twice its argument, if its argument is a number?
- the first two elements of a list, if its argument is a
list of length three, as a list

- the string “error” if it is anything else

Exercise

!54

(define (foo x)
 (match x
 [(? number? n) (* n 2)]
 [`(,a ,b ,_) `(,a ,b)]
 [_ "error"]))

Observe how quasipatterns and
quasiquotes interact

Answer (one of many)

Define a function foo that returns:
- twice its argument, if its argument is a number?
- the first two elements of a list, if its argument is a
list of length three, as a list

- the string “error” if it is anything else

Structural Recursion
• Structural recursion

• Recurs on some smaller piece of the input obtained by
destructing (e.g., matching) on it.

• Easy to prove termination

• Code is making input smaller at each recursive step,
thus will eventually bottom out

• Much of the code you will write is structurally recursive

• But some things cannot be expressed in a structurally
recursive way

• E.g., generative recursion, other algorithms, …

!55

Exercise

Consider that we define trees as follows:

(define (tree? t)
 (match t
 [`(leaf ,n) #t]
 [`(node ,(? tree? t0) ,(? tree? t1)) #t]
 [_ #f]))

Assuming trees are sorted, write a recursive function using
match patterns, (least t) to get the smallest element in the
tree (i.e., bottom left leaf).
(least (node (leaf 0) (leaf 1)) should be 0
(Hint: look at the definition of tree?)

!56

Generative Recursion
• Generative recursion

• Recurs on some structure built / calculated from input

• Not as easy (in general) to prove termination

• How do we know it won’t just loop forever?

• Strictly more powerful than structural recursion

• Some programs we can’t write w/ just structural
recursion

• E.g., QuickSort

!57

Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!58

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3 -5 2 0 1

Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!59

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3 -5 2 0 1

Pivot < > < <

Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!60

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot< >< <

Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!61

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot >Now sort these!

Example
((λ(x) (x x))

(λ(x) (x x)))

< < Pivot

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!62

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot >

Example
((λ(x) (x x))

(λ(x) (x x)))

Now run quicksort on these

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!63

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot >

Example
((λ(x) (x x))

(λ(x) (x x)))

Pivot

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!64

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Pivot>

Example
((λ(x) (x x))

(λ(x) (x x)))

QuickSort is a popular and fast sorting
comparative sorting algorithm with O(n*log(n))
complexity

!65

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

3-5 20 1

Original pivot Just returns 2

Now all sorted!

Exercise

Write a function which returns the elements in a
list, l, which are less than some number n

(define (elements< l n)
 …)

Hint: use match

!66

Exercise

Write a function which returns the elements in a
list, l, which are less than some number n

!67

(define (elements< l n)
 (match l
 ['() '()]
 [`(,first ,rest …)
 #:when (< first n)
 (cons first
 (elements< rest n))]
 [_ (elements< (rest l) n)]))

Answer (one of many)

Exercise

!68

(define (elements< l n)
 (match l
 ['() '()]
 [`(,first ,rest ...) #:when (< first n)
 (cons first (elements< rest n))]
 [_ (elements< (rest l) n)]))

(define (elements> l n)
 (match l
 ['() '()]
 [`(,first ,rest ...) #:when (> first n)
 (cons first (elements> rest n))]
 [_ (elements> (rest l) n)]))

Can also easily write elements>

Redundant, will fix
next week

Exercise

!69

•To sort list l, first choose a pivot element (arbitrary), p, from l
•Next, construct l’ of the elements in l that are < p
•Also, construct l’’ of the elements in l that are > p
•Now, return…

•QuickSort(l’) ++ [p] ++ QuickSort(l’’)

(define (quicksort l)
 (if (empty? l)
 '()
 (let* ([pivot (first l)]
 [restl (rest l)]
 [elements-lt (elements< restl pivot)]
 [elements-gt (elements> restl pivot)])
 …)))

Complete the definition

Exercise

!70

(define (quicksort l)
 (if (empty? l)
 '()
 (let* ([pivot (first l)]
 [restl (rest l)]
 [elements-lt (elements< restl pivot)]
 [elements-gt (elements> restl pivot)])
 (append
 (quicksort elements-lt)
 (list pivot)
 (quicksort elements-gt)))))

Unfortunately, our implementation still has a bug!

