
First-class and Higher-
order Functions

!1

CIS 352 — Spring 2020

Example
((λ(x) (x x))

(λ(x) (x x)))

!2

(define (square-list-values lst)
 (if (null? lst)
 ‘()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst)))))

Squaring every element of a list

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (square-list-values lst)
 (if (null? lst)
 ‘()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst)))))

!3

Defines base case

Squaring every element of a list

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (square-list-values lst)
 (if (null? lst)
 ‘()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst)))))

!4

Squaring every element of a list

Recursive case first computes the square of (car lst)

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (square-list-values lst)
 (if (null? lst)
 ‘()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst)))))

!5

Squaring every element of a list

Recursive case next recurs on the list’s tail (cdr lst)

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (square-list-values lst)
 (if (null? lst)
 ‘()
 (cons (* (car lst) (car lst))
 (square-list-values (cdr lst)))))

!6

Squaring every element of a list

Recursive case finally extends the new tail list

Anonymous Functions
• Like many languages (e.g., JS, Python, Ruby), Racket allows

anonymous functions to be defined and treated as values.

• (lambda (args …) body) ; returns a function as a value

• E.g., (lambda (x) (* x x)) ; returns a square function

• When a language permits functions to be treated as any
other value may be treated (passed to other functions,
bound to variables, stored in a list, etc), such functions are
called first-class functions.

• Actually, all functions are anonymous—these are not special.

• (define (id x) x) == (define id (lambda (x) x))

!7

Example
((λ(x) (x x))

(λ(x) (x x)))

!8

(define (square-list-values lst)
 (map (lambda (x) (* x x)) lst))

Squaring every element of a list

(define (map f lst)
 (if (null? lst)
 ‘()
 (cons (f (car lst))
 (map f (cdr lst)))))

Example
((λ(x) (x x))

(λ(x) (x x)))

!9

(define (square-list-values lst)
 (map (lambda (x) (* x x)) lst))

Squaring every element of a list

(define (map f lst)
 (if (null? lst)
 ‘()
 (cons (f (car lst))
 (map f (cdr lst)))))

map takes a
(unary) function

and list

Example
((λ(x) (x x))

(λ(x) (x x)))

!10

(define (square-list-values lst)
 (map (lambda (x) (* x x)) lst))

Squaring every element of a list

(define (map f lst)
 (if (null? lst)
 ‘()
 (cons (f (car lst))
 (map f (cdr lst)))))

Works essentially as
square-list-values

except each new
value is (f (car lst))

Example
((λ(x) (x x))

(λ(x) (x x)))

!11

(define (square-list-values lst)
 (map (lambda (x) (* x x)) lst))

Squaring every element of a list

(define (map f lst)
 (if (null? lst)
 ‘()
 (cons (f (car lst))
 (map f (cdr lst)))))

Now we may define
square-list-values

(in one line) in terms of our
(highly-reusable) map component

Exercise

!12

(let ([f (lambda (a) (* a a a))])
 (let ([g add1])
 (let ([h f])
 (g (h 5)))))

What is the return value of the following expression?

Exercise

!13

(let ([f (lambda (a) (* a a a))])
 (let ([g add1])
 (let ([h f])
 (g (h 5)))))

What is the return value of the following expression?

Answer: 126

Exercise

!14

(let ([tw (lambda (f x) (f (f x)))])
 (let ([th (lambda (f x) (f (f (f x))))])
 (let ([f add1])
 (tw (lambda (x) (th add1 x)) 0))))

What is the return value of the following expression?

Exercise

!15

(let ([tw (lambda (f x) (f (f x)))])
 (let ([th (lambda (f x) (f (f (f x))))])
 (let ([f add1])
 (tw (lambda (x) (th add1 x)) 0))))

What is the return value of the following expression?

Answer: 6

Higher-order functions
• Languages with first-class functions also have higher-order

(HO) functions and are called higher-order languages (HOL).

• A higher-order function is a function over functions: a
function that takes a function as input, returns a function
as output, or both.

