First-class and Higher-
order Functions

CIS 352 — Spring 2020



Example |
(ﬁxoo(xxﬂ

um@@ﬂ

Squaring every element of a list

(define (square-list-values 1lst)
(if (null? 1lst)
“()
(cons (* (car 1lst) (car 1lst))
(square-list-values (cdr 1lst)))))




Example |
(ﬁxoo(xxﬂ

@m@m

Squaring every element of a list

(define (square-list-values lst)
(1f (??IIM Defines base case
(cons (* (car 1lst) (car 1lst))
(square-list-values (cdr 1lst)))))




Example
(ﬁxoo(xxﬂ

@@u@ﬂ

Squaring every element of a list

(define (square-list-values 1lst)
(if (null? 1lst)
“()
(cons (% (car 1lst) (car 1lst))

‘//ﬂ (square-list-values (cdr 1st)))))

Recursive case first computes the square of (car Ist)

4




Example
(ﬁxoo(xxﬂ

@@u@ﬂ

Squaring every element of a list

(define (square-list-values 1lst)
(if (null? 1lst)
“()
(cons (* (car 1lst) (car 1lst))
(square-list-values (cdr 1lst)))))

/'

Recursive case next recurs on the list’s tail (cdr Ist)

5




Example |
(ﬁxoo(xxﬂ

@@u@ﬂ

Squaring every element of a list

(define (square-list-values 1lst)
(if (null? 1lst)
‘()
(cons (* (car 1lst) (car 1lst))
(square-list-values (cdr 1lst)))))

/'

Recursive case finally extends the new tail list

6




Anonymous Functions

® | ke many languages (e.g., JS, Python, Ruby), Racket allows
anonymous functions to be defined and treated as values.

e (lambda (args ..) body) :returnsa function as a value
® E.g., (lambda (x) (% x X)) ;returns a square function

® \When a language permits functions to be treated as any
other value may be treated (passed to other functions,

bound to variables, stored in a list, etc), such functions are
called first-class functions.

® Actually, all functions are anonymous—these are not special.

e (define (id x) x) == (define id (lambda (x) x))



Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

Squaring every element of a list

(define (map f 1st)
(if (null? 1st)
“()
(cons (f (car 1lst))
(map f (cdr 1lst)))))

(define (square-list-values 1st)
(map (lambda (x) (% x x)) 1st))




Example |
(ﬁxoo(xxﬂ

@@u@ﬂ

Squaring every element of a list
map takes a

(define (map f lst) 4~ (unary) function

(if (null? 1st) .
() and list

(cons (f (car 1lst))
(map f (cdr 1lst)))))

(define (square-list-values 1st)
(map (lambda (x) (% x x)) 1st))




Example |
(1 @ )

(A(x) & m

Works essentially as

Squaring every elem square-list-values
except each new
(define (map f 1st)yalueis (f (car lst))
(if (null? 1lst)

()
(cons (f (car lst))

(map f (cdr lst)))))

(define (square-list-values 1st)
(map (lambda (x) (% x x)) 1st))

10




Example
(@(x) (x )

(M) (X m

Squaring every element of a list

Now we may define
square-list-values

(in one line) in terms of our
(highly-reusable) map component

(define (square-list-values 1st)
(map (lambda (x) (% x x)) 1st))

11




Exercise

What is the return value of the following expression?

(let ([f (lambda (a) (x a a a))l)
(let ([g addl])
(let ([h f])

(g (h 5)))))

12




Exercise

What is the return value of the following expression?

(let ([f (lambda (a) (x a a a))l)
(let ([g addl])
(let ([h f])

(g (h 5)))))

Answer: 126

13




Exercise

What is the return value of the following expression?

(let ([tw (lambda (f x) (f (f x)))1)
(let ([th (lambda (f x) (f (f (f x))))]1)
(let ([f addll])
(tw (lambda (x) (th addl x)) 0))))

14




Exercise

What is the return value of the following expression?