Exercise

!71

(define (quicksort l)
 (if (empty? l)
 '()
 (let* ([pivot (first l)]
 [restl (rest l)]
 [elements-lt (elements< restl pivot)]
 [elements-gt (elements> restl pivot)])
 (append
 (quicksort elements-lt)
 (list pivot)
 (quicksort elements-gt)))))

Exercise: find a list l such that

(not (equal? (sort l <) (quicksort l)))

Exercise

!72

(define (quicksort l)
 (if (empty? l)
 '()
 (let* ([pivot (first l)]
 [restl (rest l)]
 [elements-lt (elements< restl pivot)]
 [elements-gt (elements> restl pivot)])
 (append
 (quicksort elements-lt)
 (list pivot)
 (quicksort elements-gt)))))

Our QuickSort “drops” numbers
(not (equal? (sort ‘(1 1) <)
 (quicksort ‘(1 1))))

Exercise

!73

(define (quicksort l)
 (if (empty? l)
 '()
 (let* ([pivot (first l)]
 [pivot-list (elements= l pivot)]
 [restl (remove pivot l)]
 [elements-lt (elements< restl pivot)]
 [elements-gt (elements> restl pivot)])
 (append
 (quicksort elements-lt)
 pivot-list
 (quicksort elements-gt)))))

Solution is to make pivot a list!

Exercise

!74

(define (quicksort l)
 (if (empty? l)
 '()
 (let* ([pivot (first l)]
 [pivot-list (elements= l pivot)]
 [restl (remove pivot l)]
 [elements-lt (elements< restl pivot)]
 [elements-gt (elements> restl pivot)])
 (append
 (quicksort elements-lt)
 pivot-list
 (quicksort elements-gt)))))

Observe: QuickSort recursive on data built from input
Thus, QuickSort uses generative recursion

Differential / Random Testing
• Want to be very sure our code is right

• One strategy: fuzzing (“fuzz testing”)

• Generate huge amounts of input, throw it at our code

• One issue: need to check answer is correct

• Idea one: compare against known good version

• This is “differential” testing

• Sometimes want a “slow” and “fast” version

• Slow is obviously-correct but slow

• Idea two: just check some properties of output

• Property-based testing
!75

Example
((λ(x) (x x))

(λ(x) (x x)))

Let’s write a differential fuzzer for our
QuickSort algorithm

!76

(define (random-list i n)
 (if (= i 0)
 '()
 (cons (random 0 n)
 (random-list (- i 1) n))))

Generate random list of length i, whose
elements are all in [0,n-1]

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (counterexamples num-tries list-size max-n)
 (define (loop i l)
 (if (= i 0)
 l
 (let* ([lst (random-list list-size max-n)]
 [sorted-via-sort (sort lst <)]
 [sorted-via-qsort (quicksort lst)])
 (if (equal? sorted-via-sort sorted-via-qsort)
 (loop (- i 1) l)
 (loop (- i 1) (cons lst l))))))
 (loop num-tries '()))

!77

Example
((λ(x) (x x))

(λ(x) (x x)))

!78

(define (counterexamples num-tries list-size max-n)
 (define (loop i l)
 (if (= i 0)
 l
 (let* ([lst (random-list list-size max-n)]
 [sorted-via-sort (sort lst <)]
 [sorted-via-qsort (quicksort lst)])
 (if (equal? sorted-via-sort sorted-via-qsort)
 (loop (- i 1) l)
 (loop (- i 1) (cons lst l))))))
 (loop num-tries '()))

Compare our quicksort against Racket’s sort

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (counterexamples num-tries list-size max-n)
 (define (loop i l)
 (if (= i 0)
 l
 (let* ([lst (random-list list-size max-n)]
 [sorted-via-sort (sort lst <)]
 [sorted-via-qsort (quicksort lst)])
 (if (equal? sorted-via-sort sorted-via-qsort)
 (loop (- i 1) l)
 (loop (- i 1) (cons lst l))))))
 (loop num-tries '()))

!79

(counterexamples 300 300 1000)

