
CIS 352
Programming Languages

Kristopher Micinski, Jack Vining, Yihao Sun

!1

Spring 2020

�2

The purpose of this class is to make you a
better programmer

�3

“Programming for programming’s sake”

�4

Why study programming languages?

�5

Key idea: learn programming languages by
building them

�6

Key idea: learn programming languages by
building them

Interpreter

Consumes code and executes it

�7

Compiler

Translates code into lower-level language

Then sent to a different interpreter
(such as a physical CPU)

!8

In this class, we will be writing several
interpreters / compilers

But for relatively small languages

Key idea: study core concepts in isolation

!9

The only language you need…

e ::= (λ(x) e)
x
(e0 e1)

!10

But this is cumbersome
lacks many key ideas!

Stack, heap, control (if), builtins (+),
closures, effects, libraries, runtime, etc…

The only language you need…

e ::= (λ(x) e)
x
(e0 e1)

Exercise

!11

What programming paradigms
have you heard of?

�12

Programming languages: paradigms
• Imperative languages emphasize issuing commands that tell the

machine what to do next at each step of evaluation.

• Structured languages emphasize structured control-flow (i.e., not
unstructured goto commands) that can be properly nested, especially
sequencing, conditionals, and looping constructs (while, for, do).

• Procedural programming is imperative programming with subroutines
—emphasizes abstracting behaviors over data (procedural abstraction).

• Object-oriented programming emphasizes encapsulation of behaviors
(methods) and data (fields) within classes, abstract modular schema for
program values, that are instantiated as resiliant, self-contained objects
at run-time. Inheritance hierarchies used to promote code-reuse.

• Reactive programming emphasizes responding to events.

�13

Programming languages: paradigms
• Dynamic languages emphasize permitting arbitrary manipulation of

program values, control, and the environment at runtime. Primarily these
use duck typing / structural typing. A related paradigm is that of
reflective programming—dynamically modifying types at runtime.

• Static languages emphasize bounding program behavior ahead-of-
time. Primarily these use nominal typing and are type-checked.

• Array languages emphasize concisely manipulating arrays, matrices.

• Functional programming emphasizes immutability, like math. Programs
are constructed from pipelines of composed functions that transform
inputs to outputs without affecting the surrounding environment.

• Logic programming emphasizes declarations, propositions, logical
constraints. The programmer states what must be true of a solution.

�14

Programming languages: imperative paradigm

Place first board and rails
While fence incomplete:
 move half-a-foot to the left 
 position a new board
 position a nail
 hammer nail into top rail
 ...

�15

Programming languages: functional paradigm

function build_fence(len):
 if len == 1:
 return rails_and_first_picket()
 else:
 return add_one_picket(build_fence(len-1))

�16

Programming languages: logical paradigm

def fence. 
fence is 5 ft tall.
fence has two rails.
fence has 50 pickets,
 each picket is 4” wide
 every picket is 2” from at least one other.

• We will be using Racket

• Racket is the best language for writing
interpreters

• Unique mix of features:

• Structured / functional programming

• Dynamically typed

• Language-oriented programming

!17

Racket
https://racket-lang.org/

�18

Grade breakdown

56% : 8 coding projects are 7% of your grade each.

10% : 2 coding exams are 5% of your grade each.

14% : A midterm worth 14%.

(If you earn <60% of the points for projects, labs, or exams,
your letter grade may be dropped to match.)

20% : A final worth 20%.

0% : Weekly exercises will be posted that are optional/extra credit.

Projects

• Intro to Racket

• Pagerank

• Quadtrees

• Closure-creating interpreter for core Scheme

• Church-encoding compiler from Scheme -> Lambda

• Interpreter for ANF Scheme w/ call/cc (CEK)

• Interpreter for Scheme + set! (CES, store-passing)

• Logic programming in Mini-Kanren

!19

�20

https://autograde.org/

Automated grading

First assignment: next Monday night

Should get uname/pw by tonight

�21

+

All submissions are graded using Racket 7.5 and Python 3.7
on an Ubuntu 18.04 LTR server.

If you have any trouble configuring this (or a compatible environment)
on your home machine, I highly recommend you develop with:

(OS X and non-Debian-based linux distros are likely to work with minimal headache;
Windows users have reported success using the Linux Subsystem for Windows.)

�22

Academic Honesty
• Assignments and Exams must be completed alone.

• You may not collaborate, discuss solutions, screen
share, copy code, look over someone’s shoulder…

• We can and do catch cheating; even when clever…

• Ask us if unsure whether something is permitted.

• Anything normally considered cheating on assignments or
exams is permitted, only for Examples or Exercises.

• So long as you’re making a sincere attempt to learn
and understand solutions, you may work with others,
collaborate on problems, or even share code, only for
problems marked exercise or example.

�23

Tasks for the first week

1) Configure your system. Download the latest
version of Racket from https://racket-lang.org/

2) Setup your autograder account. You should
receive an email invitation to use the autograder

before the first lab session. Change your password
and download the first assignment “a0”

3) Sign up for Slack. Ask us any questions via Slack

