
Racket Basics
CIS 352 — Spring 2020

Syracuse University

!1

Racket
• Dynamically typed: variables are untyped, values typed

• Functional: Racket emphasizes functional style

• Compositional—emphasizes black-box components

• Immutability—requires automatic memory management

• Imperative: Racket allows data to be modified, in carefully
considered cases, but doesn’t emphasize “impure” code

• Object-oriented: racket has a powerful object system

• Language-oriented: Racket is really a language toolkit

• Homoiconic: Code is data; the primary data structure of
Scheme, and LISP-family languages, is the linked list, written as
s-expressions, & Scheme code is explicitly written as lists.

!2

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)
 (/ (- y1 y0) (- x1 x0)))

!3

Calculating the slope of a line in Racket

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)
 (/ (- y1 y0) (- x1 x0)))

!4

Prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)
 (/ (- y1 y0) (- x1 x0)))

!5

Functions defined via prefix notation, too

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)
 (/ (- y1 y0) (- x1 x0)))

(calculate-slope 0 0 3 2)

!6

Calls to user-defined functions also in prefix notation

Example
((λ(x) (x x))

(λ(x) (x x)))

(define (calculuate-slope x0 y0 x1 y1)
 (/ (- y1 y0) (- x1 x0)))

(calculate-slope 0 0 3 2)

!7

Note: preferred style puts closing parens at end of blocks

Basic Types
• Numeric tower. Numeric types gracefully degrade

• E.g., (* (/ 8 3) 2+1i) is 16/3+8/3i

• Note that 2+1i is a literal value, as is 2.3

• Strings and characters (“foo” and #\a)

• Booleans (#t and #f) including logical operator (e.g., or)

• Note that operators “short circuit”

• Symbols are interned strings ‘foo

• Implicitly only one copy of each, unlike (say) strings

• The #<void> value (produced by (void))

!8

Exercise

Compute the sum of the following:
• 2/3 and 1.5
• 3+8i and 3i
• 0 and positive infinity (+inf.0)

!9

Exercise

Compute the sum of the following:
• (+ 2/3 1.5) 
2.1666666666666665 (N.B., result is inexact)
• (+ 3+8i 3i) 
3+11i
• (+ 0 +inf.0) 
+inf.0

!10

Forms
• A form is a recognized syntax in the language

• (if …), (and …) are forms, but +, list refer to functions

• You can define new forms too! More on this later…

• Scheme prefers to give a small number of general forms.

• The tag just after the open-paren determines the form:

• (define foo value) — Define a variable

• (define (foo a0 a1 …) body) — Define a function

• (if guard e-true e-false), (or e0 e1 …), etc

• Otherwise, by default, each pair of parens is a call site.

!11

Exercise

!12

Define a function that takes an argument, x,
and returns:
• x times 2, if x is less than 0
• x times -2 otherwise  
 
Hint: use(< x y) for comparison

Exercise

!13

(define (f x)
 (if (< x 0)
 (* 2 x)
 (* -2 x)))

Exercise

!14

Define a function that takes an argument, x, and
returns:
• x divided by 2, if x is even
• x times 3 plus 1, if x is odd 
 
Hint: use = and modulo to check if x is even/odd

Exercise

!15

(define (collatz x)
 (if (= 0 (modulo x 2))
 (/ x 2)
 (+ 1 (* 3 x))))

Derived Types
• S-expressions (symbolic expression)

• Untyped lists that generalize neatly to trees:

• Computer represents represents these as linked structures

• Cons cells (pairs) of a head and a tail (cons 1 2)

• Racket also has structural types (defined via structs)

• Defined via struct; aids robustness

• We will usually prefer agility of “tagged” S-expressions

• Also an elaborate object-orientation system (we won’t cover)

!16

(this (is an) s expression)

Example
((λ(x) (x x))

(λ(x) (x x)))

!17

(cons 0 1)

0

1

The function cons builds a cons cell

Example
((λ(x) (x x))

(λ(x) (x x)))

!18

(cons 0 1)

0

1

The function car gets the left element

(car) is 0

Example
((λ(x) (x x))

(λ(x) (x x)))

!19

(cons 0 1)

0

1

The function cdr gets the right element

(cdr) is 1

Example
((λ(x) (x x))

(λ(x) (x x)))

!20

(cons 0 1)

0

1

At runtime, each cons cell sits at an address in memory

0x700000032acd1200

Example
((λ(x) (x x))

(λ(x) (x x)))

!21

(cons 0 1)

0

1

In fact, numbers are also stored in memory locations.
They are thus said to be a “boxed” type

0x700000012ace1564

Example
((λ(x) (x x))

(λ(x) (x x)))

!22

(define x 23)
(displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value in some
“box” (i.e., memory location)

23x Prints 23

0x700000033dea2280

Example
((λ(x) (x x))

(λ(x) (x x)))

!23

(define x 23)
(displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value in some
“box” (i.e., memory location)