• Common higher-order functions include map, foldl, foldr,
filter, andmap, ormap, etc…

• foldl/foldr walks a list and uses a function to reduce it

• map walks a list to turn every x into (f x) for parameter f

• andmap/ormap lift a predicate (param) to a list predicat

!16

Exercise

Write an implementation of andmap, such that:

!17

> (andmap list? ‘((1 2) () (3)))
#t
> (andmap list? ‘((1 . 2) ()))
#f
> (andmap list? ‘(1 2 3))
#f

Exercise

Double-check: does your implementation short-
circuit? What does your implementation give for:

!18

> (andmap list? ‘())

Exercise

!19

(define andmap
 (lambda (p? lst)
 (if (null? lst)
 #t
 (and (p? (car lst))
 (andmap p? (cdr lst))))))

Answer:

A predicate p?
trivially holds for all

elements of ‘()

Exercise

!20

(define andmap
 (lambda (p? lst)
 (if (null? lst)
 #t
 (and (p? (car lst))
 (andmap p? (cdr lst))))))

Answer:

This short-circuits because (and …) does!

Exercise

!21

(define (andmap p? lst)
 (if (null? lst)
 #t
 (if (p? (car lst))
 (andmap p? (cdr lst))
 #f)))

Another definition, without using (and …):

Use an if to check the next element. If the test fails,
short-circuit and return #f, otherwise recur.

Exercise

!22

(define (andmap p? lst)
 (foldl (λ (elem b)
 (and b (p? elem)))
 #t
 lst))

Yet another definition, using a fold:

fold over the list, accumulating a single boolean:
at each step, conjoin this bool with (p? elem)

Exercise

Write an implementation of map, using a fold:

!23

> (map add1 ‘(1 2 3))
‘(2 3 4)

Exercise

!24

(define (map f lst)
 (foldr (lambda (x tail)
 (cons (f x) tail))
 '()
 lst))

Answer:

Fold over the list from right-to-left, accumulating
an updated tail of the list, replacing each x with (f x)

Free variables
• A variable x is called free in expression e, if there exists a

reference to x within e whose definition is not also within e.

• E.g., x is free in (let ([y 3]) (+ x y)), but y is not.

• E.g., x is free in (list x y z); so are y, z, and list!

• Expressions with no free variables are valid programs!

• A function with no free variables is called a combinator.

• E.g., (lambda (x) (* x x)) or (λ (f x) (f (f x)))

• Combinators are stand-alone, reusable components

• Functions with free variables, save their values! (More soon)

!25

Exercise

!26

(let ([f (lambda (x)
 (lambda (y)
 (+ x y)))])
 (let ([g (f 2)])
 (g 3)))

What are the free variables of the high-lit expression?

Exercise

!27

(let ([f (lambda (x)
 (lambda (y)
 (+ x y)))])
 (let ([g (f 2)])
 (g 3)))

What are the free variables of the high-lit expression?

Answer: { f }

Exercise

!28

(let ([h (λ (x) (+ 3 x))])
 (let ([g (λ (x y) (* x y y))])
 (h (g 3 4))))

What are the free variables of the high-lit expression?

Exercise

!29

(let ([h (λ (x) (+ 3 x))])
 (let ([g (λ (x y) (* x y y))])
 (h (g 3 4))))

What are the free variables of the high-lit expression?

Answer: { h, * }

Exercise

(lambda (x)
 (lambda (y)
 ((lambda (x z) (- x z)) x y)))

!30

What are the free variables of the high-lit expression?

Exercise

!31

(lambda (x)
 (lambda (y)
 ((lambda (x z) (- x z)) x y)))

What are the free variables of the high-lit expression?

Answer: { x, y, - }

Currying
• Using higher-order functions, it is always possible to encode

a k-ary function as a set of unary functions via currying:

• Invented by Frege; popularized by Schönfinkel, Curry

• A function (define twice (λ (f x) (f (f x)))) is
curried as two nested functions:  
(define twice (λ (f) (λ (x) (f (f x))))) 
and to apply the function we call it twice  
((twice add1) 0)

• The first call binds f to add1 and returns a function that
saves / remembers this value for f.

• The second call binds x and returns (f (f x))

!32

Exercise

!33

(define (slope x0 y0 x1 y1)
 (/ (- y1 y0) (- x1 x0)))

Define a curried version of the slope function:

> (slope 1 1 5 9)
2

Exercise

!34

(define (slope x0)
 (lambda (y0)
 (lambda (x1)
 (lambda (y1)
 (/ (- y1 y0) (- x1 x0))))))

> ((((slope 1) 1) 5) 9)
2

Answer:

