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Racket
• Dynamically typed: variables are untyped, values typed 

• Functional: Racket emphasizes functional style 

• Compositional—emphasizes black-box components 

• Immutability—requires automatic memory management 

• Imperative: Racket allows data to be modified, in carefully 
considered cases, but doesn’t emphasize “impure” code 

• Object-oriented: racket has a powerful object system 

• Language-oriented: Racket is really a language toolkit 

• Homoiconic: Code is data; the primary data structure of 
Scheme, and LISP-family languages, is the linked list, written as 
s-expressions, & Scheme code is explicitly written as lists.
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Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1) 
  (/ (- y1 y0) (- x1 x0)))
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Calculating the slope of a line in Racket



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1) 
  (/ (- y1 y0) (- x1 x0)))
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Prefix notation



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1) 
  (/ (- y1 y0) (- x1 x0)))
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Functions defined via prefix notation, too



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1) 
  (/ (- y1 y0) (- x1 x0))) 

(calculate-slope 0 0 3 2) 

!6

Calls to user-defined functions also in prefix notation



Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1) 
  (/ (- y1 y0) (- x1 x0))) 

(calculate-slope 0 0 3 2) 
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Note: preferred style puts closing parens at end of blocks



Basic Types
• Numeric tower. Numeric types gracefully degrade 

• E.g., (* (/ 8 3) 2+1i) is 16/3+8/3i 

• Note that 2+1i is a literal value, as is 2.3 

• Strings and characters (“foo” and #\a) 

• Booleans (#t and #f) including logical operator (e.g., or) 

• Note that operators “short circuit” 

• Symbols are interned strings ‘foo 

• Implicitly only one copy of each, unlike (say) strings 

• The #<void> value (produced by (void))
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Exercise

Compute the sum of the following: 
• 2/3 and 1.5 
• 3+8i and 3i 
• 0 and positive infinity (+inf.0)
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Exercise

Compute the sum of the following: 
• (+ 2/3 1.5) 
2.1666666666666665 (N.B., result is inexact) 
• (+ 3+8i 3i) 
3+11i 
• (+ 0 +inf.0) 
+inf.0
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Forms
• A form is a recognized syntax in the language 

• (if …), (and …) are forms, but +, list refer to functions 

• You can define new forms too! More on this later… 

• Scheme prefers to give a small number of general forms. 

• The tag just after the open-paren determines the form: 

• (define foo value) — Define a variable 

• (define (foo a0 a1 …) body) — Define a function 

• (if guard e-true e-false), (or e0 e1 …), etc 

• Otherwise, by default, each pair of parens is a call site.
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Exercise
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Define a function that takes an argument, x, 
and returns: 
• x times 2, if x is less than 0 
• x times -2 otherwise  
 
Hint: use(< x y) for comparison



Exercise
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(define (f x) 
  (if (< x 0) 
      (* 2 x) 
      (* -2 x)))



Exercise
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Define a function that takes an argument, x, and 
returns: 
• x divided by 2, if x is even 
• x times 3 plus 1, if x is odd 
 
Hint: use = and modulo to check if x is even/odd



Exercise
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(define (collatz x) 
  (if (= 0 (modulo x 2)) 
      (/ x 2) 
      (+ 1 (* 3 x))))



Derived Types
• S-expressions (symbolic expression) 

• Untyped lists that generalize neatly to trees: 

• Computer represents represents these as linked structures 

• Cons cells (pairs) of a head and a tail (cons 1 2) 

• Racket also has structural types (defined via structs) 

• Defined via struct; aids robustness 

• We will usually prefer agility of “tagged” S-expressions 

• Also an elaborate object-orientation system (we won’t cover)
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(this (is an) s expression)



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 0 1)

0

1

The function cons builds a cons cell



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 0 1)

0

1

The function car gets the left element

(car ) is 0



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 0 1)

0

1

The function cdr gets the right element

(cdr ) is 1



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 0 1)

0

1

At runtime, each cons cell sits at an address in memory

0x700000032acd1200



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 0 1)

0

1

In fact, numbers are also stored in memory locations. 
They are thus said to be a “boxed” type

0x700000012ace1564



Example
((λ(x) (x x))

(λ(x) (x x)))
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(define x 23) 
(displayln x) 
(set! x 24) 
(displayln x)

Actually, every Racket variable stores a value in some 
“box” (i.e., memory location)

23x Prints 23

0x700000033dea2280



Example
((λ(x) (x x))

(λ(x) (x x)))
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(define x 23) 
(displayln x) 
(set! x 24) 
(displayln x)

Actually, every Racket variable stores a value in some 
“box” (i.e., memory location)

24
0x700000033dea2280

Changes x’s value to 24x



Example
((λ(x) (x x))

(λ(x) (x x)))
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(define x 23) 
(displayln x) 
(set! x 24) 
(displayln x)

Actually, every Racket variable stores a value in some 
“box” (i.e., memory location)

