First-class and Higher-order Functions

CIS 352 — Spring 2020
Example

Squaring every element of a list

(define (square-list-values lst)
 (if (null? lst)
 '()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst))))
Example

Squaring every element of a list

\[
\begin{align*}
(\lambda(x)\ (x\ x)) \\
(\lambda(x)\ x)
\end{align*}
\]

(define (square-list-values lst)
 (if (null? lst)
 '()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst))))

Defines base case
Example

Squaring every element of a list

\[
\begin{align*}
&\left((\lambda(x) \ (x \ x)) \\
&\quad \left((\lambda(x) \ (x \ x)) \right) \right)
\end{align*}
\]

\[
\text{(define (square-list-values lst)}
\]
\[
\begin{align*}
&\text{(if (null? lst) } \\
&\quad \text{') } \\
&\quad \text{(cons } (\star \ (\text{car lst)} \ (\text{car lst}))) \\
&\quad \text{(square-list-values (cdr lst))})
\end{align*}
\]

Recursive case first computes the square of (car lst)
Example

Squaring every element of a list

\[(\lambda (x) (x \; x))\]

\[(\lambda (x) (x \; x))\]

(define (square-list-values lst)
 (if (null? lst)
 '()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst))))

Recursive case next recurs on the list’s tail (cdr lst)
Example

Squaring every element of a list

```
(define (square-list-values lst)
  (if (null? lst)
      '()
      (cons (* (car lst) (car lst))
        (square-list-values (cdr lst)))))
```

Recursive case finally extends the new tail list
Anonymous Functions

- Like many languages (e.g., JS, Python, Ruby), Racket allows anonymous functions to be defined and treated as values.

 - `(lambda (args ...) body)` ; returns a function as a value

 - E.g., `(lambda (x) (* x x))` ; returns a square function

 - When a language permits functions to be treated as any other value may be treated (passed to other functions, bound to variables, stored in a list, etc), such functions are called first-class functions.

- Actually, all functions are anonymous—these are not special.

 - `(define (id x) x) == (define id (lambda (x) x))`
Squaring every element of a list

(define (map f lst)
 (if (null? lst)
 '()
 (cons (f (car lst))
 (map f (cdr lst)))))

(define (square-list-values lst)
 (map (lambda (x) (* x x)) lst))
Example

Squaring every element of a list

\[
\lambda (x) (x \times x)
\]

\[
\lambda (x) (x \times x)
\]

\[
\lambda (x) (x \times x)
\]

(map takes a (unary) function and list)

(define (square-list-values lst)
 (map (lambda (x) (* x x)) lst))

(define (map f lst)
 (if (null? lst)
 '()
 (cons (f (car lst))
 (map f (cdr lst)))))

9
Example

Squaring every element of a list:

```scheme
(define (square-list-values lst)
  (map (lambda (x) (* x x)) lst))
```

Works essentially as `square-list-values` except each new value is `f (car lst)`.

```scheme
(define (map f lst)
  (if (null? lst) '(())
   (cons (f (car lst)) (map f (cdr lst)))))
```
Example

Squaring every element of a list

Now we may define square-list-values (in one line) in terms of our (highly-reusable) map component

(define (square-list-values lst)
 (map (lambda (x) (* x x x)) lst))
What is the return value of the following expression?

(let ([f (lambda (a) (* a a a))])
 (let ([g add1])
 (let ([h f])
 (g (h 5))))))
What is the return value of the following expression?

```
(let ([f (lambda (a) (* a a a))])
 (let ([g add1])
  (let ([h f])
   (g (h 5))))))
```

Answer: 126
What is the return value of the following expression?

(let ([tw (lambda (f x) (f (f x)))]))
(let ([th (lambda (f x) (f (f (f x))))])))
(let ([f add1])
 (tw (lambda (x) (th add1 x)) 0))))
What is the return value of the following expression?

(let ([tw (lambda (f x) (f (f x)))]
 (let ([th (lambda (f x) (f (f (f x))))])
 (let ([f add1]
 (tw (lambda (x) (th add1 x)) 0)))))

Answer: 6
Higher-order functions

• Languages with first-class functions also have higher-order (HO) functions and are called higher-order languages (HOL).

 • A higher-order function is a function over functions: a function that takes a function as input, returns a function as output, or both.

• Common higher-order functions include map, foldl, foldr, filter, andmap, ormap, etc...