(let ([tw (lambda (f x) (f (f x)))1)
(let ([th (lambda (f x) (f (f (f x))))]1)
(let ([f addll])
(tw (lambda (x) (th addl x)) 0))))

Answer: 6

15




Higher-order functions

e |Languages with first-class functions also have higher-order
(HO) functions and are called higher-order languages (HOL).

e A higher-order function is a function over functions: a
function that takes a function as input, returns a function

as output, or both.

e Common higher-order functions include map, foldl, foldr,

filter, andmap, ormap, etc...

e foldl/foldr walks a list and uses a function to reduce it

e map walks a list to turn every x into (f x) for

e andmap/ormap lift a predicate (param) to a

16

narameter f

ist predicat



Write an implementation of andmap, such that:

> (andmap list? ‘((1 2) () (3)))

#t

> (andmap list? “‘((1 . 2) ()))
#f

> (andmap list? ‘(1 2 3))

#f

17




Double-check: does your implementation short-
circuit? What does your implementation give for:

> (andmap list? ‘())

18




Answer:

(define andmap A predicate p?
(lambda (p? lst) trivially holds for all
(if (null? 1st)
#t ¢&—
(and (p? (car 1st))
(andmap p? (cdr lst))))))

elements of ()

19




Answer:

(define andmap
(lambda (p? 1st)
(if (null? 1st)
#T
(and (p? (car 1lst))
(andmap p? (cdr lst))))))

This short-circuits because (and ..) does!

20
s



Another definition, without using (and ..):

(define (andmap p? lst)
(if (null? 1st)
#t
(if (p? (car 1lst))
(andmap p? (cdr 1lst))

/4 #£)))

Use an if to check the next element. It the test fails,

short-circuit and return #f, otherwise recur.
21




Yet another definition, using a fold:

(define (andmap p? 1st)
(foldl (A (elem b)
(and b (p? elem)))

#t
///ﬁ lst))

fold over the list, accumulating a single boolean:

at each step, conjoin this bool with (p? elem)




Write an implementation of map, using a fold:

> (map addl ‘(1 2 3))
‘(2 3 4)

23




Answer:

(define (map f 1lst)
(foldr (lambda (x tail)
(cons (f x) tail))
()
lst))

Fold over the list from right-to-left, accumulating
an updated tail of the list, replacing each x with (f x)

24




Free variables

® A variable x is called free in expression e, if there exists a
reference to x within e whose definition is not also within e.

® Eg, Xisfreein (Let ([y 3]) (+ x y)), butyisnot.

® E.g.,xisfreein (list x y z);so arey, z, and list!

® Expressions with no free variables are valid programs!
® A function with no free variables is called a combinator.

® F.g., (Lambda (x) (x x x)) or (A (f x) (f (f x)))

® Combinators are stand-alone, reusable components

® Functions with free variables, save their values! (More soon)

25



Exercise

What are the free variables of the high-lit expression?

(let ([f (lambda (x)
(lambda (y)
(+ x y)))
(let ([g (f 2)])
(g 3)))

1)

26




Exercise

What are the free variables of the high-lit expression?

(let ([f (lambda (x)
(lambda (y)
(+ x y)))
(let ([g (f 2)])
(g 3)))

1)

Answer: {1}

27




Exercise

What are the free variables of the high-lit expression?

(let ([h (A (x) (+ 3 x))I)
(let ([g (A (x y) (x xy vy))Il)
(h (g 3 4))))

28




Exercise

What are the free variables of the high-lit expression?

(let ([h (A (x) (+ 3 x))I)
(let ([g (A (x y) (x xy vy))Il)
(h (g 3 4))))

Answer: { h, *}

29




Exercise

What are the free variables of the high-lit expression?

(lambda (x)
(lambda (y)
((lambda (x z) (- x z)) x y)))

30




Exercise

What are the free variables of the high-lit expression?

(lambda (x)
(lambda (y)
((lambda (x z) (- x z)) x y)))

Answer: {x, y, -}

31




Currying

® Using higher-order functions, it is always possible to encode
a k-ary function as a set of unary functions via currying:

® Invented by Frege; popularized by Schonftinkel, Curry

® A function (define twice (A (f x) (f (f x)))) is

curried as two nested functions:

(define twice (A (f) (A (x) (f (f x)))))
and to apply the function we call it twice
((twice addl) 0)

® The first call binds f to add1l and returns a function that
saves / remembers this value for f.

® The second call binds x and returns (f (f x))

32



Detine a curried version ot the slope function:

(define (slope x0 y® x1 y1)
(/ (- yl ya) (- x1 x0)))

> (slope 1 15 9)
2

33




Answer:

(define (slope x0)
(lambda (y0)
(lambda (x1)
(lambda (y1)
(/ (- yl yo) (- x1 x0))))))

> ((((slope 1) 1) 5) 9)
2

34