24 Now prints 24x
0x700000033dea2280



Example
((λ(x) (x x))

(λ(x) (x x)))
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(define x (vector 1 2 3)) 
(vector-set! x 1 0) 
x 
;; ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and 
give O(1) indexing and updating
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In this class, you will not be allowed to use set! or 
vector-set! unless explicitly noted

Code that uses set! may be denied full credit



Example
((λ(x) (x x))

(λ(x) (x x)))

!27

(cons 1 (cons 0 ‘()))

‘()

1 0
Empty list

This is how Racket represents lists in memory

Pairs enable us to build linked lists of data



Example
((λ(x) (x x))

(λ(x) (x x)))
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(cons 2 (cons 1 (cons 0 ‘())))

Note that in Racket, the following are equivalent

‘(2 1 0)

But the following is called an improper list
(cons 2 (cons 1 0))

‘(2 1 . 0)

Dot indicates a cons cell of a left and right element



Example
((λ(x) (x x))

(λ(x) (x x)))
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‘(this (is an) s expression)

Also can build compound expressions



Example
((λ(x) (x x))

(λ(x) (x x)))
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‘()

‘this ‘expression‘s

‘is ‘an

‘()

‘(this (is an) s expression)

Also can build compound expressions



Example
((λ(x) (x x))

(λ(x) (x x)))
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‘()

‘this ‘expression‘s

‘is ‘an

‘()

Empty list



Example
((λ(x) (x x))

(λ(x) (x x)))
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‘()

‘this ‘expression‘s

‘is ‘an

‘()

Note link to compound subexpression



Exercise

Draw the cons diagram for the following… 
• (cons 0 (cons 3 4)) 
• Is this a list? If not, what is it? 
• (cons 0 (cons 3 (cons 4 ‘()))) 
• Is this a list? If not, what is it?
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Exercise

Draw the cons diagram for the following… 
• (cons 0 (cons 3 4)) — Drawn on board 
• Is this a list? If not, what is it? 
• No, not a list, but an improper list, no empty 
list at end 

• (cons 0 (cons 3 (cons 4 ‘()))) — Drawn on 
board 

• Is this a list? If not, what is it? 
• Yes, this is a list
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Binding and identifiers
• Identifiers refer to their most proximate syntactic binding 

• I.e., Racket is statically scoped; more later… 

• Can create local bindings with the let form: 

• (let ([x 0] 
      [y 1]) 
  body) 

• Note that y cannot reference x! Otherwise you want 
“sequential let”, the let* form 

• (let ([x 23] 
      [y (* 2 x)] 
  (+ y 2))
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x is bound to 0, y to 1, in body

(square brackets are the same as parens)

undefined variable x!



Exercise
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What is the value of the following expression?

(let ([a 1] 
      [b 2]) 
  (let ([b 3] 
        [c 4]) 
    (+ a b c)))



Exercise

!37

What is the value of the following expression?

The second definition of b shadows the first b. At the point where 
+ is invoked on three values, b is bound most proximately to 3.

(let ([a 1] 
      [b 2]) 
  (let ([b 3] 
        [c 4]) 
    (+ a b c)))
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Exercise
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What is the value of the following expression?

(let ([a 1] 
      [b 2]) 
  (let ([b 3] 
        [c (+ a b)]) 
    c))



Exercise
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What is the value of the following expression?

(let ([a 1] 
      [b 2]) 
  (let ([b 3] 
        [c (+ a b)]) 
    c))

Although the second definition of b shadows the first b, 
when defining c, the value of b is still 2! 

The new binding only takes effect in the body of the let form.



Exercise

!((x * 2) + (x * 2) + (x * 2))2

!40

Use let* to evaluate the following mathematical 
expression (without simplifying it), where x is 4:



Exercise

!((x * 2) + (x * 2) + (x * 2))2
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(let* ([x 4] 
       [y (* x 2)] 
       [z (+ y y y)]) 
  (* z z))

Use let* to evaluate the following mathematical 
expression (without simplifying it), where x is 4:



Exercise

!42

What does the following code compute?

(define (foo x) 1) 

(let* ([f foo] 
       [f (f 2)]) 
  (* f (let ([f 3]) 
         (+ f (foo f)))))



Exercise
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What does the following code compute?

4

(define (foo x) 1) 

(let* ([f foo] 
       [f (f 2)]) 
  (* f (let ([f 3]) 
         (+ f (foo f)))))



Exercise
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For each variable use within the following 
code, identify the variable’s proximate binder

(define (foo x) 1) 

(let* ([f foo] 
       [f (f 2)]) 
  (* f (let ([f 3]) 
         (+ f (foo f)))))



Exercise
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For each variable use within the following 
code, identify the variable’s proximate binder

(define (foo x) 1) 

(let* ([f foo] 
       [f (f 2)]) 
  (* f (let ([f 3]) 
         (+ f (foo f)))))


