Racket Basics

A\

CIS 352 — Spring 2020
Syracuse University




Racket

Dynamically typed: variables are untyped, values typed
Functional: Racket emphasizes functional style

® Compositional—emphasizes black-box components
® |mmutability—requires automatic memory management

Imperative: Racket allows data to be modified, in carefully
considered cases, but doesn’t emphasize “impure” code

Object-oriented: racket has a powerful object system
Language-oriented: Racket is really a language toolkit

Homoiconic: Code is data; the primary data structure of
Scheme, and LISP-family languages, is the linked list, written as
s-expressions, & Scheme code is explicitly written as lists.

2



Example |
(ﬁxoo(xxﬂ

@@@@ﬂ

Calculating the slope of a line in Racket

(define (calculuate-slope x0 y@ x1 y1)
(/ (- yl yoa) (- x1 x0)))




Example |
P (0 x))

(1) xm

(define (calculuate-slope x0 y@ x1 y1)
(/ (- yl yo) (- x1 x0)))

Prefix notation




Example |
(ﬁxoo(xxﬂ

@@@@ﬂ

Functions defined via prefix notation, too

(define (calculuate-slope x0 y@ x1 y1)
(/ (- yl yoa) (- x1 x0)))




Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

(define (calculuate-slope x0 y@ x1 y1)
(/ (- yl yoa) (- x1 x0)))

(calculate-slope 0 0 3 2)

™~

Calls to user-detined functions also in prefix notation




Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

(define (calculuate-slope x0 y@ x1 y1)
(/ (- yl yo) (- x1 x0@)))

(calculate-slope 0 0 3 L2)

Note: preferred style puts closing parens at end of blocks

7




Basic lypes

Numeric tower. Numeric types gracefully degrade

® Eg, (*x (/ 8 3) 2+11i) is16/3+8/31

® Note that 2+11 is a literal value, asis 2.3
Strings and characters (“fo0” and #\a)
Booleans (#t and #f) including logical operator (e.g., or)
® Note that operators “short circuit”
Symbols are interned strings ‘ foo
® Implicitly only one copy of each, unlike (say) strings
The #<vo0id> value (produced by (void))

38



Compute the sum of the following:
e 2/3and 1.5

e 3+8j and 3i
* 0 and positive infinity (+1nf. @)




Compute the sum of the following:

e (+ 2/3 1.5)

2.1666666666666665 (N.B., result is inexact)
e (+ 3+81 31i)

3+111

e (+ 0 +1nf.0)

+1nf.0

10




Forms

A form is a recognized syntax in the language

e (if ..), (and ..) are forms, but +, list refer to functions
® You can define new forms too! More on this later...
Scheme prefers to give a small number of general forms.
The tag just after the open-paren determines the form:

e (define foo value) — Define a variable

e (define (foo a0 a1 ...) body) — Define a function
e (if guard e-true e-false), (oreO el ...), etc

Otherwise, by default, each pair of parens is a call site.

11



Define a function that takes an argument, x,
and returns:

e x times 2, it x is less than O

® x times -2 otherwise

Hint: use(< X y) for comparison

12




(define (f x)
(if (< x Q)
(x 2 X)

(x =2 Xx)))

13




Define a function that takes an argument, x, and
returns:

e x divided by 2, if x is even

* x times 3 plus 1, if x is oda

Hint: use = and modulo to check if x is even/odd

14




(define (collatz x)
(if (= @ (modulo x 2))

(/ x 2)
(+ 1 (x 3 x))))

15




Derived Types

S-expressions (symbolic expression)

e Untyped lists that generalize neatly to trees:

(this (is an) s expression)

Computer represents represents these as linked structures

e Cons cells (pairs) of a head and a tail (cons 1 2)
Racket also has structural types (defined via structs)

e Defined via struct: aids robustness

e We will usually prefer agility of “tagged” S-expressions

Also an elaborate object-orientation system (we won't cover)

16



Example |
p ((Mx) (x )

(1) xm

(cons 0 1)

0

The function cons builds a cons cell

17




Example |
p ((Mx) (x )

(1) xm

(car(cons @ 1)) is O

0

The function car gets the left element

18




Example |
p ((Mx) (x )

(1) 9))

(cdr(cons @ 1)) is 1

0

The tfunction cdr gets the right element

19




Example |
p ((Mx) (x )

(1) xm

(cons 0 1)

0x700000032acd1200

1

0

At runtime, each cons cell sits at an address in memory

20




Example |
(ﬁxoo(xxﬂ

@@@@ﬂ

(cons 0 1)

1

Ox700000012acel564

0

In fact, numbers are also stored in memory locations.
They are thus said to be a "boxed” type

21
s



Example |
(0 )

(Alx) & xﬂ)

(define x 23)

=» (displayln x)
(set! x 24)
(displayln x)

Actually, every Racket variable stores a value in some
"box” (i.e., memory location)

