
Order of evaluation,
and the stack

!1

CIS 352 — Spring 2020

The stack
• Some expressions can be evaluated in O(1) time, regardless

of the values involved; a subset are atomic expressions.

• (cons x (cdr lst)) is an O(1) operation, but is made of
several atomic steps: evaluate x, evaluate lst, evaluate
(cdr lst), call cons to build the new cons-cell, return…

• Variable references (e.g., to x, lst, cons) are considered
atomic expressions that take just one conceptual step. 
A lambda expression is also considered atomic.

• Other, complex, expressions, such as function invocation
may generally take unbounded time.

• The stack stores pending data while this work occurs.

!2

The stack
• Consider (f (g x) (h y))—how is this evaluated?

• f is evaluated atomically

• (g x) is evaluated as the argument to this func. value

• g is evaluated atomically; then x

• The value of g is applied on the value of x; …; returns

• (h y) is evaluated as a second argument

• h is evaluated atomically; then, y

• The value of h is applied on the value of y; …; returns

• The value of f is applied on g’s and h’s return values

!3

The stack
• Consider (f (g x) (h y))—how is this evaluated?

• While the call (g x) is being evaluated, we need to
remember a few things: the value of f just evaluated, the
expression (h y) to be evaluated next; while the call (h y)
is evaluated, we need to save the value of f and (g x).

• These values are saved on the stack!

• As calls&returns form a proper nesting structure, we
want to store such pending values in LIFO order.

• Implemented well, using a stack lends itself to improved
cache performance as values used together, sit together.

!4

The stack

!5

(f (g x) (h y)) empty

The expression is reached from a
caller or surrounding expression

(called the eval. context / call ctxt.)

… ctxt …

!6

(f (g x) (h y))

… ctxt …

empty

Control (the current expression) steps
to evaluate the subexpression in
call position / function position.

The value of f can be evaluated atomically.

The stack

!7

(f (g x) (h y))

Value of f

empty

… ctxt …

Control (the current expression) steps
to evaluate the first subexpression in

argument position, (g x). The value for
f is saved on the stack.

Its arguments must be evaluated first.

The stack

!8

(f (g x) (h y))

Value of f

empty

… ctxt …

Control (the current expression) steps
to evaluate the subexpression in

call position.

The value of g can be evaluated atomically.

The stack

!9

(f (g x) (h y))

Value of f

empty

… ctxt …

Control steps to evaluate the  
subexpression in argument position. The

value for g is saved on the stack.

The value of x can be evaluated atomically.

Value of g

The stack

!10

(f (g x) (h y))

Value of f

… (g x) …

… ctxt …

The value of x just evaluated, and the value
of g saved just before, can now be used

to apply g on x, leading to an unbounded
amount of work.

This may involve any number of
pending expressions being saved and

eliminated atop the stack.

The stack
empty

!11

(f (g x) (h y))

Value of f

empty

… ctxt …

g returns with a value that must
be saved on the stack while the final

argument expression of (f …) is evaluated.

The stack

!12

(f (g x) (h y))

Value of f

empty

… ctxt …

The stack

Value of (g x)
Control (the current expression) steps

to evaluate the second subexpression in
argument position, (h y). The value for

(g x) is now saved on the stack.

!13

(f (g x) (h y))

Value of f

empty

… ctxt …

The stack

Value of (g x)Control (the current expression) steps
to evaluate the subexpression in

call position.

!14

(f (g x) (h y))

Value of f

empty

… ctxt …

The stack

Value of (g x)
Control steps to evaluate the  

subexpression in argument position. The
value for h is saved on the stack.

The value of y can be evaluated atomically.

Value of h

!15

(f (g x) (h y))

Value of f

… (h y) …

… ctxt …

The stack

Value of (g x)

The value of y just evaluated, and the value
of h saved just before, can now be used

to apply h on y, leading to an unbounded
amount of work.

This may involve any number of
pending expressions being saved and

eliminated atop the stack.

empty

!16

(f (g x) (h y))

Value of f

… ctxt …

The stack

Value of (g x)

empty

h returns with the final argument
value for the original call to f

The value of f, saved on the stack,
is applied on the value of (g x),

also on the stack, and the value of
(h y) just returned.

!17

(f (g x) (h y))

… ctxt …

The stack empty

This call may involve any number of
pending expressions being saved and

eliminated atop the stack.

When f returns, it’s value is returned
to the original evaluation context.

…

(f (g x) (h y))

…

Example
((λ(x) (x x))

(λ(x) (x x)))

!18

(+ (f x) 1 (g (f y)))

For the following code, indicate when each
subexpression is reached and returns.

Example
((λ(x) (x x))

(λ(x) (x x)))

!19

(+1 (f5 x6)2 13 (g7 (f9 y10)8)4)0

(+ (f x) 1 (g (f y)))

With each subexpression labeled.

For the following code, indicate when each
subexpression is reached and returns.

Example
((λ(x) (x x))

(λ(x) (x x)))

!20

(+1 (f5 x6)2 13 (g7 (f9 y10)8)4)0

For the following code, indicate when each
subexpression is reached and returns.

(+ (f x) 1 (g (f y)))

[[2 [[]]5 [[]]6 Callf]]2

[[4 [[]]7 [[8 [[]]9 [[]]10 Callf]]8 Callg]]4
[[0 [[]]3

Call+]]0

Example
((λ(x) (x x))

(λ(x) (x x)))

!21

For the following code, indicate when each
subexpression is reached and returns.

(let ([ls ‘(0)1])
 (if (null?6 ls7)3
 ‘()4
 (cons8 ls9 ls10)5)2)0

[[]]1 Bindls [[2 [[3 [[]]6 [[]]7 Callnull?]]3[[0

[[5 [[]]8 [[]]9 [[]]10 Callcons]]5]]2]]0