24
0x700000033dea2280

Changes x’s value to 24x

Example
((λ(x) (x x))

(λ(x) (x x)))

!24

(define x 23)
(displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value in some
“box” (i.e., memory location)

24 Now prints 24x
0x700000033dea2280

Example
((λ(x) (x x))

(λ(x) (x x)))

!25

(define x (vector 1 2 3))
(vector-set! x 1 0)
x
;; ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and
give O(1) indexing and updating

!26

In this class, you will not be allowed to use set! or
vector-set! unless explicitly noted

Code that uses set! may be denied full credit

Example
((λ(x) (x x))

(λ(x) (x x)))

!27

(cons 1 (cons 0 ‘()))

‘()

1 0
Empty list

This is how Racket represents lists in memory

Pairs enable us to build linked lists of data

Example
((λ(x) (x x))

(λ(x) (x x)))

!28

(cons 2 (cons 1 (cons 0 ‘())))

Note that in Racket, the following are equivalent

‘(2 1 0)

But the following is called an improper list
(cons 2 (cons 1 0))

‘(2 1 . 0)

Dot indicates a cons cell of a left and right element

Example
((λ(x) (x x))

(λ(x) (x x)))

!29

‘(this (is an) s expression)

Also can build compound expressions

Example
((λ(x) (x x))

(λ(x) (x x)))

!30

‘()

‘this ‘expression‘s

‘is ‘an

‘()

‘(this (is an) s expression)

Also can build compound expressions

Example
((λ(x) (x x))

(λ(x) (x x)))

!31

‘()

‘this ‘expression‘s

‘is ‘an

‘()

Empty list

Example
((λ(x) (x x))

(λ(x) (x x)))

!32

‘()

‘this ‘expression‘s

‘is ‘an

‘()

Note link to compound subexpression

Exercise

Draw the cons diagram for the following…
• (cons 0 (cons 3 4))
• Is this a list? If not, what is it?
• (cons 0 (cons 3 (cons 4 ‘())))
• Is this a list? If not, what is it?

!33

Exercise

Draw the cons diagram for the following…
• (cons 0 (cons 3 4)) — Drawn on board
• Is this a list? If not, what is it?
• No, not a list, but an improper list, no empty
list at end

• (cons 0 (cons 3 (cons 4 ‘()))) — Drawn on
board

• Is this a list? If not, what is it?
• Yes, this is a list

!34

Binding and identifiers
• Identifiers refer to their most proximate syntactic binding

• I.e., Racket is statically scoped; more later…

• Can create local bindings with the let form:

• (let ([x 0] 
 [y 1]) 
 body)

• Note that y cannot reference x! Otherwise you want
“sequential let”, the let* form

• (let ([x 23] 
 [y (* 2 x)] 
 (+ y 2))

!35

x is bound to 0, y to 1, in body

(square brackets are the same as parens)

undefined variable x!

Exercise

!36

What is the value of the following expression?

(let ([a 1]
 [b 2])
 (let ([b 3]
 [c 4])
 (+ a b c)))

Exercise

!37

What is the value of the following expression?

The second definition of b shadows the first b. At the point where
+ is invoked on three values, b is bound most proximately to 3.

(let ([a 1]
 [b 2])
 (let ([b 3]
 [c 4])
 (+ a b c)))

8

Exercise

!38

What is the value of the following expression?

(let ([a 1]
 [b 2])
 (let ([b 3]
 [c (+ a b)])
 c))

Exercise

!39

What is the value of the following expression?

(let ([a 1]
 [b 2])
 (let ([b 3]
 [c (+ a b)])
 c))

Although the second definition of b shadows the first b,
when defining c, the value of b is still 2!

The new binding only takes effect in the body of the let form.

Exercise

!((x * 2) + (x * 2) + (x * 2))2

!40

Use let* to evaluate the following mathematical
expression (without simplifying it), where x is 4:

Exercise

!((x * 2) + (x * 2) + (x * 2))2

!41

(let* ([x 4]
 [y (* x 2)]
 [z (+ y y y)])
 (* z z))

Use let* to evaluate the following mathematical
expression (without simplifying it), where x is 4:

Exercise

!42

What does the following code compute?

(define (foo x) 1)

(let* ([f foo]
 [f (f 2)])
 (* f (let ([f 3])
 (+ f (foo f)))))

Exercise

!43

What does the following code compute?

4

(define (foo x) 1)

(let* ([f foo]
 [f (f 2)])
 (* f (let ([f 3])
 (+ f (foo f)))))

Exercise

!44

For each variable use within the following
code, identify the variable’s proximate binder

(define (foo x) 1)

(let* ([f foo]
 [f (f 2)])
 (* f (let ([f 3])
 (+ f (foo f)))))

Exercise

!45

For each variable use within the following
code, identify the variable’s proximate binder

(define (foo x) 1)

(let* ([f foo]
 [f (f 2)])
 (* f (let ([f 3])
 (+ f (foo f)))))