0x700000033dea2280

X 23 Prints 23

22




Example |
(0 )

(Alx) & xﬂ)

(define x 23)

(displayln x)
= (set! x 24)

(displayln x)

Actually, every Racket variable stores a value in some
"box” (i.e., memory location)

0x700000033dea2280

X 24

Changes x's value to 24

23




Example |
(0 )

(Alx) & xﬂ)

(define x 23)

(displayln x)

(set! x 24)
=% (displayln x)

Actually, every Racket variable stores a value in some
"box” (i.e., memory location)

0x700000033dea2280

X 24 Now prints 24

24




Example |
(ﬁxoo(xxﬂ

@m@ﬂﬂ

(define x (vector 1 2 3))
(vector-set! x 1 0)
X

s ‘#(1 0 3)

Vectors (similar to arrays) are mutable, and
give O(1) indexing and updating

25




In this class, you will not be allowed to use set! or
vector-set! unless explicitly noted

Code that uses set! may be denied full credit

26



Example
(ﬁxoo(xxﬂ

@m@m

Pairs enable us to build linked lists of data

(cons 1 (cons @ “()))

%IE*%E* 0
Empty list

1 0

This is how Racket represents lists in memory

27




Example |
(ﬁxoo(xxﬂ

@m@@ﬂ

Note that in Racket, the following are equivalent
(cons 2 (cons 1 (cons @ “())))

‘(2 1 0)

But the following is called an improper list

(cons 2 (cons 1 0))
‘(2 1. 0)

Dot indicates a cons cell of a left and right element

28
s



Example |
p ((Mx) (x )

(1) xm

Also can build compound expressions

‘(this (is an) s expression)

29




Example

@mum
(Alx) & m

(
Also can build compound expressions

‘(this (is an) s expression)

‘()




@mum
(Alx) & M

(

Empty list
()

d . .
this ‘expression

‘()




Example

(

(Alx) & M

Note link to compound subexpression

“()




Exercise

Draw the cons diagram for the following... =#
e (cons O (cons 3 4))

e |s this a list? If not, what is it?

¢ (cons O (cons 3 (cons 4 “())))

e |s this a list? If not, what is it?

33




Exercise

Draw the cons diagram for the following... =#

¢ (cons O (cons 3 4)) — Drawn on board

e |s this a list? If not, what is it?

* No, not a list, but an improper list, no empty
list at end

¢ (cons O (cons 3 (cons 4 ‘()))) — Drawn on
board

¢ |s this a list? It not, what is it?

¢ Yes, this is a list

34




Binding and identifiers

® |dentitfiers refer to their most proximate syntactic binding
® |.e., Racket is statically scoped; more later...

® Can create local bindings with the let form:

e (let ([x O] (square brackets are the same as parens)
body)[y 11) X is bound to 0, y to 1, in body

® Note thaty cannot reference x! Otherwise you want
“sequential let”, the let* form

e (let ([x 23]
[y (x 2 x)]
(+y 2))

undefined variable x!

35



What is the value of the following expression?

(let ([a 1]
[b 2]1)
(let ([b 3]
[c 4])
(+ abc)))

36




What is the value of the following expression?

(let ([a 1]
[b 21)
(let ([b 3] 3
[c 4])
(+ abc)))

The second detinition of b shadows the first b. At the point where
+ is invoked on three values, b is bound most proximately to 3.

37




What is the value of the following expression?

(let ([a 1]
[b 2])
(let ([b 3]
[c (+ a b)])
c))

38




What is the value of the following expression?

(let ([a 1]
[b 2])
(let ([b 3]
[c (+ a b)])
c))

Although the second definition of b shadows the first b,
when defining ¢, the value of b is still 2!

The new binding only takes effect in the body of the let form.

39
s



Use let* to evaluate the following mathematical
expression (without simplitying it), where x is 4:

((%2) + (x*2) + (x*2))°

40




Use let* to evaluate the following mathematical
expression (without simplitying it), where x is 4:

((%2) + (x*2) + (x*2))°

(Lletx ([x 4]

[y (x x 2)]

[z (+ yyVy)])
(x z z))

41




What does the following code compute?

(define (foo x) 1)

(letx ([f fool
[f (f 2)])
(x £ (let ([f 3])
(+ f (foo f)))))

42




What does the following code compute?

(define (foo x) 1)

(letx ([f foo]

[f (f 2)1) 4
(x f (let ([f 3])
(+ f (foo f)))))

43




;’f'!

For each variable use within the following
code, identity the variable’s proximate binder

(define (foo x) 1)
(letx ([f fool
[f (f 2)])

(x f (let ([f 31)
(+ f (foo f)))))

44




;’f'!

For each variable use within the following
code, identity the variable’s proximate binder

(define (foo x) 1)

(letx ([fgfoO
f 1)
(x T (let ([A3])

(+ f7(fo0~F)))))

45