 • foldl/foldr walks a list and uses a function to reduce it
 • map walks a list to turn every x into (f x) for parameter f
 • andmap/ormap lift a predicate (param) to a list predicate
Write an implementation of andmap, such that:

```
> (andmap list? '((1 2) () (3)))
#t
> (andmap list? '((1 . 2) ()))
#f
> (andmap list? '(1 2 3))
#f
```
Exercise

Double-check: does your implementation short-circuit? What does your implementation give for:

> (andmap list? ‘())
Exercise

Answer:

(define andmap
 (lambda (p? lst)
 (if (null? lst)
 #t
 (and (p? (car lst))
 (andmap p? (cdr lst)))))))

A predicate p? trivially holds for all elements of ‘()
Exercise

Answer:

(define andmap
 (lambda (p? lst)
 (if (null? lst)
 #t
 (and (p? (car lst))
 (andmap p? (cdr lst))))))

This short-circuits because (and …) does!
Another definition, without using (and ...):

```
(define (andmap p? lst)
  (if (null? lst)
      #t
      (if (p? (car lst))
          (andmap p? (cdr lst))
          #f)))
```

Use an if to check the next element. If the test fails, short-circuit and return #f, otherwise recur.
Yet another definition, using a fold:

```
(define (andmap p? lst)
  (foldl (λ (elem b)
           (and b (p? elem)))
         #t
         lst))
```

fold over the list, accumulating a single boolean: at each step, conjoin this bool with (p? elem)
Exercise

Write an implementation of map, using a fold:

> (map add1 '(1 2 3))
'(2 3 4)
(define (map f lst)
 (foldr (lambda (x tail)
 (cons (f x) tail))
 '()
 lst))

Fold over the list from right-to-left, accumulating an updated tail of the list, replacing each x with (f x)
Free variables

• A variable x is called free in expression e, if there exists a reference to x within e whose definition is not also within e.
 • E.g., x is free in \(\text{let} ([y \ 3]) \ (+ \ x \ y) \), but y is not.
 • E.g., x is free in \(\text{list} \ x \ y \ z \); so are y, z, and list!
• Expressions with no free variables are valid programs!
• A function with no free variables is called a combinator.
 • E.g., \(\text{lambda} \ (x) \ (* \ x \ x) \) or \(\lambda \ (f \ x) \ (f \ (f \ x)) \)
 • Combinators are stand-alone, reusable components
• Functions with free variables, save their values! (More soon)
Exercise

What are the free variables of the high-lit expression?

(let ([f (lambda (x)
 (lambda (y)
 (+ x y)))]))

(let ([g (f 2)]
 (g 3)))
Exercise

What are the free variables of the high-lit expression?

(let ([f (lambda (x)
 (lambda (y)
 (+ x y)))]
 (let ([g (f 2)]
 (g 3)))))

Answer: \{ f \}
What are the free variables of the high-lit expression?

\[
(\text{let } ([h \ (\lambda \ (x) \ (+ \ 3 \ x))])
\begin{align*}
&\ (\text{let } ([g \ (\lambda \ (x \ y) \ (* \ x \ y \ y))])
&\ (h \ (g \ 3 \ 4)))
\end{align*}
\]
Exercise

What are the free variables of the high-lit expression?

(let ([h ([x] (+ 3 x))])
 (let ([g ([x y] (* x y y))])
 (h (g 3 4))))

Answer: {h, *}
What are the free variables of the highlighted expression?

\[\text{(lambda (x) (lambda (y) ((lambda (x z) (- x z)) x y)))} \]
Exercise

What are the free variables of the high-lit expression?

\[
\begin{align*}
(l & \lambda (x) \\
 & (l \lambda (y) \\
 & \quad ((l \lambda (x \ z) (- x \ z)) \ x \ y)))
\end{align*}
\]

Answer: \{x, y, -\}
Currying

• Using higher-order functions, it is always possible to encode a k-ary function as a set of unary functions via **currying**:

 • Invented by Frege; popularized by Schönfinkel, Curry

 • A function (define twice \((\lambda (f \ x) (f (f \ x)))\)) is curried as two nested functions:
 (define twice \((\lambda (f) (\lambda (x) (f (f \ x))))\))
 and to apply the function we call it twice
 ((twice add1) 0)

 • The first call binds \(f\) to \texttt{add1} and returns a function that **saves / remembers** this value for \(f\).

 • The second call binds \(x\) and returns \((f (f \ x))\)
Define a curried version of the slope function:

```scheme
(define (slope x0 y0 x1 y1)
  (/ (- y1 y0) (- x1 x0)))

> (slope 1 1 5 9)
2
```
Answer:

(define (slope x0)
 (lambda (y0)
 (lambda (x1)
 (lambda (y1)
 (/ (- y1 y0) (- x1 x0))))))

> (((((slope 1) 1) 5) 9) 2)